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Abstract— Non-stationarity is a fundamental challenge in
multi-agent reinforcement learning (MARL), where agents
update their behaviour as they learn. In multi-agent settings,
individual agents may have an incomplete view of the actions
of others, which can complicate the learning process. Many
theoretical advances in MARL avoid the challenge of non-
stationarity by coordinating the policy updates of agents in
various ways, including synchronizing times at which agents
are allowed to revise their policies. In this paper, we study
an asynchronous variant of the decentralized Q-learning al-
gorithm, a recent MARL algorithm for stochastic games. We
provide sufficient conditions under which the asynchronous
algorithm drives play to equilibrium with high probability. In
this generalization, players need not agree on the schedule of
policy update times, and may change their policies at their own
separately selected times. This work extends the applicability
of the decentralized Q-learning algorithm to settings in which
parameters are selected in an independent manner, and tames
non-stationarity without imposing the coordination assumptions
of prior work.

I. INTRODUCTION

Multi-agent systems are characterized by the coexistence
of many autonomous agents in a shared environment. In
multi-agent reinforcement learning (MARL), agents in the
system change their behaviour in response to feedback
received after previous interactions. The system is therefore
non-stationary from any one agent’s perspective, and agents
attempt to optimize their performance against a moving
target [1]. The non-stationarity of MARL environments has
been identified as one of the fundamental problems in MARL
[2]. In contrast to the rich literature on single-agent learning
theory, the theory of MARL is relatively underdeveloped, due
in large part to its inherent challenges of non-stationarity and
decentralized information.

This paper studies learning algorithms for stochastic
games, a common framework for MARL in which the cost-
relevant history of the system is summarized by a state
variable. In this paper, we focus on stochastic games in
which each agent fully observes the system’s state variable
but does not observe the actions of other agents, exacerbating
the challenge of non-stationarity.

Early theoretical work on MARL in stochastic games
avoided the problem of non-stationarity by studying appli-
cations in which joint actions were observed by all agents
[3], [4], [5]. More recently, there has been interest in the
individual action learner setting, where actions are not
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with the Department of Mathematics and Statistics, Queen’s University.
Correspondence to bora.yongacoglu@utoronto.ca.

shared between agents. In the individual action learner set-
ting, several rigorous contributions have been made recently,
including [6], [7], [8], [9], [10], to be discussed shortly.

Of the recent theoretical advances in MARL in the indi-
vidual action learner setting, many of the algorithms with
strong guarantees have circumvented the challenge of non-
stationarity by relying, implicitly or explicitly, on coordi-
nation between the agents. In particular, several algorithms
rely on some form of synchrony, whereby agents agree on
the times at which they may revise their behaviour and
are constrained to fix their policies at other times. While
this is justifiable in some settings, it can be restrictive in
others, including applications where parameters are selected
independently. As such, it would be desirable to provide
MARL algorithms that do not require synchrony but still
come with rigorous performance guarantees in the individual
action learner setting.

Contributions: In this paper, we study a modification
of the decentralized Q-learning algorithm of [6], a recent
algorithm proposed for weakly acyclic N -player stochas-
tic games. By employing a constant learning rate in the
Q-learning algorithm, we show that inertial best-response
dynamics provide a mechanism for taming non-stationarity
without coordinating players’ parameter choices ahead of
play.1 Under appropriate parameter selection, we show that
this algorithm drives policies to equilibrium with arbitrarily
high probability.

Notation: For a standard Borel space A, we let P(A)
denote the set of probability measures on A with its Borel σ-
algebra. For standard Borel spaces A and B, we let P(A|B)
denote the set of transition kernels on A given B.

A. Related Work

This paper studies stochastic games in which each agent
fully observes the system state but does not observe the
actions of other players.2 As such, we are interested in
MARL algorithms that make use only of one’s history of
state observations, individual actions, and cost feedback. This
information paradigm is common in the literature in MARL,
with examples such as [6], [7], [8], [9], [10], [12], [13],
and is sometimes called the independent learning paradigm.
This terminology is, however, not uniform, as independent
learning has also recently been used to refer to learners that
update their policies in a (perhaps myopic) self-interested
manner [14].

1Due to space constraints, proofs have been omitted and can be found in
the full version of this paper, [11].

2We use the terms players and agents interchangeably.
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At least two challenges emerge when the joint action is
not observed. First, agents cannot form estimates about the
policies of other agents. In extreme examples, players may be
unaware of the very existence of their counterparts. Second,
players cannot form estimates about joint action values,
yielding several promising joint action learning algorithms
unusable.

Rather than estimating a global joint action Q-function,
several works have studied the prospect of greedily changing
one’s policy, either in a best-response sense, using a local
action Q-function, or in an iterative gradient descent sense.
To handle the challenge of non-stationarity, some authors,
e.g. [7], have proposed the use of a multi-timescale approach,
whereby some agents change their policies faster than others,
possibly in an alternating manner, [15]. In these works,
agreement on a particular schedule for policy updating may
be interpreted as an implicit form of parameter coordination.

An alternative approach involves responding to one’s
environment without accounting for the existence of other
players at all. Works in this tradition follow the regret testing
paradigm of Foster and Young [16], which presented an al-
gorithm for stateless games. This approach was later studied
by [17] and [18] among others in the context of stateless
repeated games, where impressive convergence guarantees
can be made due to the absence of state dynamics that
complicate value estimation.

In [6], the regret testing paradigm of Foster and Young
was modified for multi-state stochastic games, where one
must account for both the immediate cost of an action and
also the cost-to-go, which depends on the evolution of the
state variable. The decentralized Q-learning algorithm of [6]
instructs agents to agree on an increasing sequence of policy
update times, (tk)k≥0, and to fix one’s policy within the
intervals [tk, tk+1), called the kth exploration phase. In so
doing, the joint policy process is fixed over each exploration
phase, and within each exploration phase, each agent faces
an MDP. This allows for analysis of learning iterates using
single-agent learning theory.

In effect, the exploration phase technique of [6] decouples
learning from adaptation, and allows for separate analysis
of learning iterates and policy dynamics. This allows for
approximation arguments to be used, whereby the dynamics
of the policy process resemble those of an idealized process
in which players obtain noise-free learning iterates for use in
their policy updates. This has lead to a series of theoretical
contributions in MARL that all make use of the exploration
phase technique, including [9] and [10].

One natural criticism of the exploration phase technique
described above is the synchronization of policy updates.
In the description above, agents agree on the policy update
times {tk}k≥0 exactly, and no agent ever updates its policy
in the interval (tk, tk+1 − 1]. This can be justified in some
settings, but is demanding in decentralized settings where pa-
rameters are selected independently across players.3 Indeed,

3The provision of algorithms for such decentralized settings has recently
attracted interest from other authors using algorithms similar to—but distinct
from—the regret testing tradition. See, for example, [19].

the assumption of synchrony is made in various works in the
regret testing tradition, including [16], [17] and [18].

Intuitively, asynchrony may be problematic for regret
testers because the action-value estimates of players depend
on historical data from each player’s most recent exploration
phase. As such, if other players change their policies during
an individual’s exploration phase, the individual receives
feedback from different sources, and its learning iterates may
not approximate any quantity relevant to the prevailing envi-
ronment at the time of the agent’s next policy update. These
changes of policies during an exploration phase constitute
potential disruptions of a player’s learning, and analysis of
the overall joint policy process is difficult when players do
not reliably learn accurate action-values.

In [18], a heuristic argument suggested that the use of iner-
tia in policy updating may allow one to relax the synchrony
assumption for regret testers, with the following premise:
if players occasionally abstain from changing their policies
due to random inertia, then they will abstain from disrupting
the learning of other agents. If the exploration phase of a
given individual is allowed to proceed for a sufficiently long
time without disruptions, then any errors in one’s learning
estimates may be corrected. In this way, it is argued that ran-
dom inertia acts as a decentralized coordination mechanism
and perfect synchrony may not be necessary. In this paper,
we formalize this argument and show that it is essentially
correct, with a caveat: our analysis reveals that the value
estimation protocol must be modified to account for the non-
stationarity in the environment. In particular, the algorithm
of this paper uses a constant learning rate to ensure that
learning iterates rapidly overcome outdated feedback data.

II. MODEL

A. Stochastic Games

Formally, a stochastic game G is described by a list:

G =
(
N ,X, {Ui, ci, βi : i ∈ N}, P, ν0

)
. (1)

The components of G are as follows: N = {1, 2, . . . , N} is
a finite set of N agents. The set X is a finite set of system
states. For each player i ∈ N , Ui is i’s finite set of actions.
We write U = ×i∈NUi, and refer to elements of U as joint
actions. For each player i, a function ci : X × U → R
determines player i’s stage costs, which are aggregated using
a discount factor βi ∈ [0, 1). The initial system state has
distribution ν0 ∈ P(X), and state transitions are governed
by a transition kernel P ∈ P(X|X× U).

At time t ∈ Z≥0, the state variable is denoted by xt,
and each player i selects an action uit ∈ Ui according to its
policy, to be described shortly. The joint action at time t is
denoted ut. Each player i incurs a cost cit := ci(xt,ut), and
the state variable evolves according to xt+1 ∼ P (·|xt,ut).
This process is then repeated at time t+ 1, and so on.

A policy is a rule for selecting actions according to the
observed history of the system. Here, we assume that at time
t ≥ 0, player i observes the following information:

Iit = (x0, u
i
0, c

i
0, x1, . . . , c

i
t−1, xt).
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Player i fully observes the system state, its own actions,
and its own cost realizations, but does not observe the actions
of other players directly. We do not assume that player i
knows the function ci.

In general, action selection can incorporate random-
ness, and players may use arbitrarily complicated, history-
dependent policies. However, our analysis will focus on sta-
tionary (Markov) policies, a subset of policies that randomly
select actions in a time invariant manner that conditions only
on the currently observed state variable. The set of stationary
policies for player i is denoted ΓiS and we identify ΓiS with
the set of transition kernels on Ui given X. Henceforth,
unqualified reference to a policy shall be understood to mean
a stationary policy.

Definition 1: For i ∈ N , ξ > 0, a policy πi ∈ ΓiS is
called ξ-soft if πi(ai|x) ≥ ξ for all (x, ai) ∈ X × Ui. A
policy πi ∈ ΓiS is called soft if it is ξ-soft for some ξ > 0.

Definition 2: A policy πi ∈ ΓiS is called deterministic if
for each x ∈ X, there exists ai ∈ Ui such that πi(ai|x) = 1.

The set of deterministic stationary policies for player i is
denoted by ΓiSD and is identified with the set of functions
from X to Ui.

Notation: We let ΓS := ×i∈NΓiS denote the set of joint
policies. To isolate player i’s component in a particular joint
policy π ∈ ΓS , we write π = (πi,π−i), where −i is used in
the agent index to represent all agents other than i. Similarly,
we write the joint policy set as ΓS = ΓiS ×Γ−iS , and so on.

For any joint policy π and initial distribution ν ∈ P(X),
there is a unique probability measure on the set (X× U)∞.
We denote this measure by Prπν , and let Eπ

ν denote its
expectation. We use this to define player i’s value function:

J i(π, ν) := Eπ
ν

[ ∞∑
t=0

βtcit

]
= Eπ

ν

[ ∞∑
t=0

βtci(xt,ut)

]
.

When ν = δs places full probability on some state s ∈ X,
we write J i(π, s) instead of J i(π, δs). For π = (πi,π−i),
we will also write J i(πi,π−i, ν) to isolate the role of πi.

Definition 3: Let ε ≥ 0, i ∈ N . A policy π∗i ∈ ΓiS is
called an ε-best-response to π−i ∈ Γ−iS if, for every s ∈ X,

J i(π∗i,π−i, s) ≤ inf
π̃i∈Γi

S

J i(π̃i,π−i, s) + ε.

The set of ε-best-responses to π−i is denoted BRi
ε(π
−i).

It is well-known that for any π−i ∈ Γ−iS , player i’s set of
0-best-responses BRi

0(π−i) is non-empty, and the infimum
above is in fact attained.

Definition 4: Let ε ≥ 0. A joint policy π∗ ∈ ΓS is called
an ε-equilibrium if π∗i ∈ BRi

ε(π
∗−i) for all i ∈ N .

For ε ≥ 0, we let Γε-eq
S ⊆ ΓS denote the set of ε-

equilibrium policies. It is known that the set Γ0-eq
S is non-

empty [20]. We also let Γε-eq
SD ⊂ ΓSD denote the subset of

stationary deterministic ε-equilibrium policies, which may be
empty in general.

B. Weakly Acyclic Stochastic Games

We now introduce weakly acyclic games, an important
subclass of games that will be the main focus of this paper.

Definition 5: A sequence {πk}k≥0 in ΓSD is called a
strict best-response path if for any k ≥ 0 there is a unique
player i ∈ N such that πik+1 6= πik and πik+1 ∈ BRi

0(π−ik ).
Definition 6: The stochastic game G is weakly acyclic if

(i) Γ0-eq
SD 6= ∅, and (ii) for any π0 ∈ ΓSD, there is a strict

best-response path from π0 to some π∗ ∈ Γ0-eq
SD .

The multi-state formulation above was stated in [6],
though weakly acyclic games had previously been studied
in stateless games [21]. An important special case is that of
stochastic teams, where ci = cj for each i, j, and the interests
of all agents are perfectly aligned. Markov potential games,
[22], [23], [24] constitute another special case of weakly
acyclic games.

C. Q-Functions in Stochastic Games

In the stochastic game G, when the other players use a
stationary policy π−i ∈ Γ−iS , player i faces an environment
that is equivalent to a single-agent MDP. The MDP in
question depends on the policy π−i as well as the game
G, and (stationary Markov) optimal policies for this MDP
are equivalent to 0-best-responses to π−i in the game G.

Player i’s best-responses to a policy π−i ∈ Γ−iS can
be characterized using an appropriately defined Q-function,
Q∗iπ−i : X × Ui → R.4 The function Q∗iπ−i can be defined
by a fixed point equation of a Bellman operator, but here we
give an equivalent definition in terms of the optimal policy
of the corresponding MDP:

Q∗iπ−i(x, ai) := Eπ∗

ν

[ ∞∑
t=0

(βi)tci(xt,ut)

∣∣∣∣∣x0 = x, ui0 = ai

]
,

for all (x, ai) ∈ X× Ui, where π∗ = (π∗i,π−i) and π∗i ∈
BRi

0(π−i) ∩ ΓiSD.

Definition 7: For Qi : X× Ui → R and ε ≥ 0, we define

B̂R
i

ε(Q
i) := {π∗i ∈ ΓiSD : Qi(x, π∗i(x))

≤ min
ai∈Ui

Qi(x, ai) + ε,∀x ∈ X}.

The set B̂R
i

ε(Q
i) ⊆ ΓiSD consists of policies that are

ε-greedy with respect to Qi. For Qi = Q∗iπ−i , we have

B̂R
i

0(Q∗iπ−i) = BRi
0(π−i) ∩ ΓiSD.

When the remaining players follow a stationary policy,
player i can use Q-learning to estimate its action-values,
which can then be used to estimate a 0-best-response policy.
The situation is more complicated when the remaining play-
ers revise their policies over time. Under this non-stationarity,
Q-learning may not be guaranteed to converge, and this
procedure for estimating a best-response may be ineffective.
These issues were considered by [6], who proposed the
Decentralized Q-learning algorithm as a means of estimating
best-response policies in the presence of policy updating, but
required synchronized policy updating. In the next section,
we present Algorithm 1, a modification of Decentralized Q-
learning that allows for decentralized parameter selection and
can tolerate non-stationarity of the learning environment.

4We use “Q-function” and “action-value function” interchangeably.

5010



III. ASYNCHRONOUS DECENTRALIZED Q-LEARNING

An asynchronous variant of Decentralized Q-learning is
presented in Algorithm 1. Unlike in the original decentralized
Q-learning algorithm of [6], Algorithm 1 allows for the
sequence of exploration phase lengths {T ik}k≥0 to vary by
agent, employs constant learning rate, and does not reset Q-
factors at the end of an exploration phase.

Algorithm 1: Asynchronous Decentralized Q-Learning
1 Set Parameters
2 {T ik}k≥0: a sequence in N of learning phase lengths
3 Put ti0 = 0 and tik+1 = tik + T ik for all k ≥ 0.
4 ρi ∈ (0, 1): experimentation probability
5 λi ∈ (0, 1): inertia during policy update
6 δi ∈ (0,∞): tolerance level for sub-optimality
7 αi ∈ (0, 1): step-size parameter

8 Initialize πi0 ∈ ΓiSD (arbitrary), Q̂i0 = 0 ∈ RX×Ui

9 for k ≥ 0 (kth exploration phase for agent i )
10 for t = tik, t

i
k + 1, . . . , tik+1 − 1

11 Observe xt

12 Select uit =

{
πik(xt), w.p. 1− ρi

ui ∼ Unif(Ui), w.p. ρi

13 Observe cost cit := c(xt, ut), state xt+1

14 Put ∆i
t = cit + βi minai Q̂

i
t(xt+1, a

i)

15 Q̂it+1(xt, u
i
t) = (1− αi)Q̂it(xt, uit) + αi∆i

t

16 Q̂it+1(x, ui) = Q̂it(x, u
i), for all (x, ui) 6= (xt, u

i
t)

17 if πik ∈ B̂R
i

δi(Q̂
i
ti
k+1

), then
18 πik+1 ← πik
19 else

20 πik+1 ←

{
πik, w.p. λi

πi ∈ B̂R
i

δi(Q̂
i
ti
k+1

), w.p. 1− λi

A. Primitive Random Variables
We now introduce several collections of primitive random

variables that will be used in describing the assumptions and
implementation of Algorithm 1. For any player i ∈ N and
t ≥ 0, we define the following random variables:
• {Wt}t≥0 is an identically distributed, [0, 1]-valued

stochastic process. For some f : X × U × [0, 1] → X,
state transitions are driven by {Wt}t≥0 via f :

Pr(xt+1 = s′|xt = s,ut = a) = P (s′|s, a)

=Pr (Wt ∈ {w : f(s, a, w) = s′}) ,

for any (s, a, s′) ∈ X× U× X and t ≥ 0;
• ũit ∼ Unif(Ui);
• ρ̃it ∼ Unif([0, 1]);
• λ̃it ∼ Unif([0, 1]);
• For non-empty Bi ⊆ ΓiSD, π̃it(B

i) ∼ Unif(Bi);
• T it is an N-valued random variable, elaborated below.
Assumption 1: The collection of primitive random vari-

ables V1 ∪ V2 is mutually independent, where

V1 :=
⋃

i∈N ,t≥0

{
Wt, ρ̃

i
t, ũ

i
t, λ̃

i
t, T

i
t

}
, and

V2 :=
⋃

i∈N ,t≥0

{
π̃it(B

i) : Bi ⊆ ΓiSD, B
i 6= ∅

}
.

Remark: The random variables in V1 ∪ V2 are taken to be
primitive random variables that, with the exception of ex-
ploration phase lengths {T ik}i∈N ,k≥0, do not depend on any
player’s choice of hyperparameters. The primitive random
variables {ũit : i ∈ N , t ≥ 0} should not be conflated with
the action process {uit : i ∈ N , t ≥ 0}, which depends on
the sample path of play.

B. Assumptions

In order to state our main result, Theorem 1, we now
impose some assumptions on the underlying game G and on
the choices of hyperparameters at each player.

Assumption 2: For any pair of states (s, s′) ∈ X×X, there
exists H = H(s, s′) ∈ N and a sequence of joint actions
a0, . . . , aH ∈ U such that

Pr(xH+1 = s′|x0 = s,u0 = a0, . . . ,uH = aH) > 0.

Assumption 2 is a rather weak assumption on the transition
kernel P ; c.f. [14, Assumption 4.1, Case iv].

Our next assumption restricts the hyperparameter selec-
tions in Algorithm 1. Let δ̄ := min (A \ {0}), where

A :=
{∣∣Q∗iπ−i(s, ai1)−Q∗iπ−i(s, ai2)

∣∣ :

i ∈ N ,π−i ∈ Γ−iSD, s ∈ X, ai1, ai2 ∈ Ui
}
.

The quantity δ̄, defined originally by [6] and recalled
above, is the minimum non-zero separation between two
optimal Q-factors with matching states, minimized over all
agents i ∈ N and over all policies π−i ∈ Π−i.

For any baseline policy π ∈ ΓSD and fixed exploration
parameters {ρi}i∈N , we use the notation π̂ ∈ ΓS to denote
a corresponding behaviour policy, which is stationary but
not deterministic. When using π̂i, agent i ∈ N follows
πi with probability 1 − ρi and mixes uniformly over Ui
with probability ρi. The optimal Q-functions for these two
environments will be close provided ρi is sufficiently small
for all players i [6, Lemma B3]. In particular, there exists
ρ̄ > 0 such that if ρi ∈ (0, ρ̄) ∀i ∈ N , then for any player j

‖Q∗jπ−j −Q∗jπ̂−j‖∞ <
mini{δi, δ̄ − δi}

4
, ∀π−j ∈ Γ−jSD.

Assumption 3: For all i ∈ N , δi ∈ (0, δ̄) and ρi ∈ (0, ρ̄).
Assumption 4: There exists integers R, T ∈ N such that

Pr
(
∩i∈N ,k≥0

{
T ik ∈ [T,RT ]

})
= 1.

When all players use Algorithm 1, the resulting sequence
of policies {πik}k≥0 is player i’s baseline policy process,
where πik is i’s baseline policy during [tik, t

i
k+1), player i’s

kth exploration phase. The sequence {πik}k≥0 is indexed
by the coarser timescale of exploration phases. We also
introduce a sequence of baseline policies indexed by the finer
timescale of stage games. For t ≥ 0 with t ∈ [tik, t

i
k+1), let

φit = πik denote player i’s baseline policy during the stage
game at time t. The baseline joint policy at stage game t
is then denoted φt = (φit)i∈N . Furthermore, we refer to
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the collection of Q-factor step-size parameters {αi}i∈N as
α ∈ (0, 1)N .

Theorem 1: Let G be a weakly acyclic game and suppose
each player uses Algorithm 1 to play G. Suppose Assump-
tions 1–4 hold, and let ε > 0. There exists ᾱε > 0 and a
function T̄ε : (0, 1)N × N→ N such that if

max
i∈N

αi < ᾱε, and T ≥ T̄ε(α, R),

then Pr(φt ∈ Γ0-eq
SD ) ≥ 1− ε, for all sufficiently large t ∈ N.

For a proof of Theorem 1, see [11].

IV. DISCUSSION

A. Proof Outline

The proof of Theorem 1 involves three major steps.
First, we introduce a sequence of equilibrium events,
{Bk}k≥0, defined using a sequence of random time intervals
{[τmin

k , τmax
k ]}k≥0, to be elaborated in the sequel. For k ≥ 0,

we put

Bk :=
{
φt = φτmin

k
∈ Γ0-eq

SD : t = τmin
k + 1, . . . , τmax

k

}
.

In words, Bk is the event in which the baseline policy did
not change during the interval [τmin

k , τmax
k ] and moreover the

baseline policy was an equilibrium during this time.
Second, for a distinguished L < ∞, we argue that the

probability of driving play to this equilibrium event in L time
steps can be lower bounded: Pr(Bk+L|Bck) ≥ p̂min > 0.
Third, we argue that we can control and lower bound the
probability of remaining at the equilibrium event for L steps:
that is, Pr(Bk+L|Bk) can be made arbitrarily large relative
to p̂min. One can then explicitly lower bound Pr(Bk+mL)
for suitably large m, as in [6] and [10].

B. The Proof Under Synchrony

In the synchronous variant of the algorithm, we have
T ik = T jk = Tk for any agents i, j ∈ N and k ≥ 0.
Agents always begin and end their exploration phases in
synch. Crucially, no agent ever switches its policy while
another agent is actively learning its Q-factors. As a result,
each agent faces an MDP during each exploration phase, and
one can study the convergence of Q-factors using single-
agent theory. In particular, when player i employs suitably
decreasing step-sizes, one has that Q̂it → Q∗i

π−i
k

, as Tk →∞.
When analyzing the synchronous algorithm, one defines

τmin
k = τmax

k = tk, the stage game time marking the
beginning of the kth shared exploration phase. Importantly,
in the synchronous case, one is guaranteed that the joint
policy is fixed at πk throughout the interval [tk, tk+1). Thus,
each player i spends Tk stages learning against the policy
φ−iτmax

k
= π−ik . With these choices of τmin

k and τmax
k , Bk is

equivalent to {πk ∈ Γ0-eq
SD }.

In the synchronous setting, the second step of the proof
outline, showing Pr(Bk+L|Bk) > p̂min, can be established
using weak acyclicity and conditioning on an event where
players learn their Q-factors approximately correctly.

At equilibrium, if players recover their optimal Q-
functions, then they will opt to remain with their current
policies. Under synchrony, the probability of (approximately)
recovering optimal Q-functions can be controlled directly by
taking the shared exploration phase lengths {Tk}k≥0 to be
large. Thus, the third step of the proof outline, of showing
that Pr(Bk+L|Bk) can be made large relative to p̂min, is
straightforward in the synchronous setting.

C. Challenges under Asynchrony

Moving to the asynchronous setting, where T ik 6= T jk is
allowed, we observe that the preceding definitions of τmin

k

and τmax
k are not meaningful, since there is no shared kth

exploration phase. Consequently, a new definition of the
equilibrium event Bk is required.

Any useful definition of {Bk}k≥0 must be self-reinforcing,
in the sense that Pr(Bk+L|Bk) should be controllable by
appropriate choice of hyperparameters. In particular, this
can be done by controlling the conditional probability that
players approximately recover their equilibrium Q-functions
given that the equilibrium event occurred.

Since each player’s Q-factors are constructed using histor-
ical feedback data, one must account for the recent history
of play when analyzing Q-iterates. For example, in its mth

exploration phase, player i learns from time tim to time
tim+1 = tim+T im. During this interval, player i’s counterparts
may have switched policies several times. If one wishes
to ensure that i’s Q-estimates at time tim+1 reflect the
environment determined by φ−i

tim+1
, then a natural condition

to impose is that i spent a significant period learning against
the most recent baseline policy, φ−i

tim+1
.

To properly account for the recent history of play in our
definition of the equilibrium event, we define the sequences
{τmin
k , τmax

k } recursively as follows: put τmin
0 = τmax

0 = 0.
For k ≥ 0, let

τmin
k+1 := inf{tin : tin > τmax

k , i ∈ N , n ≥ 0}
τmax
k+1 := inf

{
t ≥ τmin

k+1 : ∀ i ∈ N ,∃n s.t. tin ∈ [τmin
k+1, t],

and inf{tin̄ > t : i ∈ N , n̄ ∈ N} ≥ t+ T/N
}
.

The intervals [τmin
k , τmax

k ] represent active phases, during
which players may change their policies.5 Various important
consequences of the definitions are described in [11], some
of which we include below:
(1) No policy updates occur in (τmax

k , τmin
k+1).

(2) Each agent has at least one opportunity to switch
policies during [τmin

k+1, τ
max
k+1 ].

(3) For each k ≥ 0, τmin
k+1 ≥ τmax

k + T/N .
(4) Any player has at most R + 1 opportunities to switch

its policy during [τmin
k , τmax

k ].

Since τmin
k+1 is the first time after τmax

k at which any
agent has the opportunity to switch its policy, the first and

5If T ik = T for each i, k, then we return to the synchronous case, and
these definitions yield τmin

k = τmax
k = tk for k ≥ 0, coinciding with the

synchronous analysis.
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third items above offers a means by which Bk can be self-
reinforcing: given Bk, one is guaranteed that each player i
spends at least T/N stages learning against the unchanging
policy φ−iτmax

k
. Indeed, other formulations of τmin

k and τmax
k

were considered, but simpler alternatives could not yield a
meaningful analog of item (3).

The extent to which Pr(Bk+L|Bk) can be controlled
depends on the conditional probability that, given Bk, agents
learn their equilibrium Q-factors approximately correctly.
This, in turn, depends on the specific Q-learning update
used and the length of time spent learning against outdated
environments.

If an agent uses decreasing step-sizes and has a relatively
long exploration phase, then by the time play first arrives
at equilibrium, this player’s learning rates will be very
small and the player will have spent the majority of its
exploration phase learning against older, possibly irrelevant
joint policies. These considerations lead to the utilization
of constant learning rates in Algorithm 1. Constant learning
rates allow for an agent to quickly change its Q-factors in
response to a change in the joint policy.

For full derivations and an expanded discussion, see [11].

D. Future Work

Due to space constraints, some interesting aspects of the
proof were not discussed above. One notable example is a
confounding effect involving conditional probabilities: the
event Bk carries information about the state-action trajectory
before τmax

k , which in turn is correlated with the evolution of
Q-iterates for times after τmax

k . Our results, hypotheses, and
lemmas are described in terms of primitive random variables
and hypothetical Q-factors to address this analytical chal-
lenge. This approach rules out adaptive exploration phase
lengths, where players may choose to curtail or prolong an
exploration phase as a function of history. Whether regret
testing algorithms can accommodate asynchronous, adaptive
exploration phases is an interesting open question for future
research.

For other directions of future work, see [11].

V. CONCLUSIONS

In this paper, we considered an asynchronous variant of the
Decentralized Q-learning algorithm of [6]. To accommodate
asynchronous policy updating and non-stationarity in each
agent’s learning environment, we have utilized a constant
learning rate that can rapidly overcome errors in learning
estimates that are artifacts of outdated information. With
this algorithmic change, we have shown that Decentralized
Q-learning can still drive policies to equilibrium in weakly
acyclic games without making strong coordination assump-
tions.
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