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Abstract— We study predecessor-following platoons in which
each vehicle-to-vehicle (V2V) communication is affected by a
different probability of successful transmission. We model the
overall platoon as a stochastic hybrid system, and analyse its
stochastic L2 string stability via a small-gain approach. We
provide an explicit string stability condition that illustrates the
interplay between the channel success probabilities, transmis-
sion rate, and time headway constant. We illustrate our findings
through numerical simulations.

I. INTRODUCTION

VEHICLE platooning via cooperative adaptive cruise
control (CACC) is crucial to mitigate the effects of

rising road traffic [1], with support from advancements in
wireless communication for automated cooperative driving
[2]. Crucial aspects of these technologies include the growing
complexity of the multi-agent system and the stochastic
nature of wireless communications. Scalability issues like
“string instability” [3] represent the former, where distur-
bances amplify as they propagate within interconnected
systems. To address scalability in the presence of network-
induced communication constraints, analysing platoons using
networked control systems theory is beneficial [4]. This anal-
ysis must encompass platoon parameters (vehicle dynamics,
topology, time headway) and their interaction with network
parameters (packet losses, transmission rate, etc.).

While deterministic string stability has been extensively
researched for over half a century [5]–[8], stochastic string
stability, especially in the context of CACC schemes, remains
sparsely explored [9], [10]. Existing work primarily relies on
simulations for linear platoons under lossy channels [11]–
[16], with limited availability of comprehensive string stabil-
ity conditions. Notably, recent studies delve into stochastic
string stability [17]–[19] in a more comprehensive manner.
Furthermore, for linear systems with additive noise channels,
conditions for “mean square string stability” are explored
[20]. In the same context, recent conditions for the so-called
mean square string stability and Lp-mean Lq-variance string
stability are presented in [21].
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This work focuses on stochastic phenomena arising from
packet losses in vehicle-to-vehicle (V2V) communications.
Notable studies include [22], which explores leader-to-
formation stability under random lead vehicle state dropouts.
Simulations in [11], [13] reveal the adverse impact of packet
losses on platooning string stability, while [12] highlights
data-loss compensation strategies’ varying effects on string
stabilization. In [14], the use of Model Predictive Control
(MPC) and buffer storage to handle packet dropouts is
discussed. In [15], the authors explore the use of an observer
to reduce the impact of losses on disturbance attenuation
across the platoon string. In [17], CACC design with lossy
communications using “average dynamics” was introduced,
achieving string stability through H∞ control methods. In
[18], an L2 stochastic string stability definition is introduced
and applied to an event-triggered platooning scheme with
unreliable communications. Moreover, [19] employs Markov
jump linear systems theory to formulate a minimisation
problem, ensuring the feasibility of control designs for string
stability in platooning schemes with random packet drops.
Recently, [23] proposed a specific adaptive control strat-
egy which ensures almost surely L∞ string stability under
packet dropouts. While other works like [24]–[26] investigate
mean square stability, the analysis of string stability in the
corresponding stochastic setting is limited. Additionally, in
[16], an estimation scheme utilizing the intermittent Kalman
filter is presented, with string stability analysis confined to
simulations.

Apart from [17]–[19], [23], the majority of the cited works
primarily study the effects of packet losses on stochastic
string stability via simulations or internal stability (excluding
string stability). In our previous work [27], we aimed to
bridge this gap by introducing a framework for stochastic
string stability and its relation to important vehicle and net-
work parameters. However, this was carried out in a simpler
network scenario where each V2V channel in the platoon had
the same probability of successful transmission. In this paper,
we aim to extend [27] to address a more general scenario
with different probabilities of successful transmission in the
underlying V2V links. While exploring related literature,
we build on the concept of Lp string stability, proposed
in works like [28]–[32], adapting it to handle stochastic
conditions. Our contributions include employing a hybrid
systems framework, encompassing both continuous and dis-
crete time dynamics in wireless platoons. This approach
distinguishes our work from others, like [17]–[19], which
focus solely on discrete-time platoon models, enabling a
more comprehensive analysis. Moreover, we provide explicit
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Fig. 1: Platoon configuration.

string stability conditions, establishing clear relationships
between critical vehicle and network parameters, such as
time headway, transmission rate, and the different channel
success probabilities.

II. PLATOON SETTING

Consider a platoon of N ≥ 2 identical vehicles, as
depicted in Fig. 1, where di denotes the distance between
vehicle Vi and its preceding vehicle Vi−1, and vi the velocity
of vehicle Vi. Each vehicle’s primary objective is to follow
its preceding vehicle while preserving a designated gap,
denoted as ri. We adopt a constant time-headway policy,
whose objective is to maintain a consistent spacing between
vehicles based on their velocities. This is expressed as
ri(t) = εi + hvi(t) for i ∈ N , with N := {1, . . . , N}.
Here, h ≥ 0 is the time headway constant, and εi denotes the
standstill distance. This policy is designed to reduce collision
risk by increasing the “time gap” between vehicles [33], with
known benefits for both string stability [34] and safety [35]
when relying solely on nearest neighbor data. We consider
a homogeneous platoon where all vehicles employ the same
controller, maintain identical spacing policies, and share the
same model. However, unlike [27], we here consider het-
erogeneous (different) success probabilities for the wireless
links between vehicles.

Let the spacing error be defined by ξi(t) := di(t)−ri(t) =
[si−1(t)−si(t)−Li]− [εi+hvi(t)], i ∈ N , where si and Li

denote the position and length of vehicle Vi, respectively. The
first vehicle in the platoon, denoted by V1, follows a virtual
reference vehicle denoted by V0. Then, ξ1 corresponds to the
spacing error between the leader and this virtual reference.

The control design is based in the following vehicle model,
as seen in works such as [18], [28], [36].

Vi :

ṡi(t)v̇i(t)
ȧi(t)

 =

 vi(t)
ai(t)

− 1
τ ai(t) +

1
τ ui(t)

 , i ∈ N ∪ {0}, (1)

where ai denotes the acceleration of vehicle i, ui the
desired acceleration, and τ the characteristic time constant
representing drive-line dynamics.

In CACC schemes, the control law is typically designed
based on the spacing error ξi and a feedforward component
being the direct feedthrough of the predecessor’s desired
acceleration ui−1. Inspired by [28], [37], we consider the
CACC scheme in Fig. 2, where the control law is denoted by
qi, and it is filtered by u̇i = − 1

hui+
1
hqi before going into the

vehicle drive-line in (1). This filter is given by H(s) = hs+1.
Formally, the control law takes the form

qi(t) = kpξi(t) + kdξ̇i(t)︸ ︷︷ ︸
Ci (feedback)

+ ûi−1(t)︸ ︷︷ ︸
feedforward

, i ∈ N , (2)

with controller gains kp and kd to be designed. The feedback
part of the controller frequently relies on data obtained from
a forward-facing radar sensor. Consequently, we assume that
each vehicle possesses the capability to measure the relative
distance and relative velocity concerning the leading vehicle
via the radar sensor. Additionally, it can measure its own
absolute speed and acceleration. Nevertheless, acquiring rela-
tive accelerations using onboard sensors presents challenges,
and, as a result, they are often acquired through wireless
communications, as evidenced in [17], [36]. We thus use
ûi−1 to denote the desired acceleration ui−1 that is sent
over the wireless channel from vehicle i − 1. Because of
the packet-based nature of the communication channel and
the existence of packet dropouts, it is generally the case that
ûi−1(t) ̸= ui−1(t) for t ∈ R≥0. We note that û0(t) = u0(t)
for all t ∈ R≥0 as the first vehicle follows a virtual reference
vehicle (i.e. no network imperfections). We will describe the
dynamics of the communication channel, and thus ûi−1, in
detail in the following section.

Usually, a proficient CACC system should meet two pri-
mary aims. The first objective pertains to vehicle following,
focusing on the regulation of spacing errors, commonly
referred to as “individual vehicle stability.” The second
objective is the mitigation of disturbances within the vehicle
platoon, known as “string stability,” as introduced earlier.
In order to pursue these objectives within a stochastic
context featuring packet-based lossy communications among
vehicles, we will adopt an “emulation approach” [38]. That
is, we first design the controller (2) when network-induced
imperfections are disregarded, i.e., when ûi−1 = ui−1 in
(2). A benefit of this approach is the compatibility with
established design methods for the platoon when the network
is disregarded. In fact, the design that ensures both individual
vehicle stability and string stability, without network consid-
erations, has been extensively explored in existing literature.
Specifically, as demonstrated in [28], the desired stability
properties of the platoon can be achieved for any positive
values of h, kd, kp as long as kd > kpτ . In the second
stage of emulation, we put the network-free controller into
operation within the wireless platoon and investigate how
network imperfections impact string stability. Our specific
objective is to establish conditions on both network and
vehicle parameters that guarantee the preservation, to some
extent, of the desired stability characteristics of the network-
free system, even when dealing with packet-based commu-
nication and potential packet losses.

III. WIRELESS CHANNELS

We describe the wireless communication between vehi-
cles, which governs the dynamics of the transmitted signals
ûi−1 in (2).
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Fig. 2: Block diagram of the CACC scheme.

A. Transmission instants

We define T := {t0, t1, t2, . . . } as the unbounded set
of times at which the predecessor’s information ui−1, i ∈
N \ {1}, is transmitted. Because of synchronisation times,
acknowledgements, waiting times, etc., transmission times
are typically neither equidistant nor deterministic, but rather
exhibit randomness. For example, for networks with car-
rier sense multiple access, transmissions occur randomly as
devices wait for channel clearance under random back-off
mechanisms. Consequently, we assume the following.

Standing Assumption 1: Consider a Poisson point process
r(t) with rate λ ∈ R>0 that satisfies r(t) = 0 for t ∈ [0, t0)
and r(t) = k for t ∈ [tk−1, tk), where tk ∈ T , k ∈ N0, are
defined inductively by: t0 = τ0 with τ0 ∼ Exp(λ), and for
each k ∈ N, tk = tk−1 + τk, with τk ∼ Exp(λ), where the
sequence {τk}k∈N0

is i.i.d. □
The times {tk}k∈N0 are also called arrival times in the liter-
ature [39], {τk}k∈N0 are called inter-transmission times (or
inter-arrival times), τ̄ := 1/λ represents the average inter-
transmission time, and λ is the arrival rate. Throughout this
paper, we will use the terms arrival rate and transmission rate
interchangeably. The exponential distribution that governs
each τk describes the time between transmissions.

B. Packet losses

The next element that characterizes the dynamics of the
transmitted signals ûi−1 are packet dropouts. Consider Fig.
2, where a wireless channel is present between vehicles Vi−1

and Vi, for i = 2, . . . , N . This leads to a set of L :=
{1, . . . , N−1} wireless channels (or links). Two events may
occur at transmissions, either the vehicle i receives the packet
from its predecessor i − 1 successfully (i.e. ûi−1 = ui−1),
or it gets dropped with some probability. To model this
behaviour, we introduce a Bernoulli process {θj,k}k∈N for
each wireless channel j ∈ L such that θj,k = 1 with
probability αj (probability of successful transmission for
channel j), and θj,k = 0 with probability 1− αj .

Standing Assumption 2: The packet loss processes
{θm,k}k∈N and {θn,k}k∈N are independent for all m ̸= n,
with m,n ∈ L , and, for each j ∈ L , {θj,k}k∈N is
independent of {τk}k∈N. □

This is a standard assumption in NCS literature that considers
Bernoulli packet losses and multiple links, see e.g., [40].

Due to packet losses, it is useful to define the so-called
network-induced error, which represents the error present in
the information ûi−1 available at vehicle Vi, with respect to
the sent information ui−1 from vehicle Vi−1. We define it as
eui−1

:= ûi−1 − ui−1, i ∈ N \ {1}, noting that eu0 (which
is zero) is excluded as the leader follows a virtual reference
without network imperfections.

We now use the network-induced error to model the
dynamics of the V2V communications. Specifically, for every
transmission instant tk we assume that eui−1(t

+
k ) = 0

for every i ∈ N \ {1}, i.e. the received signal is equal
to the transmitted one ûi−1(t

+
k ) = ui−1(tk), only if the

transmission is successful in the corresponding wireless link
(θi−1,k = 1). Here, eui−1

(t+k ) denotes the right limit of
eui−1(·) at time tk. On the other hand, whenever a packet loss
occurs, then we assume the corresponding error components
remain unchanged since the signal was not updated. That is,
eui−1

(t+k ) = eui−1
(tk) when θi−1,k = 0 for every tk and

i ∈ N \ {1}. We note that compensation strategies to cope
with packet loss in vehicle platooning could be potentially
used, see e.g. [12], but it is outside of the scope of this
paper. Let e := (eu1 , . . . , euN−1

) ∈ Rne , with ne := N − 1
and Θk := diag{θ1,k, . . . , θN−1,k}. The above description is
captured by

e(t+k ) = (I −Θk)e(tk). (3)

Lastly, in between two transmission events, the value of
ûi−1 is kept constant in a zero-order hold fashion. As such,
we assume that ˙̂ui−1 = 0, i ∈ N \{1}, for t ∈ [tk−1, tk], and
any tk ∈ T . This is common in multi-hop networks where
communicating devices behave like routers/buffers to receive
and transmit packets.

IV. MAIN RESULTS

We now present the main results of this paper, namely a
stochastic hybrid model for the platoon, and the correspond-
ing string stability conditions.

A. Stochastic hybrid model

Let xi = (ξi, vi, ai, ui), x = (x1, . . . , xN ) and w :=
(v0, u0). Then, based on the descriptions in Sections II and
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III, we can write the following state-space representation of
the i-th subsystem in Fig. 2 during flows (i.e. ∀t ∈ [tk−1, tk]),

ẋ1(t) = Ax1(t) +Bww(t)

ẋi(t) = Axi(t) +Bxi−1(t) +Beeui−1(t)

ėu1(t) = −CuAx1(t)− CuBww(t)

ėui−1(t) = −CuAxi−1(t) + CuBxi−2(t) + CuBeeui−2(t)

for all i ∈ N \ {1}, where

A =


0 −1 −h 0
0 0 1 0
0 0 − 1

τ
1
τ

kp

h −kd

h −kd − 1
h

 , Bw =


1 0
0 0
0 0
kd

h
1
h



B =


0 1 0 0
0 0 0 0
0 0 0 0

0 kd

h 0 1
h

 , Be =


0
0
0
1
h

 , Cu =


0
0
0
1


⊤

.

Next, the dynamics of the platoon at jumps, i.e. for every
t = t+k , are given as follows. Since the considered vehicle
dynamics are in continuous time, we have that x(t+k ) =
x(tk). On the other hand, the dynamics of the network-
induced error e at jumps are given by (3). Therefore, we can
write the following stochastic hybrid model for the platoon

H1 :


ẋ(t) = A11x(t) +A12e(t) +B1w, t ∈ [tk−1, tk],

ė(t) = A21x(t) +A22e(t) +B2w, t ∈ [tk−1, tk],

x(t+k ) = x(tk),

e(t+k ) = (I −Θk)e(tk),
(4)

with

A11 =


A 0
B A

. . . . . .
B A

0 B A

, A12 =


0 0
Be 0

. . . . . .
Be 0

0 Be

 ,

B1 =
[
B⊤

w 0 · · · 0 0
]⊤

,

A21 = C̃uA11, A22 = C̃uA12, B2 = C̃uB1, (5)

where

C̃u :=


−Cu 0 0
0 −Cu

. . . . . .
0 0 −Cu 0

 .

System H1 captures the continuous dynamics given by the
vehicles in the platoon (local controller and plant dynamics),
and also the discrete—and stochastic—dynamics (jumps)
given by the network-induced effects which in our case are
random packet losses and stochastic transmission instants.

Moreover, in the context of our particular platooning con-
figuration, the variable w = (v0, u0) in (4) denotes changes
in the leader’s velocity and acceleration. Hence, our main
objective in this paper is to explore how these changes impact
the stochastic string stability of the underlying platoon.

B. String stability

We now establish explicit string stability conditions for
system H1 in (4). Specifically, we focus on the following
string stability property, which is highly motivated by the
(deterministic) Lp string stability property proposed in [28],
and extensively used in the literature, see e.g. [30], [31].

Definition 1: We say that H1 in (4) is L2 string stable
in expectation if there exist non-negative constants K and γ
such that, for any x(0) ∈ Rnx and w ∈ L2,

E
{
∥xi∥L2[0,t]

}
≤ K|x(0)|+ γ∥w∥L2[0,t], (6)

for all i ∈ N and all platoon lengths N ≥ 2, with t ≥ 0. □
In contrast to standard L2 stability, we emphasise that

(6) must hold for any platoon length N to guarantee the
string stability aspect. That is, the constants K and γ in
the definition are independent of the number of vehicles.
A similar notion to Definition 1 was adopted in [18],
and called stochastic L2 string stability. Furthermore, in
stochastic NCSs, similar definitions in terms of expectations
have been used, albeit without considering the scalability
(or “string”) aspect. For instance, refer to [41] for the Lp

stability in expectation property. Additionally, our focus is
directed towards velocity/acceleration profiles w = (v0, u0)
characterised by a bounded 2-norm, as outlined in [30].

Formally, sufficient conditions for L2 string stability in
expectation of H1 are stated in the following theorem, whose
proof is omitted due to space constraints.

Theorem 1: Consider the wireless platoon H1 in (4), and
let P (s) := A21(sI −A11)

−1[A12 B1] be the transfer func-
tion of the x–subsystem in (4), with (A11, A21) detectable.
If the following holds
(i) The time-headway h is such that there exists γx,Kx ≥

0 satisfying ∥P (jω)∥H∞ ≤ γx and |A21| ≤ Kx for
any platoon length N ∈ N.

(ii) (αj ,λ, h) are such that

N−1∏
j=1

αj >
1

λ

(
γx +

1

h

)
. (7)

Then, H1 is L2 string stable in expectation. □
Condition (i) pertains to the network-free design of h.

Note that P (s) corresponds to the transfer function of the
x-system, and thus condition (i) essentially states that the
network-free platoon should at least be L2 string stability
in absence of network imperfections. Then, condition (ii)
establishes a direct relationship between crucial parameters
of the networked platoon so that L2 string stability in ex-
pectation is achieved, namely the probabilities of successful
transmission αj , j ∈ L , the transmission rate λ, and the
time-headway h.

As observed from (7), in the case of low-quality channels,
achieving string stability relies not only on increasing the
time-headway h but also on having more frequent trans-
missions via λ. Additionally, we observe that maintaining
the same value for h as in the network-free case can still
lead to achieving string stability under packet losses through

930



3 3.5 4 4.5 5 5.5 6 6.5 7

0

5

10

3 3.5 4 4.5 5 5.5 6 6.5 7

0

2.5

5

Fig. 3: External platoon input w(t) = (v0(t), u0(t)).

increasing the transmission rate, provided the network has
enough capacity.

V. NUMERICAL EXAMPLE

Consider the wireless platoon described by H1 with
controller gains kp = 0.2 and kd = 0.7, alongside a
drive-line constant of τ = 0.1. As shown in [28], these
parameters ensure (network-free) individual vehicle stability.
The aim of this example is to showcase how the interplay
among pivotal platoon parameters, including h, αj’s, and
λ, directly impacts string stability. We use the Hybrid
Equations Toolbox (HyEQ) [42] to simulate the stochastic
hybrid system H1 under different scenarios of interest. The
velocity and acceleration profile that determines the external
L2 input w = (v0, u0) are given in Fig. 3. We consider a
platoon size of N = 30 vehicles, and the initial condition
for every vehicle is taken to be xi(0) = (5, 0, 0, 0) for
all i ∈ {1, . . . , 30}. In this example, we examine three
noteworthy cases.

Case 1: We first study a scenario where the V2V channels
have good quality (i.e. large success probabilities). Partic-
ularly, we consider probabilities α1 = · · · = α10 = 0.8,
α11 = · · · = α20 = 0.7, and α21 = · · · = α29 = 0.9. The
time headway is taken to be h = 1.8 and we consider an
average transmission rate of 1/λ = 1 second. The expected
value of the norm of each vehicle state over 2000 realisations
is depicted in1 Fig. 4. As per Definition 1, we can see
this platoon is indeed L2 string stable in expectation. As
shown by our explicit string stability condition in Theorem 1,
there exists a direct relationship between h, λ, and the αj’s.
Consequently, in the subsequent case, we will manipulate
these variables to investigate whether string stability can
be maintained even when certain segments of the platoon
experience significantly degraded channel quality.

Case 2: Here, we consider that the tail of the platoon has
worse V2V communication quality, and thus take α21 =
· · · = α29 = 0.1, whilst keeping the other probabilities,

1We note that every figure in this example utilises colour coding to
distinguish each vehicle in the platoon, transitioning from bluish hues for
the leading vehicles to reddish tones towards the rear. Additionally, we have
highlighted the first and last vehicles in the platoon by making them bold.

Fig. 4: Expected value of the norm of each vehicle state
for a platoon of size N = 30, over 2000 realisations, with
parameters h = 1.8, 1/λ = 1 and α1 = · · · = α10 = 0.8,
α11 = · · · = α20 = 0.7, α21 = · · · = α29 = 0.9.

headway and transmission rate as in Case 1. From Fig. 5, we
can see that maintaining string stability, which was achieved
in Case 1 with the same average transmission rate and
time headway, becomes unfeasible when certain segments
of the platoon encounter a higher dropout rate compared to
others. We could anticipate this finding based on our string
stability bound (7), given its dependence on the product of
all probabilities. Hence, to guarantee L2 string stability on
average when some vehicles in the platoon have low success
probabilities, adjustments to either the transmission rate λ
or the time headway h may be necessary. This leads to the
remaining two cases below.

Case 3: In this scenario, we maintain the low-quality
communication at the tail of the platoon, as in Case 2, with
α21 = · · · = α29 = 0.1, and retain the same headway
of h = 1.8. However, we increase the transmission rate
to achieve an average transmission interval of 1/λ = 0.1
seconds, contrasting with the one-second interval in Case
2. As depicted in Fig. 6, we managed to restore the string
stability property that was compromised by the high dropout
rate at the tail by adjusting λ. In essence, boosting the trans-
mission rate can help in managing losses within segments of
the platoon.

Case 4: Finally, we illustrate that string stability can be
restored not only by adjusting λ but also by modifying
the time headway h. We consider the same string-unstable
configuration from Case 2, where 1/λ = 1 and α21 = · · · =
α29 = 0.1, but we now increase the headway from h = 1.8
to h = 3. From Fig. 7, we can see that by modifying h, we
are capable of achieving L2 string stability on average, even
under a significant dropout rate at the platoon’s tail.

Moreover, it is apparent that adjusting the transmission
rate, at least in this example, results in improved platoon
behaviour, despite both scenarios being considered string
stable (cf. Fig. 6 and Fig. 7).

VI. CONCLUSIONS

We provided explicit conditions for stochastic string stabil-
ity in an L2 sense for predecessor-following platoons subject
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Fig. 5: Expected value of the norm of each vehicle state
for a platoon of size N = 30, over 2000 realisations, with
parameters h = 1.8, 1/λ = 1 and α1 = · · · = α10 = 0.8,
α11 = · · · = α20 = 0.7, α21 = · · · = α29 = 0.1.

Fig. 6: Expected value of the norm of each vehicle state
for a platoon of size N = 30, over 300 realisations, with
parameters h = 1.8, 1/λ = 0.1 and α1 = · · · = α10 = 0.8,
α11 = · · · = α20 = 0.7, α21 = · · · = α29 = 0.1.

Fig. 7: Expected value of the norm of each vehicle state
for a platoon of size N = 30, over 2000 realisations, with
parameters h = 3, 1/λ = 1 and α1 = · · · = α10 = 0.8,
α11 = · · · = α20 = 0.7, α21 = · · · = α29 = 0.1.

to (heterogeneous) packet losses. These conditions illustrate
the interaction between crucial vehicle and network param-
eters. Through numerical examples, we have highlighted
that, despite lower channel quality, adjusting the transmission
rate or time headway proves effective in preserving string
stability.
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