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Abstract— This article is concerned with a data-driven divide-
and-conquer strategy to construct symbolic abstractions for
interconnected control networks with unknown mathematical
models. We employ a notion of alternating bisimulation functions
(ABF) to quantify the closeness between state trajectories
of an interconnected network and its symbolic abstraction.
Consequently, the constructed symbolic abstraction can be
leveraged as a beneficial substitute for the formal verification
and controller synthesis over the interconnected network. In
our data-driven framework, we first establish a relation be-
tween each unknown subsystem and its data-driven symbolic
abstraction, so-called alternating pseudo-bisimulation function
(APBF), with a guaranteed probabilistic confidence. We then
provide compositional conditions based on max-type small-gain
techniques to construct an ABF for an unknown interconnected
network using APBF of its individual subsystems, constructed
from data. We demonstrate the efficacy of our data-driven ap-
proach over a room temperature network composing 100 rooms
with unknown models. We construct a symbolic abstraction
from data for each room as an appropriate substitute of original
system and compositionally synthesize controllers regulating
the temperature of each room within a safe zone with some
guaranteed probabilistic confidence.

I. INTRODUCTION

Interconnected networks have been becoming popular dur-
ing the past two decades as a valuable modeling scheme
characterizing a broad range of real-world engineering sys-
tems. These networks find applications in automated ve-
hicles, drone networks, chemical networks, communication
networks, and so on. In general, formal verification and
controller design for this type of large-scale complex net-
works are computationally burdensome. This is especially
due to (i) dealing with uncountable state/input sets with large
dimensions, and (ii) absence of closed-form mathematical
models in most of real-life scenarios.

To alleviate these difficulties, one rewarding solution is
to use symbolic abstractions as finite-state approximations
of continuous-space models. By employing a constructed
symbolic abstraction as an appropriate substitution of orig-
inal (concrete) system, formal analyses can be performed
over the abstract model. The acquired results can then be
transfered back on the concrete domain, while quantifying
a guaranteed error bound between state trajectories of two
systems. Accordingly, it can be guaranteed that the concrete
system also satisfies the same specification as its symbolic
abstraction within some quantified error bound [1].

There have been two variants of symbolic abstractions:
sound and complete [2]. Complete abstractions propose
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sufficient and necessary guarantees: there exists a controller
enforcing a desired property on a symbolic abstraction if
and only if there exists a controller satisfying the same
specification over the original system. However, sound ab-
stractions only provide sufficient guarantees: not being able
to synthesize a controller via a sound abstraction does not
imply the lack of controller over the original domain.

There exist extensive results on abstraction-based analysis
of control systems. Existing results encompass constructing
(in)finite-abstractions for various classes of dynamical sys-
tems [2]–[6], to name a few. However, constructing symbolic
abstractions in a monolithic fashion suffers significantly
from the curse of dimensionality problem. To mitigate this
computational complexity, compositional abstraction-based
techniques have received remarkable attentions to build a
symbolic abstraction for an interconnected network using
those of smaller subsystems [7]–[10].

The above-mentioned studies on the construction of sym-
bolic abstractions unfortunately require knowing precise dy-
namics of underlying systems. Although indirect data-driven
approaches strive to learn unknown dynamics via identifi-
cation techniques [11], obtaining an accurate mathematical
model is generally computationally challenging especially
if the unknown system is complex. In addition, even if a
model can be identified via system identification approaches,
the relation between the identified model and its symbolic
abstraction should be still constructed. Accordingly, the
underlying complexity exists in two levels of model identifi-
cation and establishing the relation. In this work, we develop
a direct data-driven scheme, without performing any model
identification, and construct symbolic abstractions together
with their associated similarity relations by directly gathering
data from trajectories of unknown concrete systems.

The original contribution of this work is to develop
a data-driven divide-and-conquer strategy for constructing
symbolic abstractions for unknown interconnected networks
while providing a guaranteed probabilistic confidence. The
proposed approach relies on a notion of alternating bisim-
ulation functions (ABF) to quantify the closeness between
trajectories of an interconnected network and its symbolic
abstraction. In our data-driven scheme, we first recast condi-
tions of alternating pseudo-bisimulation functions (APBF) as
a robust optimization program (ROP). By gathering samples
from trajectories of each unknown subsystem, we provide
a scenario optimization program (SOP) for each original
ROP. We construct APBF from data with a guaranteed
probabilistic confidence by establishing a probabilistic bridge
between optimal values of SOP and ROP. We then propose
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a compositional approach using max-type small-gain rea-
soning to construct an ABF for an unknown interconnected
network via data-driven APBF of smaller subsystems. In fact,
our data-driven divide and conquer approach resolves the
sample complexity problem existing in almost all data-driven
approaches whose main goal is to certify some properties
over unknown systems via data. In particular, the number of
data for providing formal analysis over unknown systems is
exponential with respect to the size of the underlying sys-
tem. However, the sample complexity in our compositional
approach is reduced to subsystems: the number of samples
linearly increases with the number of individual subsystems.
We verify our data-driven results over a room temperature
network composing 100 rooms with unknown models.

There has been a limited number of work on the con-
struction of symbolic abstractions using data. Existing results
include: construction of symbolic abstractions via a Gaussian
process approach [12]; data-driven abstraction of monotone
systems with disturbances [13]; data-driven growth bound
computation for constructing finite abstractions [14]; data-
driven construction of symbolic abstractions for verifica-
tion of unknown systems [15]; and data-driven construction
of finite abstractions for incrementally input-to-state stable
systems [16]. In comparison, we propose a compositional
data-driven framework using small-gain reasoning for con-
structing symbolic abstractions of large-scale interconnected
networks, whereas the results in [12]–[16] are all tailored
to monolithic systems. As a result, the proposed approaches
in [12]–[16] suffer from the sample complexity problem
and are not useful in practice when dealing with high-
dimensional systems. In addition, the works [12]–[15] con-
struct sound abstractions based on data (sufficient guaran-
tees), whereas our data-driven technique is for the con-
struction of complete abstractions (sufficient and necessary
guarantees). Due to space constraints, we provide the proofs
of most statements in an arXiv version [17].

II. DISCRETE-TIME NONLINEAR CONTROL SYSTEMS

A. Notation

In this work, R,R+, and R+
0 , represent sets of real, pos-

itive, and non-negative real numbers, respectively. Symbols
N := {0, 1, 2, ...} and N+ = {1, 2, ...} denote, respectively,
sets of non-negative and positive integers. A column vec-
tor, given N vectors xi ∈ Rni , is represented by x =
[x1; . . . ;xN ]. We denote the minimum and maximum eigen-
values of a symmetric matrix P , respectively, by λmin(P )
and λmax(P ). Given two sets X and Y , R ⊆ X×Y denotes
a relation which relates x ∈ X to y ∈ Y if (x, y) ∈ R,
equivalently xRy. Given any scalar a ∈ R and vector
x ∈ Rn, |a| and ‖x‖ represent, respectively, the absolute
value and the infinity norm. For a matrix P ∈ Rm×n, ‖P‖ :=√
λmax(P>P ). Given a probability space (D,B(D),P), we

denote by DN the N -Cartesian product of set D, and by
PN its corresponding product measure. A Gamma function
Γ is defined as Γ(a) = (a − 1)! for any positive integer a
and Γ(a + 1

2 ) = (a − 1
2 ) × (a − 3

2 ) × · · · × 1
2 × π

1
2 for

any non-negative integer a. We show the feasibility of an
optimization problem by �.

B. Discrete-Time Nonlinear Control Systems

We first present the formal definition of discrete-time
nonlinear control systems.

Definition 2.1: A discrete-time nonlinear control system
(dt-NCS) is characterized by

Ξ = (X,U,D, f), (1)

where:
• X ⊆ Rn is a state set;
• U = {ν1, ν2, . . . , νm} with νi ∈ Rm̄, i ∈ {1, . . . ,m},

is a finite input set;
• D ⊆ Rp is a disturbance set;
• f : X × U × D → X is a transition map, which is

unknown in our setting.
The evolution of dt-NCS can be described by

Ξ: x(k + 1) = f(x(k), ν(k), d(k)), k ∈ N, (2)

for any x ∈ X , ν(·) : N → U , and d(·) : N → D. The
state trajectory of Ξ under sequences ν(·), d(·) starting from
x(0) = x0 is denoted by xx0νd : N→ X .

Since the ultimate goal is to construct a symbolic ab-
straction for a network of dt-NCS, we consider the system
in (1) as a subsystem and provide another definition for
the interconnected dt-NCS without disturbances d which is
acquired as a composition of individual subsystems with
disturbances d.

Definition 2.2: Consider M ∈ N+ dt-NCS Ξi =
(Xi, Ui, Di, fi), i ∈ {1, . . . ,M}, with their disturbances
partitioned as

di = [di1; . . . ; di(i−1); di(i+1); . . . ; diM]. (3)

An interconnected dt-NCS is defined as Ξ = (X,U, f),
represented by I(Ξ1, . . . ,ΞM), where X :=

∏M
i=1Xi, U :=∏M

i=1 Ui, and f := [f1; . . . ; fM], such that:

∀i, j ∈ {1, . . . ,M}, i 6= j : dij = xj , Xj ⊆ Dij , (4)

where Di :=
∏
j 6=iDij . Such an interconnected dt-NCS is

characterized by

Ξ: x(k+1) = f(x(k), ν(k)), where f : X×U → X. (5)

C. Symbolic Abstractions

Here, we construct symbolic abstractions as finite-state ap-
proximations of dt-NCS [8]. To do so, state and disturbance
sets are assumed to be compact. For constructing symbolic
abstractions, we first partition state and disturbance sets as
X = ∪iXi and D = ∪iDi, and then pick representative
points x̂i ∈ Xi and d̂i ∈ Di within those partition sets
as finite states and disturbances. In the next definition, we
formally present how to construct symbolic abstractions.

Definition 2.3: Consider a dt-NCS Ξ = (X,U,D, f)
in (1). The constructed symbolic abstraction Ξ̂ is charac-
terized as

Ξ̂ = (X̂, U, D̂, f̂),
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where X̂ and D̂ are discrete state and disturbance sets of Ξ̂.
Furthermore, f̂ : X̂ × U × D̂ → X̂ is a transition function
defined as

f̂(x̂, ν, d̂) = P(f(x̂, ν, d̂)), (6)

where P : X → X̂ is a quantization map with state
discretization parameter σ fulfilling the following condition:

‖P(x)− x‖ ≤ σ, ∀x ∈ X. (7)

III. ALTERNATING (PSEUDO-)BISIMULATION
FUNCTIONS

In this section, we define notions of alternating pseudo-
bisimulation and bisimulation functions for, respectively, dt-
NCS and its symbolic abstraction (with disturbance signals)
and two interconnected dt-NCS (without disturbance sig-
nals) [9].

Definition 3.1: Consider a dt-NCS Ξ = (X,U,D, f) as in
Definition 2.1 and its symbolic abstraction Ξ̂ = (X̂, U, D̂, f̂)
as in Definition 2.3. A function S : X × X̂ → R+

0 is an
alternating pseudo-bisimulation function (APBF) between Ξ̂
and Ξ, represented by Ξ̂ ∼=S Ξ, if

∀x ∈ X,∀x̂ ∈ X̂ : γ‖x− x̂‖2 ≤ S(x, x̂), (8a)

∀x ∈ X,∀x̂ ∈ X̂,∀ν ∈ U, ∀d ∈ D,∀d̂ ∈ D̂ :

S(f(x, ν, d), f̂(x̂, ν, d̂)) ≤ max
{
µS(x, x̂), η‖d− d̂‖2, θ

}
,

(8b)

for some γ ∈ R+, 0 < µ < 1, and η, θ ∈ R+
0 .

We now amend the above notion and present it as a relation
between two interconnected dt-NCS by eliminating distur-
bance signals.

Definition 3.2: Consider an interconnected dt-NCS Ξ =
(X,U, f) and its symbolic abstraction Ξ̂ = (X̂, U, f̂). A
function V : X × X̂ → R+

0 is an alternating bisimulation
function (ABF) between Ξ̂ and Ξ, denote by Ξ̂ ∼=V Ξ, if

∀x ∈ X,∀x̂ ∈ X̂ : γ‖x− x̂‖2 ≤ V(x, x̂), (9a)

∀x ∈ X,∀x̂ ∈ X̂,∀ν ∈ U :

V(f(x, ν), f̂(x̂, ν)) ≤ max
{
µV(x, x̂), θ

}
, (9b)

for some γ ∈ R+, 0 < µ < 1, and θ ∈ R+
0 .

The alternating bisimulation function in Definition 3.2 im-
plies that if the original dt-NCS and its symbolic abstraction
commence from two close states (ensured by (9a)), then they
stay close after a one-step evolution (ensured by (9b)) [2].

In the next theorem, we leverage the usefulness of ABF
and capture the distance between trajectories of an intercon-
nected dt-NCS and its symbolic abstraction [9].

Theorem 3.3: Given an interconnected dt-NCS Ξ and its
symbolic abstraction Ξ̂, let V be an ABF between Ξ̂ and Ξ.
Then a relation R ⊆ X × X̂ as

R :=
{

(x, x̂) ∈ X × X̂
∣∣V(x, x̂) ≤ θ

}
(10)

is an ε̃-approximate alternating bisimulation relation [2]
between Ξ̂ and Ξ with ε̃ = ( θγ )

1
2 .

In the next sections, we first construct APBF from data
between unknown subsystems and their symbolic abstrac-
tions. We then provide sufficient compositional conditions

in Section VI using a small-gain approach to construct an
ABF for an interconnected system via its data-driven APBF
of subsystems.

IV. DATA-DRIVEN APBF
In our data-driven approach, we consider APBF as

S(ϕ, x, x̂) =
∑z
j=1 ϕjgj(x, x̂), where gj(x, x̂) are basis

functions and ϕ = [ϕ1; . . . ;ϕz] ∈ Rz are unknown variables.
By considering basis functions gj(x, x̂) as monomials over
(x, x̂), APBF will be polynomial-type. To enforce proposed
conditions of APBF as (8a)-(8b), we cast them as the
following robust optimization program (ROP):

ROP :



min
[G;ξ]

ξ,

s.t. maxj
{
Hj(x, x̂, ν, d, d̂,G)

}
≤ξ, j∈{1, 2},

∀x ∈ X,∀x̂ ∈ X̂, ∀ν ∈ U,∀d ∈ D,∀d̂ ∈ D̂,
G=[γ; µ̃; η̃; θ̃;ϕ1; . . . ;ϕz],

γ∈R+, µ̃ ∈ (0, 1), η̃, θ̃∈R+
0 , ξ∈R,

(11)

where:

H1 =γ‖x− x̂‖2 − S(ϕ, x, x̂),

H2 =S(ϕ,f(x, ν, d),f̂(x̂, ν, d̂))−µ̃S(ϕ, x, x̂)−η̃‖d−d̂‖2−θ̃.
(12)

One can readily verify that conditions (8a)-(8b) in the
construction of APBF are fulfilled if ξ∗R ≤ 0, with ξ∗R being
an optimal value for ROP.

Remark 4.1: Note that after solving ROP in (11), µ, η, θ in
the max-form condition (8b) can be acquired based on µ̃, η̃, θ̃
in the implication-form in (12) as µ = 1−(1−ψ)(1−µ̃), η =
(1+λ)η̃
(1−µ̃)ψ , θ =

(1+ 1
λ )θ̃

(1−µ̃)ψ , for any 0 < ψ < 1 and λ ∈ R+.

The provided ROP in (11) is not solvable due to appearing
unknown maps f, f̂ in H2. To resolve this issue, we collect
Q independent-and-identically distributed (i.i.d.) samples
within X × D, denoted by (x̄i, d̄i)

Q
i=1. Now we propose a

scenario optimization program (SOP), with an optimal value
ξ∗Q, associated to the original ROP:

SOP :



min
[G;ξ]

ξ,

s.t. maxj
{
Hj(x̄i, x̂, ν, d̄i, d̂,G)

}
≤ξ, j∈{1, 2},

∀x̄i ∈ X,∀d̄i ∈ D,∀i∈{1, . . . ,Q},
∀x̂ ∈ X̂, ∀d̂ ∈ D̂,∀ν ∈ U,
G=[γ; µ̃; η̃; θ̃;ϕ1; . . . ;ϕz],

γ∈R+, µ̃ ∈ (0, 1), η̃, θ̃∈R+
0 , ξ∈R.

(13)

One can now substitute unknown f(x̄i, ν, d̄i) in H2 by
measuring one-step transition of dt-NCS starting from x̄i
under ν and d̄i. As for f̂(x̂, ν, d̂) in H2, we first compute
f(x̂, ν, d̂) by initializing the unknown model from x̂ under ν
and d̂. Given a discretization parameter σ, we then compute
f̂(x̂, ν, d̂) as the nearest point to f(x̂, ν, d̂) by fulfilling
condition (7). This is the way that we construct data-driven
symbolic abstractions by including a discretization error that
is captured via θ in (8b).
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Remark 4.2: Given a bilinearity between unknown vari-
ables ϕ and µ̃ in conditionH2, we consider µ̃ in a discrete set
as µ̃ ∈ {µ̃1, . . . , µ̃l}. The cardinality l is then incorporated
in computing the required number of data for solving SOP
(cf. (14)).

V. DATA-DRIVEN GUARANTEE FOR APBF
CONSTRUCTION

In this section, via the next theorem, we construct an
APBF between each unknown subsystem and its symbolic
abstraction with a guaranteed probabilistic confidence by
establishing a probabilistic bridge between optimal values
of SOP and ROP [18].

Theorem 5.1: Given an unknown dt-NCS in (2), let H1

and H2 be Lipschitz continuous with respect to x and (x, d)
with, respectively, Lipschitz constants L1, L2t , for given µ̃t
where t ∈ {1, . . . , l}, and any ν ∈ U . Consider the SOP
in (13) with ξ∗Q, G∗ = [γ∗; η̃∗; θ̃∗, ϕ∗1; . . . ;ϕ∗z], and

Q(εt, β) :=min
{
Q ∈ N

∣∣ l∑
t=1

c−1∑
i=0

(
Q
i

)
εit(1−εt)Q−i≤β

}
,

(14)

where β, εt ∈ [0, 1] for any t ∈ {1, . . . , l}, with c, l being,
respectively, number of unknown variables in SOP, and
cardinality of finite set of µ̃. If

ξ∗Q + max
t

LHtκ−1(εt) ≤ 0, (15)

with LHt = max{L1,L2t}, and κ(s) : R+
0 → [0, 1]

depending on the geometry of X × D and the sampling
distribution, then the constructed S via data is an APBF
between Ξ̂ and Ξ with a guaranteed confidence of 1 − β,
i.e., PQ

{
Ξ̂ ∼=S Ξ

}
≥ 1− β.

Proof: According to [18, Theorem 4.3], one can quan-
tify the closeness between optimal values of ROP and SOP
as

PQ
{

0 ≤ ξ∗R − ξ∗Q ≤ max
t
ε̄t

}
≥ 1− β, (16)

with
Q
(
κ(

ε̄t
LSPLHt

), β
)
,

where ε̄t ∈ [0, 1], κ(s) : R+
0 → [0, 1], and LSP is a

Slater point which is considered here as 1 given that the
original ROP in (11) is a min-max optimization program [18,
Remark 3.5].
From (16), one has ξ∗Q ≤ ξ∗R ≤ ξ∗Q + maxt ε̄t with a confi-
dence of 1−β. If ξ∗Q+ maxt ε̄t ≤ 0, then ξ∗R ≤ 0, implying
that conditions (8a)-(8b) are satisfied and the constructed S
from data is an APBF between Ξ̂ and Ξ with a confidence
of at least 1 − β. Since εt = κ( ε̄t

LHt
) with LSP = 1 [18],

one has ε̄t = LHtκ−1(εt). Then one can recast condition
ξ∗Q + maxt ε̄t ≤ 0 as ξ∗Q + maxt LHtκ−1(εt) ≤ 0, which
completes the proof.

In the next lemma, we compute the function κ in (15)
when collecting data with a uniform sampling distribution
from a hyper-rectangle uncertainty set.

Lemma 5.2: The function κ in (15) fulfills the following
inequality [18, Proposition 3.8]:

κ(r) ≤ P
[
Br(x, d)

]
, ∀r ∈ R+

0 ,∀(x, d) ∈ X ×D,
(17)

with Br(a) ⊂ X × D being an open ball with center
a and radius r. If one collects data from an (n + p)-
dimensional hyper-rectangle uncertainty set X × D with a
uniform distribution, then κ in (17) is quantified as

κ(r) =
Vol(Br(x, d))

2n+pVol(X ×D)
=

π
n+p
2

Γ(n+p
2 +1)

rn+p

2n+pVol(X ×D)

=
π
n+p
2 rn+p

2n+pΓ(n+p
2 + 1)Vol(X ×D)

, (18)

with Vol(·) and Γ being volume set and Gamma function,
respectively. For other types of sample distributions and
uncertainty sets, the function κ can be computed according
to [19].

To check the proposed condition in (15), LHt is required.
In the next lemmas, we compute LHt for both linear and
nonlinear control systems.

Lemma 5.3: Given a linear system x(k + 1) = Ax(k) +
Bν(k) +Ed(k), let (x− x̂)>P (x− x̂) be an APBF with a
positive-definite matrix P ∈ Rn×n. Then LHt is computed
as LHt =max

{
L1,L2t

}
with

L1 = 4$1(λmin(P )+λmax(P )),

L2t = 2λmax(P )
(
2J 2

1 $1 + 2J1J2$2 + 2J1J3$3 + J1σ

+ 2J 2
3 $3 + 2J2J3$2 + 2J1J3$1 + J3σ + 2$1µ̃t

)
+ 2η̃$3,

where ‖A‖ ≤ J1, ‖B‖ ≤ J2, ‖E‖ ≤ J3, ‖x‖ ≤ $1 for any
x ∈ X , ‖ν‖ ≤ $2 for any ν ∈ U , and ‖d‖ ≤ $3 for any
d ∈ D.

We now compute LHt for nonlinear control systems.
Lemma 5.4: Given a dt-NCS as in (2), let (x− x̂)>P (x−

x̂) be an APBF with a positive-definite matrix P ∈ Rn×n.
Then LHt is acquired as LHt =max

{
L1,L2t

}
with

L1 = 4$1(λmin(P )+λmax(P )),

L2t = 2λmax(P )(2JfJx + Jxσ + 2JfJd + Jdσ + 2$1µ̃t)

+ 2η̃$3,

where ‖f(x, ν, d)‖ ≤ Jf , ‖∂xf(x, ν, d)‖ ≤ Jx,
‖∂df(x, ν, d)‖ ≤ Jd, ‖x‖ ≤ $1 for any x ∈ X , and
‖d‖ ≤ $3 for any d ∈ D.

Remark 5.5: For the computation of LHt in Lemmas 5.3,
5.4, the required information is Lipschitz constant of dy-
namics together with an upper bound over unknown models.
One can estimate the Lipschitz constant of dynamics using
data based on the proposed approach in [20]. One can also
compute an upper bound on unknown models based on the
range of the state set.
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VI. COMPOSITIONAL CONSTRUCTION OF ABF FOR
INTERCONNECTED DT-NCS

Here, we provide a compositional approach to construct an
ABF for an interconnected dt-NCS using its corresponding
data-driven APBF of subsystems. To do so, we first raise the
following max-type small-gain assumption.

Assumption 1: Let µij ∈ R+ defined as

µij :=

{
µi if i = j,
ηi
γj

if i 6= j,

satisfy
µi1i2 .µi2i3 . . . . µiq−1iq .µiqi1 < 1 (19)

for all sequences (i1, . . . , iq) ∈ {1, . . . ,M}q and q ∈
{1, . . . ,M}.

Condition (19) is called circularity condition and implies
the existence of κi ∈ R+ fulfilling [21]

max
i,j

{µijκj
κi

}
< 1, i, j = {1, . . . ,M}. (20)

In the next theorem, we employ Assumption 1 to construct
an ABF for an interconnected dt-NCS based on data-driven
APBF of subsystems as in Theorem 5.1.

Theorem 6.1: Consider an interconnected dt-NCS Ξ =
I(Ξ1, . . . ,ΞM) induced by M ∈ N+ subsystems Ξi. Sup-
pose there exists an APBF between each subsystem Ξi and
its symbolic abstraction Ξ̂i with a confidence of 1 − βi,
according to Theorem 5.1. If Assumption 1 is met, then

V(ϕ, x, x̂) := max
i
{ 1

κi
Si(ϕi, xi, x̂i)} (21)

for κi as in (20), is an ABF between Ξ̂ = I(Ξ̂1, . . . , Ξ̂M)
and Ξ = I(Ξ1, . . . ,ΞM) with a confidence of 1−

∑M
i=1 βi.

Remark 6.2: It is worth noting that if one can synthesize
ηi and γi during solving the SOP such that ηi

γj
< 1, the

circularity condition (19) is automatically fulfilled without
requiring any posteriori check.

VII. CASE STUDY: ROOM TEMPERATURE NETWORK

We demonstrate our data-driven results over a room
temperature network composing 100 rooms with unknown
models in a circular topology, each of which is equipped
with a cooler. This kind of room network is employed
for storing specific medicines in some low temperatures.
The temperature evolution x(·) can be characterized by the
following interconnected network [22]:

Ξ: x(k + 1) = Ax(k) + αTcν(k) + zTE ,

where the matrix A has diagonal entries aii = 1 − 2ℵ −
z − ανi(k), i ∈ {1, . . . ,M}, off-diagonal entries ai,i+1 =
ai+1,i = a1,M = aM,1 = ℵ, i ∈ {1, . . . ,M− 1}, and other
entries as zero. Symbols ℵ, z, and α are thermal factors
between rooms i ± 1 and i, the outside environment and
the room i, and the cooler and the room i, respectively. In
addition, x(k) = [x1(k); . . . ;xM(k)], TE = [Te1 ; . . . ;TeM ],
with Tei = −2 ◦C, ∀i ∈ {1, . . . ,M}, being outside temper-
atures. The cooler temperature is Tc = 5 ◦C and the control

input is ν ∈ {0, 0.05, 0.1, 0.15, 0.2}. Now by characterizing
each individual room as

Ξi : xi(k + 1) = aiixi(k) + ℵ(di−1(k) + di+1(k))

+ αTcνi(k) + zTei , (22)

with d0 = dM, dM+1 = d1, one has Ξ = I(Ξ1, . . . ,ΞM).
We assume the model of each room is unknown to us. The
main target is to compositionally construct a symbolic ab-
straction as well as a data-driven ABF via solving SOP (13).
Accordingly, we utilize the data-driven symbolic abstraction
and synthesize controllers regulating the temperature of each
room in a safe set Xi = [−0.5, 0.5] with a guaranteed
probabilistic confidence. It is worth highlighting that the
dimension of the sample space for each room is ni+pi = 3,
since each room in the circular interconnection topology is
connected to its previous and next rooms.

We consider our APBF as Si(ϕi, xi, x̂i) = ϕ1i(xi−x̂i)4+
ϕ2i(xi − x̂i)2 + ϕ3i . We also fix εti = 0.001, βi = 10−4,
and σi = 0.025, a-priori. According to (14), we compute the
required number of data for solving SOP in (13) as Q = 776.
By solving SOP (13) with Q, we obtain the corresponding
decision variables as

Si(ϕi, xi, x̂i) = 0.2(xi − x̂i)4 + 0.17(xi − x̂i)2 + 18,

γ∗i = 5.8, η̃∗i = 0.02, θ̃∗i = 0.4, ξ∗Qi = −0.3093,

with a fixed µ̃i = 0.5. We now compute LHti = 0.8
according to Lemma 5.4. We also compute κ−1(εti) ac-
cording to Lemma 5.2 as κ−1(εti) = 0.3628. Since ξ∗Qi +
maxt LHtiκ

−1(εti) = −19 × 10−3 ≤ 0, the constructed
data-driven Si is an APBF between each unknown room
Ξi and its symbolic abstraction Ξ̂i with γi = 5.8, µi =
0.995, ηi = 0.02, θi = 0.4051, and a confidence of 1−10−4.

We now construct an ABF for the interconnected rooms
using data-driven APBF of individual rooms, according to
Theorem 6.1. By taking κi = 1,∀i ∈ {1, . . . ,M}, the cir-
cularity condition in (19) is fulfilled. Hence, one can certify
that V(ϕ, x, x̂) = maxi{Si(ϕi, xi, x̂i)} = maxi{0.2(xi −
x̂i)

4 + 0.17(xi − x̂i)2 + 18} is an ABF between the room
temperature network Ξ and its symbolic abstraction Ξ̂ with
γ = 5.8, µ = 0.995, θ = 0.4051, and a confidence of
1 −

∑100
i=1 βi = 99%. Accordingly based on Theorem 3.3,

R :=
{

(x, x̂) ∈ X × X̂
∣∣V(ϕ, x, x̂) ≤ 0.4051

}
is an ε̃-

approximate alternating bisimulation relation between Ξ̂ and
Ξ with ε̃ = 0.2643 and a confidence of 99%.

We now leverage the constructed data-driven symbolic
abstraction and compositionally design a controller such that
the controller regulates state of each unknown room in the
comfort zone [−0.5, 0.5]. To do so, we first synthesize a
controller for each abstract room Ξ̂i via SCOTS [23] and
then refine it back over unknown original room Ξi. The
overall controller for the network is then a vector whose
entries are controllers for individual rooms. Closed-loop state
trajectories and their corresponding control inputs of a repre-
sentative room are depicted, respectively, in Figs. 1 and 2. As
observed, the designed controller maintains trajectories of an
unknown representative room within the safe set [−0.5, 0.5].
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It is noteworthy that we have considered the basis functions
gji(xi, x̂i) as monomials over xi and x̂i. Consequently, the
APBF is treated as a polynomial, given that models of
unknown room temperatures are inherently polynomial in
nature, in accordance with their underlying physics. It is
important to emphasize that our approach is applicable to
general class of nonlinear systems, capable of enforcing
general temporal logic properties using the proposed data-
drive abstractions. The room temperature example here is
provided solely for the purpose of illustrating the results.
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Fig. 1. Closed-loop state trajectories of a representative room by designing
the controller over its data-driven symbolic abstraction.
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0

0.05

0.1

Fig. 2. A synthesized control input for a representative room via its data-
driven symbolic abstraction.

VIII. CONCLUSION

In this article, we developed a data-driven divide-and-
conquer approach using small-gain reasoning to construct
symbolic abstractions for interconnected control networks
with unknown mathematical models. We first built a rela-
tion between each unknown subsystem and its data-driven
symbolic abstraction using alternating pseudo-bisimulation
functions (APBF), while providing a guaranteed probabilistic
confidence. We then proposed a compositional approach
via max-type small-gain reasoning to construct an alter-
nating bisimulation function for an unknown interconnected
network using its data-driven APBF of subsystems. We
illustrated the efficacy of our data-driven results over a room
temperature network composing 100 rooms with unknown
models.
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