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Abstract— In this paper, we propose distributed algorithms
for multi-agent systems to achieve edge-agreements. Different
from consensus, where all agents’ states converge to be the
same value, the edge agreement is characterized by linear
constraints defined for edges, i.e. one linear constraint involving
two neighboring agents’ states for each edge. Such agreement
allows more general coordination among agents, with consensus
on a special case. Given the underlying graph of the multi-
agent system is undirected (not necessarily to be connected),
we propose two discrete-time distributed algorithms that enable
all agents’ states to converge to constants satisfying edge
agreements. Besides theoretical proofs, effectiveness of the
proposed algorithms is also shown by simulations on a four-
agent multi-agent system.

I. INTRODUCTION

Distributed algorithms to coordinate multi-agent systems
(MAS) have recently attracted a significant amount of re-
search attention, which aim to accomplish global objectives
only through local coordination [1]. In order to guarantee
all agents in MAS work as a cohesive whole, the con-
cept of consensus, which drives all agents in the MAS to
reach an agreement regarding a certain quantity [2]–[4],
has naturally arisen and started to serve as a basis for
developing distributed algorithms for MAS. Based on the
idea of consensus, a lot of distributed algorithms for MAS
have been developed in the past decade such as distributed
algorithms for achieving a global average [5], [6], solving
linear algebraic equations [7]–[11], multi-agent optimization
[12]–[17], multi-agent formation control [18], [19], and
multi-agent reinforcement learning [20]–[23] . With so many
distributed algorithms developed based on consensus, they
are designed only for scenarios when all agents need to reach
the same value regarding a specific quantity. Recognition of
this has motivated us the goal of this paper to investigate
coordination among agents beyond consensus.

Different from consensus, which enforces a global con-
straint to all agents in the whole MAS, we propose to
consider a group of edge agreements, i.e. linear constraints
defined for nearby neighbor agents, with each pair of neigh-
boring agents corresponding to one such constraint. Note
right away that such edge agreements are defined locally,
providing a higher degree of flexibility compared to global
consensus, and encompassing global consensus as a partic-
ular instance. They can deal with cases when only local
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coordination is needed as shown in later-on simulations of
using edge agreements to define multi-agent formations and
other local coordination. Second, the global consensus could
be implemented as a special case as edge agreements, as
shown later in the problem formulation. In the following,
we will develop two discrete-time and distributed algorithms
to achieve edge agreements followed by analytical proofs
and numerical simulations.

Notations: The transpose for vectors and matrices is
denoted by (·)′, while ker(·) and image (·) denote the kernel
and image of a matrix, respectively. A column stack of
vectors xi, i = 1, 2, . . . , r is denoted as col {x1, . . . , xr},
and diag {A1, . . . , Ar} represents a block diagonal matrix
with Ai, i = 1, 2, . . . , r as the ith block diagonal entry. The
notation Ir represents the identity matrix in Rr×r, and (·)†
denotes the Moore–Penrose inverse, applicable to matrices.
We use ∥ · ∥ to represent the 2-norm of a vector.

II. THE PROBLEM

In a multi-agent systems (MAS) consisting of m agents
with labels m = {1, 2, ...,m}, suppose each agent is able to
communicate bi-directionally with certain other agents called
neighbors. The set of agent i’s neighbors is denoted by Ni,
where i /∈ Ni. Such neighbor relations can be characterized
by a fixed graph N = {V, E} with V = m and |E| = m̄
such that there is an undirected edge (i, j) ∈ E if any only
if agent i and agent j are neighbors.

Suppose each agent i, i ∈ m controls a state xi(t) ∈ Rn

at time t = 0, 1, 2, .... The problem of interest in this paper is
to develop an iterative update rule for each agent i to update
its state based on information from its neighbors at time t
such that for any initialization xi(0), each xi(t) converges
exponentially fast to a constant vector x∗

i ∈ Rn, i ∈ m ,
satisfying the following edge-agreement in N, i.e.

Aij(x
∗
i − x∗

j ) = bij , ∀(i, j) ∈ E (1)

where Aij ∈ Raij×n, bij ∈ Raij are constant matrices.

Remark 1: Note that when each bij = 0, the consensus
x∗
1 = x∗

2 = · · · = x∗
m is one solution to the edge-agreement

in (1), although edge agreement does not necessarily imply
consensus but includes it as a special case. The matrices
Aij .bij in the edge-agreement (1) can enable more flexible
coordination among multi-agent systems by enforcing a
linear constraint to each pair of neighboring agents, rather
than a global requirement of consensus in the whole MAS.
Such characterization of edge agreements can be employed
to define a multi-agent formation or other local coordination
in general.
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For the problem formulation to be complete, certain as-
sumptions regarding the consistency and existence of the
solution are required. Without losing generality, we adopt
the following assumptions in achieving the edge-agreement
in this paper.

Assumption 1: (Consistency) The linear constraints in (1)
are consistent with each other for each pair of neighbor
agents (i, j) ∈ E , i.e.

Aij = Aji, bij = −bji

Remark 2: Assumption 1 aims to avoid the inconsistent
situation, for example, agent 1 thinks the sum of its scalar
state x1 and its nearby neighbor agent 2’s state x2 should be
2, while agent 2 thinks x1 + x2 = 3.

Assumption 2: (Existence) There exist constant vectors
x∗
i ∈ Rn, i ∈ m that satisfy the edge-agreement in (1).

Remark 3: Assumption 2 guarantee that there at least exist
a set of constants x∗

i , i = 1, 2, ...,m, to satisfy the edge-
agreement in (1). Otherwise, the whole problem of achieving
edge agreements does not make sense.

III. ALGORITHMS AND MAIN RESULTS

In this section, we will develop two discrete-time, dis-
tributed algorithms to achieve all the edge agreements de-
fined in (1).

A. A Distributed Algorithm for Edge Agreement

Suppose each agent i can receive information from all its
neighbors, we propose the following discrete-time update for
each agent i, i ∈ m , at time t:

xi(t+ 1) = xi(t)−
1

di + 1

∑
j∈Ni

Pij(xi − xj − b̄ij) (2)

where Pij ∈ Rn×n denote a projection matrix and b̄ij ∈ Rn

as follows1

Pij = A′
ij(AijA

′
ij)

†Aij , b̄ij = A′
ij(AijA

′
ij)

†bij , (3)

and di = |Ni| serves as a scaling factor for later-on
convergence analysis. From the definition of Pij and b̄ij in
(3) and noting Pij b̄ij = b̄ij , one has the linear constraints in
(1) for edge agreement is equivalent to

Pij(x
∗
i − x∗

j − b̄ij) = 0, ∀(i, j) ∈ E . (4)

To facilitate our analysis, we introduce

P̄ = diag {Pi1j1 , Pi2j2 , ..., Pim̄jm̄} ∈ Rm̄n×m̄n (5)

and
b̄ = col {bi1j1 , bi2j2 , ..., bim̄jm̄} (6)

where (ik, jk) denote its kth edge of N, k = 1, 2, ..., m̄.
For the m-node-m̄-edge undirected graph N = {V, E}, by

assigning each undirected edge in N a direction, one then
defines the incidence matrix of N denoted by H ∈ Rm̄×m

1Note that AijA
′
ij is invertible only if Aij has linearly independent

columns.

such that its kjth element is 1 if edge k is an incoming edge
to node j;−1 if edge k is an outgoing edge to node j; and
0, elsewhere. From (4), the definitions of H , P̄ , and

H̄ = H ⊗ In (7)

one has the following lemma:
Lemma 1: There exist constant vectors x∗

i ∈ Rn, i ∈ m
to satisfy the edge-agreement in (1) if and only if there exists
a constant vector x∗ = col {x∗

1, x
∗
2, ..., x

∗
m} with x∗

i ∈ Rn

such that
P̄ (H̄x∗ − b̄) = 0

where P̄ , b̄ and H̄ are as defined in (5), (6) and (7),
respectively.

Let x(t) = col {x1(t), x2(t), ..., xm(t)}. Since Pij = Pji

and bij = −bji as in Assumption 1, then the distributed
update in (2) can be written in the following compact form

x(t+ 1) = x(t)− D̄−1H̄ ′P̄ (H̄x(t)− b̄), i ∈ m (8)

where P̄ , b̄, and H̄ are as defined in (5), (6), and (7),
respectively, and

D̄ = (Im +D)⊗ In (9)

with D = diag {d1, d2, ..., dm}.
In order to further prove the convergence of (8), , and

drawing inspiration from Lemma 1, we introduce an error
term

e(t) = P̄
(
H̄x(t)− b̄

)
(10)

which together with P̄ 2 = P̄ and (8) leads to

e(t+ 1) = (Im̄n −Q)e(t) (11)

where
Q = P̄ H̄D̄−1H̄ ′P̄ . (12)

Lemma 2: For Q defined in (12), we have

0 ≤ Q < 2Im̄n. (13)

Proof: The proof is provided in the appendix.
From Lemma 2 and (11), one has e(t) converges to a

constant in the eigenspace of I − Q corresponding to its
eigenvalue 1, which is the kernel of Q. Thus Qe(t) → 0
exponentially fast. Note that Q = (D̄− 1

2 H̄ ′P̄ )′(D̄− 1
2 H̄ ′P̄ ).

It follows that H̄ ′P̄ e(t) → 0 exponentially fast. From
this, the definition of e(t) in (10) and P̄ 2 = P̄ that
H̄ ′P̄ (H̄x(t) − b̄) → 0 exponentially fast. From this and
the linear time-invariant system (8), one has there exist a
constant vector x∗ = {x∗

1, x
∗
2, ..., x

∗
m} with x∗

i ∈ Rn such
that x(t) → x∗ exponentially fast and H̄ ′P̄ (H̄x∗ − b̄) = 0.
To perform further analysis, we find it necessary to introduce
the following assumption.

Assumption 3: Assume the graph G is well-configured for
edge-agreement, i.e.

ker H̄ ′ ∩ image P̄ = 0. (14)

This along with the fact H̄ ′P̄ (H̄x∗ − b̄) = 0 imply
P̄ (H̄x∗ − b̄) = 0. From this, Assumption 2, and Lemma
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1, one has each xi(t) → x∗
i , i ∈ m , exponentially fast,

which reach the edge-agreement in (1). In summary, one has
the following theorem:

Theorem 1: Under Assumption 1, Assumption 2 and As-
sumption 3, the distributed update in discrete-time (2) drives
each xi(t) to converge exponentially fast to a constant vector
x∗
i ∈ Rn, i ∈ m , which reach the edge-agreement in N as

defined in (1).

B. A Gossiping-based Distributed Algorithm for Edge-
agreement

Edge agreements in (1) by imposing a constraint to each
edge in the graph (namely, each pair of neighboring agents)
naturally aligns with the concept of gossiping, in which each
pair of neighbor agents communicate and update. In this sub-
section, we develop a gossiping-based distributed algorithm
in which the update rule can be applied independently to
each edge while still achieving convergence to a constant
vector that satisfies edge agreement.

In a gossiping process, each agent engages in gossip with
a maximum of one neighboring agent at any time step. The
sequence of gossip pairs that occur during the gossiping
process might be determined either probabilistically [24] or
deterministically [25]. Similar to gossiping algorithms, we
propose that at a given time t only one pair of neighbor
agents i and j corresponding to the kth edge of N, commu-
nicate and perform the following updates:

xi(t+ 1) = xi(t)−
1

2
Pij(xi(t)− xj(t)− b̄ij),

xj(t+ 1) = xj(t)−
1

2
Pji(xj(t)− xi(t)− b̄ji), (15)

and xl(t + 1) = xl(t) ∀l ̸= i, j, where Pij and b̄ij are as
defined in (3).

With (ik, jk) representing the kth edge of N, k =
1, 2, ..., m̄, and using Assumption 1, (15) can be compactly
written as

x(t+ 1) = Mik,jk(t)x(t) + bik,jk(t), (16)

where Mik,jk(t) ∈ Rmn×mn is the gossip matrix correspond-
ing to kth edge defined as

Mik,jk =



In · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

...
...

0 · · · In − 1
2
Pij · · · 1

2
Pij · · · 0

...
...

...
. . .

...
...

...
0 · · · 1

2
Pij · · · In − 1

2
Pij · · · 0

...
...

...
...

...
. . .

...
0 · · · 0 · · · 0 · · · In


and bik,jk = col {0, · · · , b̄ij , · · · , b̄ji, · · · , 0} ∈ Rmn.

Before embarking on the analysis of this update law, we
first review nonlinear maps which are paracontractions and
their basic properties. A continuous nonlinear map T : Rn →
Rn is a paracontraction with respect to a given norm ∥ · ∥
on Rn, if for any fixed point z ∈ Rn, z = T (z) and for any

y ∈ Rn, either ∥T (y)− z∥ < ∥y− z∥ or y = T (y) [26]. We
observe the following important result for paracontraction.

Lemma 3: [26] Suppose P is a finite set of paracontrac-
tions with respect to some given norm on Rn. Additionally,
suppose that all paracontractions within this set share at least
one common fixed point. If a sequence P1,P2, . . . composed
of paracontractions drawn from P , then the state x(t) of the
iteration

x(t+ 1) = Pt(x(t)),

converges to a common fixed point for those paracontractions
appearing in the sequence an infinite number of times.

We also note the following result for paracontraction.

Lemma 4: Consider a affine linear map L : Rn → Rn

defined as L(x̄) = Px̄ + b, where P ∈ Rn×n is projection
matrix. Then L is a paracontraction with respect to the 2-
norm on Rn.

Proof of Lemma 4: Let z be a fixed point of the linear map,
L(z) = z. For y ∈ Rn, we have L(y)− z = P (y − z). The
inequality y ̸= L(y) is equivalent to (y − z) /∈ image P .
Consequently, we have ∥P (y − z)∥2 < ∥y − z∥2, which
demonstrates that L is a paracontraction.

Thus, to establish the convergence of the gossip algorithm
(15), employing Lemma 3 and Lemma 4, our sole require-
ment is to demonstrate that each update rule (15) can be
characterized as an affine linear map featuring a projection
matrix, as we shall confirm with the following result.

Lemma 5: The linear map defined by (16) is a paracon-
traction.

Proof of Lemma 5: Consider a block matrix

M̄ =

[
Mij 0
0 In(m−2)

]
,

where Mij =

[
In − 1

2Pij
1
2Pij

1
2Pij In − 1

2Pij

]
. We observe that

M̄2 =

[
M2

ij 0
0 In(m−2)

]
, and we have

M2
ij =

[
(In − 1

2Pij)
2 + 1

4P
2
ij Pij(In − 1

2Pij)
Pij(In − 1

2Pij) (In − 1
2Pij)

2 + 1
4P

2
ij

]
,

=

[
In − 1

2Pij
1
2Pij

1
2Pij In − 1

2Pij

]
= Mij ,

where the last equality is obtained using the fact that Pij

is a projection matrix as defined in (3). Therefore, we have
M̄2 = M̄ , establishing that M̄ is indeed a projection matrix.
Since any linear map M(eij) in update rule (16) can be
transformed from matrix M̄ by row and column swaps, the
projection property remains unchanged. Hence, by applying
Lemma 4, the linear map defined by (16) is a paracontraction.

From Lemma 5, we establish that the gossip rule (16)
for the kth edge of N, where k = 1, 2, ..., m̄, qualifies as
a paracontraction. Before presenting the final results, let’s
review some definitions and conditions related to when an
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Fig. 1. A Multi-Agent System of Four Agents

infinite sequence is considered repetitively complete [25]. A
gossiping sequence is defined as the sequence of gossip pairs
that occur during the gossiping process. A finite sequence of
gossip pairs is deemed complete if the corresponding set of
edges in N forms a connected spanning subgraph. An infinite
sequence of gossips is classified as repetitively complete
if there exists a time period T for which each successive
subsequence of gossips with a length of T in the sequence is
complete. Note that these conditions for an infinite sequence
to be repetitively complete also apply to multi-gossiping.
Multi-gossiping refers to the scenario in which multiple pairs
of agents engage in gossip simultaneously, with no agent
participating in more than one pair. For instance, in Fig.
1, we have four edges (1,2), (1,3), (2,3), and (3,4). In the
gossiping sequence, edges (1,2) and (3,4) can engage in
gossip simultaneously.

A repetitively complete infinite sequence ensures that each
gossip pair repeats itself infinitely in the gossiping process.
This readily allows us to deduce the convergence of the
update rule to a common fixed point for all paracontractions,
corresponding to a constant vector satisfying all edge agree-
ments, directly from Lemma 3 and Lemma 5. In summary,
we now present the following theorem.

Theorem 2: Under Assumption 1, Assumption 2, if the
gossiping sequence is infinite and repetitively complete, i.e
each gossip pair appears in the gossiping sequence an infinite
number of times, then distributed update using the gossip
algorithm (15) drives each xi(t) to a constant vector x∗

i ∈
Rn, i ∈ m , which reach the edge-agreement in N as defined
in (1).

Remark 4: The convergence guarantee in Theorem 2 is
independent of the specific sequence employed in the gos-
siping process, as long as the gossiping sequence is infinite
and repetitively complete.

IV. SIMULATIONS

In this section, we will perform simulations on the multi-
agent systems of four agents as in Fig. 1 with the edge set

E = {(1, 2), (2, 3), (3, 1), (3, 4)}. (17)

Two examples will be introduced to show that the proposed
distributed algorithms (2) and (15) are able to drive each
agent i’s state xi to converge to x∗

i satisfying a group of
edge agreements in (1), i.e.

Aij(x
∗
i − x∗

j ) = bij , ∀(i, j) ∈ E (18)

with Aij ∈ Raij×n, bij ∈ Rn given constant matrices and
E in (17). To measure the closeness of all agents’ states to
the desired states satisfying edge agreements, we introduce
the following index

V (t) =
1

2

∑
(i,j)∈E

∥Aij(xi(t)− xj(t))− bij∥2. (19)

Note that V (t) ≥ 0 with equality holds if and only if all the
edge agreements in (18) are reached.

A. Heterogeneous and Local Coordination using discrete-
time algorithm

We first consider applying the proposed discrete-time al-
gorithm in (2) to achieve a group of heterogeneous and local
coordination that can be characterized by edge agreements.
Suppose xi ∈ R4, i = 1, 2, 3, 4 and the local coordination
can be described by the edge agreement in (18) with the
second element of x1 and x2 are equal,i.e.

A12 =
[
0 1 0 0

]
, b12 = 0,

the first element of x1 is maintained away from x2 by a
constant 3 while the third element of x1 is away from the
third element of x3 by −2, i.e.

A23 =

[
1 0 0 0
0 0 1 0

]
, b23 =

[
3
−2

]
,

no local coordination needed between agent 2 and 3,i.e.

A31 = 0, b31 = 0

and the sum of differences between the first three elements
in x3 and x4 is equal to 10, i.e.

A34 =
[
1 1 1 0

]
, b34 = 10.

One employs the discrete-time distributed control in (2) with
initial values randomly chosen for xi(0) ∈ R4. The Fig.
2 studying the evolution V (t) with time shows V (t) → 0
exponentially fast, and thus all edge agreements described
above are reached.

1 2 3 4 5 6 7 8 9 10

t

0

10

20

30

40

50

60

V
(t

)

Fig. 2. Evolution of V (t) for Heterogeneous and Local Coordination using
discrete-time algorithm.
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B. Heterogeneous and Local Coordination using gossip al-
gorithm

We consider the problem as presented in Section IV-A but
approach the problem using the proposed gossip algorithm
in (15) to achieve a group of heterogeneous and local
coordination which can be characterized by edge agreements.

We employ the gossip algorithm (15) using two different
gossiping sequences: a deterministic periodic gossiping se-
quence and a repetitively complete infinite random gossiping
sequence. Both implementations utilize the same update
rule (15), but they differ in the method used to select
edges. In the periodic gossiping, as shown in Fig. 3, the
evolution of V (k) is depicted, with k denoting an iteration
(gossip subsequence) that consists of one complete round
of gossiping. In contrast, Fig. 4 illustrates the evolution of
V (t) for a repetitively complete infinite random gossiping
sequence where the length of the complete subsequence is
randomly selected between [4,10]. In both cases, the plots
demonstrate V (t) → 0 as t → ∞, indicating the achievement
of all edge agreements described above.

0 1 2 3 4 5 6 7 8
k

0

10

20

30

40

50

V(
k)

Fig. 3. Evolution of V (t) for Heterogeneous and Local Coordination using
a periodic gossiping sequence. Here on x-axis, each iteration represents one
cycle of periodic gossiping.

0 5 10 15 20 25 30
t

0

2

4

6

8

10

12

14

V(
t)

Fig. 4. Evolution of V (t) for Heterogeneous and Local Coordination using
a repetitively complete infinite random gossiping sequence. Here on x-axis,
each time-step represents one gossip update.

V. CONCLUSION

This paper has addressed the problem of edge agree-
ment, which allows for more flexible coordination among
agents and encompasses consensus as a special case. Two
discrete-time distributed algorithms have been developed to
achieve edge agreements. It has been demonstrated that,
under undirected graphs, both algorithms lead to the con-
vergence of all agent states towards edge agreements as t →
∞, with the discrete-time algorithm exhibiting exponential
convergence. Simulations have confirmed the effectiveness
of these algorithms. Future work includes extending these
algorithms for time-varying directed graphs and investigating
the convergence rates of the gossip algorithm.

APPENDIX

We first introduce the following lemma which will be used
in proving Lemma 2.

Lemma 6: For an m-node-m̄-edge undirected graph N =
{V, E}, let

L = (Im +D)−
1
2H ′H(Im +D)−

1
2 (20)

where H denote the incidence matrix of N and D is the
degree matrix, defines as

D = diag {d1, d2, ..., dm} (21)

with di the number of node i’s neighbors. Then

0 ≤ L < 2Im. (22)

Proof of Lemma 6: Note that L is positive semi-definite.
Then all eigenvalues of L are non-negative. Moreover, by
Rayleigh-Ritz Theorem one has the largest eigenvalue of L
is such that

λmax(L) = max
q ̸=0,q∈Rn

q′Lq

q′q

Let p = (Im+D)−
1
2 q, where the ith element of p is denoted

by pi. Then

q′Lq

q′q
=

∑
(i,j)∈E(pi − pj)

2∑n
i=1(di + 1)p2i

which reaches its largest value when

pi = −pj , ∀(i, j) ∈ E . (23)

Suppose the graph N consist of a number of c connected
components with Vk and Ēk denoting vertex set and edge set
of the kth connected component, k = 1, 2, 3, ..., c. Specially
an isolated vertex without any adjacency edges is also looked
at a connected component, which is with one vertex and
empty edge set. From (23), one has all p2i are equal within
the same connected component, i.e. for all i ∈ Vk. Suppose
they are equal to p̄2k in the kth connected component. Then∑

(i,j)∈E(pi − pj)
2∑n

i=1(di + 1)p2i
≤

∑c
k=1

∑
(i,j)∈Ek

4p̄2k∑c
k=1

∑
i∈Vk

(di + 1)p̄2k

By the Handshaking Theorem in graph theory, one has∑
i∈Vk

(di + 1) = 2r̄k + rk
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where rk = |Vk| and r̄k = |Ēk|. It follows that

q′Lq

q′q
≤

∑c
k=1 4r̄kp̄

2
k∑c

k=1(2r̄k + rk)p̄2k
< 2

for q ̸= 0. Then
λmax(L) < 2

Note that L is positive-semidefinite, then (22) holds. We
complete the proof.

Remark 5: It is known that the normalized Laplacian
LN = D− 1

2H ′HD− 1
2 for an undirected graph N is such

that
0 ≤ LN ≤ 2Im (24)

Here, we introduce a little bit different normalization to
eliminate the equality at the right of (24) and achieve (22),
which to be shown later is very useful for us to develop a
distributed algorithm for edge agreement.

Proof of Lemma 2: By Lemma 6 and the fact that the matrix
product AB shares the same non-zero eigenvalues with BA,
one has

0 ≤ H(Im +D)−1H ′ < 2Im̄

which and H̄ = H ⊗ In and D̄ = (Im +D)⊗ In imply

0 ≤ H̄D̄−1H̄ ′ < 2Im̄.

This, the fact that P̄ is the projection matrix, and Q =
P̄ H̄D̄−1H̄ ′P̄ imply 0 ≤ Q < 2Im̄n. We complete the proof.
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