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Abstract— We present and analyze a novel functional learn-
ing paradigm that operates on Reproducing Kernel Hilbert
Spaces (RKHSs) without relying on the Representer Theorem,
demonstrating its potential to learn stochastic optimal control
policies in feedback form. Our methodology, based on the
newly introduced concept of the Fréchet discrete derivative
on RKHS, ensures that sequences generated by the iterative
method remain within the intersection of all sublevel sets of
the cost function, regardless of the chosen learning rate. In this
way, we guarantee a consistent decrease in the cost function
evaluation with each iteration until convergence, which is a
significant finding in machine learning. By further decomposing
the overall functional optimization problem into a suitable
sequence of sub-problems, we create a cascade iterative method
that computes each function in a domino effect. We briefly
address the Witsenhausen counterexample problem, validating
our convergence to a local minimum. Although the numerical
solution obtained for the Witsenhausen counterexample prob-
lem is not yet on par with established ad-hoc methods, the
preliminary results are promising and offer a fresh perspective
in the field of stochastic optimal control.

Index Terms— Functional learning; Non-convex optimiza-
tion; Team theory; Stochastic optimal control

I. INTRODUCTION

In several major areas of technological interest, it is
key to solve infinite-dimensional optimization problems,
also called functional optimization problems [1]. Specif-
ically, a functional has to be minimized (or maximized)
with respect to admissible policies belonging to infinite-
dimensional spaces of functions [2]. Use-cases include large-
scale communication and traffic networks, stochastic optimal
control in the feedback form of nonlinear dynamic systems,
optimal management of complex team organizations, freeway
traffic congestion control, and so on. Solving such functional
optimization problems in closed form is impossible except in
very specific cases and learning the optimal policies is still
an open challenge that is worth investigating.

In this initial article, we present a novel and promising
functional learning approach that operates on Reproducing
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Kernel Hilbert Spaces (RKHSs) without relying on the
Representer Theorem. The Representer Theorem [3] is a
fundamental result in the theory of RKHS. It states that,
under some assumptions, the minimizer of a cost function
defined over an RKHS can be written as a linear combi-
nation of linear functional of the kernel function used to
define the RKHS. Nonetheless, this theorem is irrelevant in
many functional optimization problems, particularly those
involving non-convex optimization [4], such as differential
dynamic programming [5,6], and control frameworks such
as stochastic optimal control in the feedback form (see
Example 1) and team optimal control problems (see Ex-
ample 2). In these cases, ad hoc numerical approximate
solutions are sought that indeed also suffer from the well-
known Bellman’s curse of dimensionality and that are based
on iterative methods such as gradient descent. The proposed
approach relies on the rationale presented in [7] that solves
the problem guaranteeing convergence to a stationary point
of the cost function. To shed light on the optimization context
that underpins the proposed functional learning methodology,
we borrow from [1] two notable examples in stochastic
feedback optimal control. These examples serve to illustrate
the methodological and practical implications of our method-
ology and underscore its potential to enable an effective and
general policy iteration approach.

Example 1 (Stochastic Optimal Control with Imperfect State
Information). We consider a Stochastic Optimal Control
problem in which the decision maker (DM) has access to
a vector yt of measurements that only contains imperfect
information on the system state xt. More specifically, we
assume that yt is a p-dimensional vector resulting from an
observation or measurement channel of the form

∀t ∈ {1, . . . , T − 1}, yt = gt(xt, ηt), (1)

where gt is a known function and ηt is a random vector.
As can be easily understood, the unavailability of perfect in-
formation on the system state makes the resulting stochastic
optimal control problems much more difficult than problems
in which there are perfect measures on xt.

The DM has then to retain in its memory the information
collected up to the stage t in order to compute the optimal
decision u◦

t by minimizing a cost functional. The information
is gathered in a vector that is called the information vector.
Then, this vector is made of all the measures acquired up
to the stage t and all the controls generated up to the stage
t− 1, i.e. I0 := y0 and

∀t ∈ {1, . . . , T − 1}, It := col
(
yt0, u

t−1
0

)
,
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where we used the notation yt0 = col
(
y0, . . . , yt

)
and ut−1

0 =
col
(
u0, . . . , ut−1

)
. It is worth noting that the transition from

It to It+1 is described by a relationship that plays the role
of a state equation for the information vector.

We consider a discrete-time dynamic system whose state
equation is given by

∀t ∈ {1, . . . , T − 1}, xt+1 = ft(xt, ut, ξt). (2)

Since the state is measurable through (1), we do not
know the initial state x0. We assume that x0, ξ0, . . . , ξT−1,
η0, . . . , ηT−1 are mutually independent random vectors with
known probability density functions and that these functions
do not depend on other variables. The optimization problem
is

argmin
ut

T−1∑
t=0

ht(xt, ut, ξt) + hT (xT ) .

As stated previously, since the DM cannot measure the
state xt exactly, it has to retain the information state vector
It in its memory. It follows that the control functions take
on the closed-loop form

∀t ∈ {1, . . . , T − 1}, ut = µt(It).

We define the sequence of control functions as a control law.
We choose the minimization of the expected value of the cost
function as a suitable criterion to design the optimal control
law. Thus, the functional to be minimized is given by

argmin
µ1,...,µt−1

E
x0,ξ

T−1
0 ,ηT−1

0

[
T−1∑
t=0

ht[xt, µt(It), ξt] + hT (xT )

]
.

(3)
Therefore, we can state the following functional optimization
problem.
Functional Optimization Problem 1. Find the optimal
control functions µ◦

0, . . . , µ
◦
T−1 that solves (3) subject to (1)

and (2). ◁

Example 2 (Team Optimal Control). There are many situ-
ations in which a process is influenced by several decision-
makers DMs. We consider the case where various DMs
share different information, but they make decisions aimed
at accomplishing a common goal, i.e., minimizing the same
cost functional. Such an organization can be mathematically
described within the framework of Marschak and Radner’s
team theory. All the a priori information is assumed to be
shared by the DMs. This information is given by the cost
functional, the probability densities of the random variables,
the models of the DMs’ observation channels, and, in the
dynamic case, of the system controlled in common.

Let us consider a set {DM1, . . . ,DMM} of M DMs (or
agents). Each of them, on the basis of its own information
vector Ii ∈ Rqi , must make its decisions ui ∈ Rmi . The
information vector Ii of DMi includes all the information
useful for making decisions, that is, information on the
decisions made by the other agents and on a vector z ∈ Rr

that describes a stochastic environment, i.e., the uncertainties
in the external world that are not influenced by any DM.

Then, each information vector can be described by the
function,

∀i ∈ {1, . . . ,M}, Ii = gi(u1, . . . , ui−1, ui+1, . . . , uM , z),

where z is a random vector with a known probability density
function. The functions gi and the connections among them
play a central role in team theory.

Definition 1. The set of functions g := {g1, . . . , gM} is
called the “information structure” of the team.

A causality condition in the teams has to be verified.
This means that, if the control action ui of DMi affects the
information vector Ij of DMj , then uj does not affect Ii.
By “affecting” we mean that the decisions of a DM modify
the information vector of another. The following definition
distinguishes two different behaviors in a team:

Definition 2. A team is said to be static if the functions gi
with i ∈ {1, . . . ,M} are independent of the DMs’ control
actions, i.e. Ii = gi(z). A team that is not static is said to
be dynamic.

Based on what we previously said, the decision or control
function of each decision maker DMi takes the form

∀i ∈ {1, . . . ,M}, ut = µt(It).

We assume µi ∈ Si, where Si is the set of all admissible con-
trol functions for the decision maker DMi. The decision or
control law of the team is defined as µ := col(µ1, . . . , µM ).
The agents DM1, . . . ,DMM cooperate on the minimization
of the mean value of the common cost function

J(µ1, . . . , µM , z) . (4)

Hence, we have a team optimal control problem. As we
said previously, we assume that all the possible a priori
information, i.e. g, J,S1, . . . ,SM and the probability density
function of z, is known to all the DMs. Therefore, we can
state the following functional optimization problem.
Functional Optimization Problem 2. Find the optimal
control functions µ◦

0, . . . , µ
◦
T−1 that minimize the expected

value of (4), i.e. E
z

[
J(µ1(I1), . . . , µM (IM ), z

]
for all µi ∈

Si. ◁

To tackle these examples with a more abstract functional
learning approach, in Section III-B we propose a novel
iterative method that relies on the concept of the Fréchet
discrete derivative on RKHS introduced in Section III-A. In
particular, the method is designed to ensure that sequences
generated by the iterative optimization method remain within
the intersection of all sublevel sets of the cost function,
regardless of the selected learning rate, ensuring robustness
with respect to the selection of the learning rate. Indeed, we
have demonstrated that this approach guarantees a monotonic
decrease in the cost function evaluation for each iteration
until convergence. Building on this property, in Section III-C
we devised a cascade technique that simplifies the minimiza-
tion problem of each function independently. Specifically,
we segmented the overarching optimization problem into a
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sequence of smaller problems. This led to the development
of a cascade iterative method that computes each function in
a domino effect (as in a decision-making problem), utilizing
only the available information at hand.

Finally, to numerically validate the method, in Section III-
D we have initiated a preliminary discussion on the potential
of the proposed functional method for addressing the Wit-
senhausen counterexample problem.

II. PRELIMINARIES AND PROBLEM STATEMENT

Throughout the article, we denote by R and N the fields
of real and natural numbers, respectively (0 ∈ N). The set of
vectors having n rows with real-valued entries is denoted by
Rn, and the set of matrices having n rows and m columns
with real-valued entries is denoted by Rn×m. Given n ∈
N and a vector x ∈ Rn, |x| is the Euclidean norm of x.
Given a random variable x ∈ R distributed according to the
Normal Distribution with 0-mean, we write x ∼ N (0, σ)
where σ = E

[
x2
]
. We consider Reproducing Kernel Hilbert

Spaces (RKHSs) over R of functions that map Q into R,
where Q is an arbitrarily selected set. To define RKHSs in
a formal way, we introduce the following statements [8,9].

Definition 3. A Hilbert space H over R of functions h : Q →
R is called an RKHS if, for every q ∈ Q, the evaluation
functional E[q] : H → R, i.e. the functional such that
E[q](v) = v(q) for each v ∈ H, is linear and bounded.

In the following, we denote with H∗ is the dual space of
the Hilbert space H, i.e. the Hilbert space containing all the
linear bounded functionals that map H to R. Then, to better
understand this definition, we recall the well-known Riesz
Representation Theorem [10, Thm. 3.4], which is a powerful
result in the theory of Hilbert spaces which classifies the
elements of H∗ in terms of the inner product ⟨ · , · ⟩ of H.

Theorem 1. For each T ∈ H∗ there exists a unique g ∈ H,
called Riesz representation of T , such that for every h ∈ H
we have T (h) = ⟨h, g⟩.

From Definition 3 and Theorem 1, we derive that, for
each q ∈ Q, there exist a function kq ∈ H∗ such that
v(q) = E[q](v) = ⟨kq, v⟩ for every v ∈ H. Therefore, for
each RKHS, we can define the reproducing kernel function
K such that K(u, v) = ⟨ku, kv⟩. It also turns out that
there exist a bijection between reproducing kernels functions
and RKHS. This statement is formalized in the following
definition and theorem.

Definition 4. A function K : Q × Q → R is called a
reproducing kernel if it has the following properties: (i) given
a ∈ Q and b ∈ Q, K(a, b) = K(b, a); (ii) given w ∈ N,
{aj : 1 ≤ j ≤ w} ⊂ Q, and {cj : 1 ≤ j ≤ w} ⊂ R,

w∑
i=1

w∑
j=1

cicjK(ai, aj) ≥ 0.

Theorem 2. For every RKHS there exists a unique reproduc-
ing kernel K : Q×Q → R. Conversely, given a reproducing

kernel K : Q×Q → R there exists a unique RKHS of real-
valued functions on Q with K as its reproducing kernel.

Corollary 2.1. Given a ∈ Q, the Riesz representation of
E[a] ∈ H∗ is K(a, ·) ∈ H, i.e. E[a](v) = ⟨v,K(a, ·)⟩K for
every v ∈ H.

In the following derivations, we denote by HK the RKHS
associated with the reproducing kernel K, while ⟨ · , · ⟩K and
| · |K denote the inner product and its induced norm on HK

respectively.
Throughout this article, we deal with the (possibly non-

convex) functional optimization problem

argmin
v∈HK

J(v), (5)

where J : HK → R is an operator that maps functions in
HK to R (see Example 1 and 2 previously illustrated). We
require the following assumption to guarantee a solution for
the minimization problem (5).

Assumption 1. The function J is bounded from below.
Moreover, there exists h⋆ ∈ HK such that J(h⋆) ≤ J(v)
for every v ∈ HK .

Optimization problems of the form (5) are widely used
in learning problems [11] because, in certain situations, (5)
boils down to a finite-dimensional problem for every HK .
In particular, consider the case of

J(v) = g
(
L1(v), L2(v), · · · , Ln(v), |v|K

)
,

where Li ∈ H∗
K , for all i ∈ {1, . . . , n}, and g is a function

that satisfies specific assumptions1 which guarantees, among
other properties, that the solution of (5) is unique. Then,
there exists c1, . . . , cn ∈ R such that

h⋆ =

n∑
i=1

ciL̄i,

where L̄i ∈ HK is the Riesz representation of Li. This result
is called Representer Theorem [3], and it allows reducing (5)
to an optimization problem in the coefficients c1, . . . , cn. The
Representer Theorem provides a solution in many learning
applications in both machine learning [12,13] and system
identification [11] for both linear [14]–[17] and nonlinear
systems [18,19]. However, if the assumptions of the Rep-
resenter Theorem are not satisfied, (5) needs to be solved
numerically. This is the case for all non-convex optimization
problems such as Example 1 and Example 2. A problem
belonging to this category is the celebrated Witsenhausen
counterexample [20,21] that we consider in Section III-D.

Yet, despite the shortcomings of the Representer Theorem,
a numerical solution (5) can be still retrieved using the func-
tional gradient descend method. However, before defining it,
we recall the definition of Fréchet Derivative on an RKHS.

1The assumptions are omitted here because they are not necessary in this
paper. However, details on necessary and sufficient conditions can be found
in [3].
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Definition 5. A function f : HK → R is called Fréchet
differentiable at v ∈ HK if there exists df(v) ∈ H∗

K such
that

lim
|h|K→0+

|f(v + h)− f(v)− df(v)(h)|
|h|K

= 0.

The operator df(v) is called Fréchet derivative of f at
v ∈ HK . The function f is said to be Fréchet differentiable
in HK if it is Fréchet differentiable at every v ∈ HK and the
operator df(v) is simply called Fréchet derivative of f . Since
df(v) ∈ H∗

K , thanks to Theorem 1, there exists a unique
Df(v) ∈ H such that Df(v)(h) = ⟨Df(v), h⟩K , for every
h ∈ HK . Then, assuming that J is Fréchet differentiable,
the gradient descend method can be defined as an iterative
method such that

∀n ∈ N, hn+1 = hn − δnDJ(hn)

where {δn}n∈N ⊂ (0,∞) is a bounded sequence the method
start from a function {hn}n∈N ⊂ HK is a sequence of
functions. However, this method suffers from many well-
known shortcomings. When optimizing a model parameter-
ized by a function, gradient descent aims to minimize an
objective functional. The update rule for gradient descent
involves adjusting the parameters in the opposite direction
of the gradient of the objective functional. The values of the
sequence δn determines the converging rate of the method,
and it usually referred as the learning rate of the method. If
the learning rate is too small, progress is slow, potentially
leading to long search times. Conversely, if it is too large,
the optimization process may oscillate until diverging and
missing the optimal values. Indeed, the difference between
continuous-time gradient dynamics and its discretized ver-
sion, derived from integrating continuous trajectories, is often
substantial and tied to the integration time selection, see
e.g. [22]–[26].

In the next section, we propose an algorithm that is based
on the discrete Fréchet derivative [7] of the objective function
which effectively mitigates this diverging phenomenon by
allowing for learning rates arbitrarily large.

Before we dive into the main result, we introduce addi-
tional notations. Given A ⊂ HK , s ∈ HK , and a function
f : HK → R we define the sets

Ls(f) := {h ∈ HK : f(h) ≤ f(s)},
Sf (A) := {v ∈ A : f(v) ≥ f(s),∀s ∈ A}.

Finally, since s ∈ Sf (Ls(f)) we note that Sf (Ls(f)) ̸= ∅.

III. MAIN RESULT

A. Definition of discrete Fréchet derivative on HK

The notion of discrete gradient emerged as a powerful tool
in several applications of control theory and optimization,
see [27]–[30]. The definition of discrete Fréchet derivative
was given by [7] referring to Fréchet differentiable functional
with domain the set of all continuous functions that map [a, b]
to Rn. Here, we introduce the notion of discrete Fréchet
derivative for functions that map HK to R.

Definition 6. A function f : HK → R is called discrete
Fréchet differentiable at v ∈ HK if there exists Df(v, · ) :
HK → HK such that for every s ∈ HK〈

s− v,Df(v, s)
〉
K

= f(s)− f(v), (6a)

lim
s→v

Df(v, s) = Df(v). (6b)

The operator Df(v, ·) is called discrete Fréchet derivative
of f at v ∈ HK . The function f is said to be discrete Fréchet
differentiable in HK if it is Fréchet differentiable at every
v ∈ HK and the operator Df(·, ·) : HK × HK → HK is
called discrete Fréchet derivative of f .

Example 3. Consider q ∈ Q and its evaluation functional
E[q]. Using Corollary 2.1 and for the linearity of the inner
product, for every s, v ∈ HK , we have

E[q](s)− E[q](v) = ⟨s,K(q, ·)⟩K − ⟨v,K(q, ·)⟩K
= ⟨s− v,K(q, ·)⟩K

Using the property (6a), the difference E[q](s)−E[q](h) im-
plies that ⟨s− v,K(q, ·)⟩K =

〈
s− v,DE[q](v, s)

〉
K

. Thus,
we have that DE[q](v, s) = K(v, ·) for every q ∈ Q. ◁

Example 4. Consider the norm functional L(·) = | · |2K and
two functions v, s ∈ HK . Using the linearity property of the
inner product, we have

L(s)− L(v) = |s|2K − |v|2K
= ⟨s, s⟩K − ⟨v, v⟩K
= ⟨s− v, s⟩K + ⟨v, s− v⟩K
= ⟨s− v, s+ v⟩K .

Finally, using (6a) the difference L(s) − L(v) implies that
⟨s− v, s+ v⟩K =

〈
s− v,DL(v, s)

〉
K

. Thus, we have that
DL(v, s) = s+ v. ◁

It is worth bearing in mind that the discrete Fréchet deriva-
tive obtained from equation (6) is usually non-unique. This
highlights the need for careful consideration and analysis of
discrete Fréchet derivative on HK . It must be emphasized
that the forthcoming derivations are universally applicable
to any derivative satisfying (6), and are not limited to any
particular one.

B. Discrete Fréchet gradient method on HK

Following the functional learning method discussed in [7],
we introduce a discrete Fréchet gradient iterative method
which is given by the (implicit) difference equation

∀n ∈ N, hn+1 = hn − δnDJ(hn, hn+1), (7)

where J : HK → R is an operator that maps functions
in HK to R, {δn}n∈N ⊂ (0,∞) is a bounded sequence
of learning rates, and {hn}n∈N ⊂ HK is a sequence of
functions. Here, we assume that J is a discrete Fréchet
differentiable functional. Hence, to find a local minimum
for J , the idea is to apply an iterative method for every k
constructing a sequence {hn}n∈N starting from h0 such that
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hn+1 is a zero of the implicit equation (7). The method (7)
is called the discrete Fréchet gradient method on Hk.

The following statement is a preliminary result of the dis-
crete Fréchet gradient method on HK which holds regardless
of the sequence {δn}n∈N and the shape of J .

Lemma 1. Let J : HK → R be any discrete Fréchet differ-
entiable function, and {δn}n∈N ⊂ (0,∞) and {hn}n∈N ⊂
HK such that (7) holds. Then:

∀n ∈ N, J(hn+1) = J(hn) ⇐⇒ hn+1 = hn; (8a)

∀n ∈ N, hn+1 ∈
n⋂

i=0

Lhi
(J). (8b)

Proof of (8a). The left implication (⇐) is trivial. The right
implication (⇒) holds from the assumption that J is a
discrete Fréchet differentiable function associated with (7).
Indeed, using (6a) and (7) we have for every n ∈ N,

J(hn+1)− J(hn) =
〈
hn+1 − hn,DJ(hn, hn+1)

〉
K

= −δ−1
n |hn+1 − hn|2K ≤ 0.

(9)

Thus, if J(hn+1) = J(hn), we have δ−1
n |hn+1 − hn|2K = 0.

Finally, since δn is bounded for all n by assumption, we
conclude that |hn+1 − hn|2K = 0 =⇒ hn+1 = hn for every
n ∈ N.

Proof of (8b). Since (9) holds for every n ∈ N and every
δn, and since |hn+1 − hn|2K ≥ 0 for every hn ∈ HK and
hn+1 ∈ HK , we have that

(9) =⇒ J(hn+1) ≤ J(hn)

=⇒ J(hn+1) ≤ J(hn) ≤ · · · ≤ J(h1) ≤ J(h0)

=⇒ Lhn(J) ⊆ · · · ⊆ Lh1(J) ⊆ Lh0(J).

From the implications above and the definition of the sub-
level set of J , we conclude that

hn+1 ∈ Lhn
(J) ⊆ · · · ⊆ Lh0

(J) =⇒ hn+1 ∈
n⋂

i=0

Lhi
(J).

Lemma 1 ensures that any sequence {hn}n∈N generated
by the iterative method (7) is contained in the intersection of
all the sublevel sets at each n ∈ N, for every sequence {δn}
and any fixed initial function h0 ∈ HK . In addition, the
iterative method (7) also ensures that each sublevel sets of
Lhn

(J) never increase with n, see Figure 1. Combining (8a)
and (8b), we note that if hn+1 ̸= hn then J(hn+1) < J(hn).
Thus, the method guarantees that the cost function evalua-
tion decreases monotonically with n unless the algorithm
reaches convergence where hn+1 = hn. Yet, without any
further assumption on J , it turns out that convergence is not
guaranteed because, for each n ∈ N, Lhn

(J) is closed but not
necessarily bounded from below. However, if Assumption 1
is satisfied, we can prove the following result.

Theorem 3. Let J : HK → R be a discrete Fréchet
differentiable function which satisfies Assumption 1, and

Lh∞(J) · · · Lhn
(J) · · · Lh0

(J)
h⋆

Fig. 1. Sublevel sets of J for every sequence {hn}n∈N generated by (7).

{δn}n∈N ⊂ (0,∞) and {hn}n∈N ⊂ HK such that (7) holds.
Then, {hn}n∈N is bounded, and there exists h∞ ∈ HK such
that

hn −−−−−→
n→∞

h∞ ∈ SJ

( ∞⋂
i=0

Lhi
(J)

)
. (10)

Proof. From Assumption 1, for every n ∈ N we have

(9) ⇒ J(h⋆) ≤ J(hn+1) ≤ J(hn) ≤ · · · ≤ J(h1) ≤ J(h0).

Accordingly, there exists (at least) a function h∞ ∈ HK

such that J(h⋆) ≤ J(h∞) ≤ J(h0) with the property that
J(hn) → J(h∞) as n → ∞. For every n ∈ N, using (8b)
and the trivial fact hn+1 ∈ Lhn+1

(J), we have

hn+1 ∈
n+1⋂
i=0

Lhi
(J) =⇒ h∞ ∈ SJ

( ∞⋂
i=0

Lhi
(J)

)
.

Finally, we note that Lhn(J) ⊂ HK can be equivalently
defined as the preimage J−1([J(h⋆), J(hn)]) for every
hn. Then every sublevel set Lhn

(J) is compact since
[J(h⋆), J(hn)] is a compact subset of R for every hn. There-
fore, by induction, we finally conclude that

⋂∞
i=0 Lhi

(J) ⊂
HK is compact and {hn}n∈N is bounded in HK .

Example 5 (Application to the one dimensional non-convex
case). Consider the reproducing kernel K(a, b) = exp(−|a−
b|2), for all a, b ∈ Q = [0, 5] ⊂ R and the RKHS that it
defines HK . We aim to solve the non-convex problem (5)
with J : HK → R such that

J(h) = |h|2K +

10∑
i=0

(
yi − sin

(
h(xi)

))2
,

where, for every i ∈ {0, . . . , 10}, xi =
i
2 and yi =

log|xi+1|
cos xi

.
For this cost function, the Representer Theorem does not
hold [3] and needs to be solved numerically. Yet, using the
chain rule and the discrete Fréchet derivatives obtained in
Examples 3 and 4, we have that

DJ(hn, hn+1) = hn+1 + hn +

10∑
i=0

DE[xi](hn, hn+1)w(xi)

= hn+1 + hn +

10∑
i=0

K(xi, ·)wn(xi),
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Fig. 2. The first 50 functions obtained from Example 5. The thick purple
line is the starting function h0 and the red think line is the function of the
last iteration hn.

in which

wn(xi) := (sin(hn+1(xi)) + sin(hn(xi))− yi)pn(xi),

pn(xi) :=
sin(hn+1(xi))− sin(hn(xi))

hn+1(xi)− hn(xi)
.

The proposed method requires the solution of an implicit
equation in a potentially infinite dimensional functional
space. Thus, to tackle the problem numerically, we need to
rely on a finite-dimensional approximation of the function
hn. Here, since hn ∈ HK for every n ∈ HK , we can employ
the approximation

∀n ∈ N, hn ≈
m∑
j=0

cj,nK(x̄j , ·) ∈ HK , (11)

in which cj,i ∈ R, for all j ∈ {0, . . . ,m} and i ∈ N and x̄i =
5
m i. Moreover, the implicit equation (7) can be evaluated in
a finite amount of points of the domain Q = [0, 5]. Hence,
to make the problem feasible, we guarantee that the equality
in (7) holds only when the functions are evaluated in x̄i

with i ∈ {0, . . . ,m}. Finally, after these simplifications, the
implicit equation (7) becomes

Kcn+1 = Kcn − δn(Kcn+1 + Kcn + Kswn),

where K ∈ Rm+1×m+1 is the symmetric matrix whose (i, j)-
th element is K(x̄i, x̄j), Ks ∈ Rm+1×11 is the matrix whose
(i, j)-th element is K(x̄i, xj), ci ∈ Rm+1 are the vector
whose j-th element is cj,i (for every i ∈ N) and wi ∈ R11

is the vector whose j-th element is wi(xi) computed using
the approximation (11) (for every i ∈ N).

If m multiple of 10, then there exists a matrix S ∈ Rm×11

such that Ks = KS. Thus, we finally obtain the equivalent
implicit equation

cn+1 = cn − δn(cn+1 + cn + Swn),

which can be solved to find cn+1 that defines the approxima-
tion of the function as in (11). The first 50 iterations obtained
using δn = 0.005, for all n ∈ N, m = 1000, and starting
from c0 = 0m×1 are shown in Figure 2. Furthermore,
it is readily seen in Figure 3 that the value of the cost
function decreases monotonically at every iteration as proven
in Lemma 1. ◁

0 10 20 30 40 50

260

280

Fig. 3. Values of the cost function J for the first 50 functions hn obtained
from Example 5.

C. Cascade Discrete Fréchet Gradient Descent

In the realm of control theory, the backstepping approach
is a powerful tool for stabilizing a specific class of nonlinear
systems in a cascade fashion. The essence of backstepping
lies in its recursive nature and the control design unfolds
like a chain reaction. By breaking down the overall control
problem into a series of sub-problems, backstepping ensures
that each state is stabilized by a fictitious control which is the
next state. Inspired by this cascade design, we redefine the
discrete Fréchet gradient iterative method (7) as a recursive
algorithm.

Consider N ∈ N reproducing kernels K1, . . . ,KN : Q →
R and the optimization problem

argmin
v1∈HK1

,··· ,vN∈HKN

J(v1, . . . , vN ),

where J : H1:N → R where H1:N := HK1
× · · · ×

HKN
. For simplicity, for every (h1, . . . , hN ) ∈ H1:N and

i ∈ {1, . . . , N}, we define h:i := (h1, . . . , hi−1) and
hi: := (hi+1, . . . , hN ). We also assume that the function
J
(
h:i, ·, hi:

)
is discrete Fréchet differentiable. Thus, we have

that for every h ∈ H1:N , i ∈ {1, . . . , N} and si ∈ HKi
,〈

si − hi,DJ
(
si, h:i, hi, hi:

)〉
Ki

= J
(
h:i, si, hi:

)
− J(h),

where DJ
(
·, h:i, hi, hi:

)
: HKi → HKi is the (partial)

discrete Fréchet derivative of f at hi ∈ HKi . With this
in mind, we can characterize the discrete Fréchet gradient
method (7) as a cascade discrete-time system described by
the implicit difference equations

h1
n+1 = h1

n − δ1,nDJ
(
h1
n+1, h

:1
n , h

1
n, h

1:
n

)
, (12a)

...

hN
n+1 = hN

n − δN,nDJ
(
hN
n+1, h

:N
n+1, h

N
n , hN :

n

)
, (12b)

in which, for every i ∈ {1, . . . , N}, {δi,n}n∈N ⊂ (0,∞) is
a bounded sequence and

{
hi
n

}
n∈N ⊂ HKi

is a sequence of
functions.

We note that unlike the general method (7) the cas-
cade descent algorithm (12) allows computing each function
separately only using the available information. Moreover,
it is possible to use different sequences of learning rates,
{δi,n}n∈N, for each sequence

{
hi
n

}
n∈N. Indeed, we notice

that any sequence {hn}n∈N generated by the method (12)
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Fig. 4. The functions µ1 obtained by applying the cascade method (12)
to the cost function (14) at the 10i iteration with i ∈ {0, . . . , 50}. The
thick purple line is the starting function µ1,0 and the red think line is the
function of the last iteration µ1,n.
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Fig. 5. The value of the cost function (14) obtained by applying the
cascade method (12).

is again contained in the intersection of all the sublevel sets
at each n ∈ N, for every learning rate sequence and any
fixed initial function h0 ∈ HK . Following the argument of
Lemma 1, the cascade method (12) yields for every n ∈ N

J(hn+1)− J(hn) = −
N∑
i=1

δ−1
i,n

∣∣hi
n+1 − hi

n

∣∣2
Ki

≤ 0.

D. A Glimpse of the Witsenhausen Counterexample

Several problems in control theory, e.g. decentralized
stochastic control problems, can be formulated as a chain
of multi-stage decision-making problems [1]. A simple —
yet still unsolved — decision-making problem is the Witsen-
hausen counterexample, formulated by Hans Witsenhausen
in [20]. The counterexample was conceptualized to demon-
strate how the decentralization of stochastic controls can
break the certainty-equivalence property and how the choice
of certain nonlinear functions may outperform all linear
ones. Witsenhausen, however, did not demonstrate that the
proposed nonlinear solution is a global one, and to date,
neither analytical nor numerical methods have been found
to determine the global solution to the problem. Although
the global solution continues to be an unresolved problem,
numerous notable efforts have been undertaken in recent
years. For a summary of these numerical approaches, refer
to [21] and [1, Sec 9.4].

The problem can be formulated as a two-stage decision-
making problem of two Borel measurable functions µ1 :
R → R and µ2 : R → R. At the first decision stage, we

−2 −1 0 1 2

0

0.1

Fig. 6. The functions µ2 obtained by applying the cascade method (12)
to the cost function (14) at the 10i iteration with i ∈ {0, . . . , 50}. The
thick purple line is the starting function µ2,0 and the red think line is the
function of the last iteration µ2,n.

assume observing a random variable x ∼ N
(
0, σ2

)
. The

choice of µ1 is associated with the (first stage) cost function

J1(µ1) = E
[
k2
(
x− µ1(x)

)2]
,

for some k ∈ (0,∞). At the second decision stage, the
knowledge of µ1 is altered by an additive random variable
η ∼ N (0, 1) that is mutually independent with x. The choice
of µ2 is associated with the (second stage) cost function

J2(µ1, µ2) = E
[(

µ1(x)− µ2

(
µ1(x) + η

))2]
.

The Witsenhausen counterexample requires finding a pair of
functions (µ1, µ2) which solve the minimization problem

argmin
µ1,µ2

J1(µ1) + J2(µ1, µ2). (13)

We have already seen in Section III-C that the cascade
method (12) aligns seamlessly with this two-stage decision
problem. Hence, to approach the minimization problem (13)
through (12) we need to reformulate further the Witsen-
hausen counterexample in terms of functions (µ1, µ2) be-
longing to RKHSs. In this respect, considering two reproduc-
ing kernels K1,K2 : R × R → R and µ1 ∈ HK1

and µ2 ∈
HK2

, we can redefine the Witsenhausen counterexample
problem as such

argmin
µ1∈HK1

,µ2∈HK2

J1(µ1) + J2(µ1, µ2), (14)

where J1 : HK1
→ R and J2 : HK1

× HK2
→ R. To

simulate the cascade method (12) we consider approximating
the expected values through the Monte Carlo method for
nmc ∈ N mutually independent samples. Thus, for all
i ∈ {1, . . . , nMC}, let xi ∼ N (0, σ) and ηi ∼ N (0, 1)
be mutually independent random variables. Then, the cost
function (14) can be approximated with

J1(µ1) ≈
k2

nmc

nmc∑
i=1

(
xi − µ1(xi)

)2
,

J2(µ1, µ2) ≈
1

nmc

nmc∑
i=1

(
µ1(xi)− µ2

(
µ1(xi) + ηi

))2
.

For the numerical validation of the method, we considered
HK1 and HK2 associated with the reproducing kernels
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K1(a, b) = K2(a, b) = exp(−|a− b|2), for all a, b ∈ R. The
cost function (14) was implemented using the benchmark
values k = 0.2, σ = 5, and nmc = 3101. The learning rate
for both functions is a constant sequence of learning rate
δn = 1, for all n ∈ N. A subset of the nonlinear function
µ1 and µ2 obtained for the first 500 iterations are reported
in Figure 4 and Figure 6 respectively. It is readily seen in
Figure 5 that the functions µ1 and µ2 are approaching a
(local) minimum2 of the approximated cost function and the
value of the cost function decreases monotonically at every
iteration until convergence. This preliminary convergence
outcome is encouraging, suggesting that with a meticulous
tuning of this cascade method and a proper selection of
the reproducing kernel, we may find a valuable numerical
approach for seeking the (numerical) global minimum.

IV. CONCLUSIONS AND PERSPECTIVES

We introduced a novel functional learning approach that
operates on Reproducing Kernel Hilbert Spaces (RKHSs)
without relying on the Representer Theorem. Our implicit
method – which relies on the concept of the Fréchet discrete
derivative on RKHS introduced here – is designed to ensure
that sequences generated by the iterative method remain
within the intersection of all sublevel sets of the (possibly
non-convex) cost function, regardless of the selected learning
rate. As a result, we have demonstrated that this approach
guarantees a monotonic decrease in the cost function eval-
uation for each iteration until convergence. Based on this,
we further developed a cascade method that facilitates the
computation of each function in isolation. In particular,
by breaking down the overall optimization problem into a
series of sub-problems, we also developed a cascade iterative
method that allows computing each function as a chain
reaction only using the available information at hand.

The cascade structure seamlessly integrates into the Wit-
senhausen counterexample problem, allowing us to validate
our method by demonstrating the algorithm’s convergence to
a local minimum. Yet, while the obtained numerical solution
to the Witsenhausen counterexample problem is not yet
comparable with the established methods of the literature,
the preliminary results shown in this work are promising
and provide a new perspective. Specifically, with a careful
refinement of the cascade method and a strategic selection of
the reproducing kernel, our method could emerge as a potent
numerical strategy for pursuing the elusive global minimum
in the Witsenhausen counterexample problem — a feat that
is widely acknowledged as complex and challenging.
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