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Abstract— In this paper, the problem of model reduction for
two-dimensional (2-D) systems in the Fornasini-Marchesini local
state-space form is addressed by matching zero-order moments.
Two characterizations of zero-order moments are proposed: the
first based on the notion of interpolation of complex points and
the second based on the concept of steady state. A parameterized
family of reduced-order models that achieves moment matching
while preserving the 2-D structure of the original system is
presented. The developed theory is illustrated by means of a
2-D low-pass filter reduction problem.

I. INTRODUCTION

Two-dimensional systems have attracted research interest
over the past few decades owing to their natural ability
in modelling the dynamics of signals evolving along two
independent variables, which are widely seen in a broad
spectrum of applications, such as digital imaging processing
[1], seismic data processing [2] and grid sensor networks
[3]. Some recent work [4] has also noted the advantages
in modelling Convolutional Neural Networks (CNNs) as a
2-D dynamical system, revealing the prospective use of 2-D
system theory in complex neural network models. Unlike
one-dimensional (1-D) systems that propagate information
only along the time dimension, 2-D systems possess two
independent directions that enable information flow. Several
forms of state-space models for representing 2-D systems,
such as the Roesser model [5], Attasi model [6], Fornasini-
Marchesini first (FM-I) model [7] and Fornasini-Marchesini
local state-space (FMLSS) model1 [8] have been proposed.
Note that all the modelling frameworks listed above can be
embedded in an FMLSS form with no model order increase
[9]. Given this generality, this paper focuses on the FMLSS
representation.

The problem of model order reduction consists in find-
ing a simplified description (e.g. a lower-order model) to
approximate a given system in some sense (e.g. H∞ and H2)
while some structures (e.g. port-Hamiltonian) or properties
(e.g. stability) are also preserved. As such, model reduction
techniques provide a powerful solution to the complexity
issues arising in many modern engineering problems. Com-
pared with 1-D systems, it has been noted in [1] that 2-D
systems suffer an enhanced curse of dimensionality due to
the fact that one more dimension is added to the field of data,
making the number of computations increase as the square of
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the order of the system. This scenario commonly arises, for
instance, in the field of 2-D digital filtering, where finding
a lower-order filter subject to the design specifications is of
primary significance [1], thus motivating the study of model
reduction methods for 2-D systems.

In the context of 1-D systems, model reduction techniques
have been extensively developed from diverse perspectives,
e.g., optimal Hankel norm approximation methods, balanced
truncation methods, and Krylov projection method [10].
The Krylov projection methods are also known as moment
matching methods since the resulting reduced-order model
interpolates the so-called “moments” at prescribed frequencies
(also referred to as interpolation points). An alternative notion
of moment matching, based on the concept of steady state,
has been extended to a broad range of systems, for instance,
nonlinear [11], time-delay [12], hybrid [13] and stochastic
systems [14].

Some model reduction frameworks have been proposed for
2-D systems, e.g., balanced truncation [15], [16], weighted
balanced truncation [17], the singular perturbation methods
[18], [19] and LMI-based methods [20], [21]. However, to the
best knowledge of the authors, moment-matching methods,
which generally prove to be computationally faster than other
reduction methods and allow extensions to nonlinear systems,
have not been proposed for 2-D systems. To address this
gap, this paper proposes a novel result that extends the
moment-matching framework to the FMLSS model. To this
end, we propose a definition of moment for 2-D systems,
we relate these moments to the solution of a Sylvester-like
equation and to the steady-state response of a particular
system interconnection, and we develop reduced-order models.
We restrict this work to zero-order moments. In fact, model
reduction of 2-D systems is not a straightforward extension
of 1-D techniques as 2-D systems are infinite-dimensional,
see [22]. As such, we will show that both interpolation-
based moments and steady-state-based moments explode in
dimensionality and mathematical complexity in comparison
to the 1-D version. Our findings on zero-order moments
lay the foundations for future research in moment-matching
methods for 2-D linear and nonlinear systems and general
n-D systems.

The remainder of this paper is structured as follows. In
Section II, after briefly recalling the theory of moment
matching for 1-D linear systems we introduce the formal
system description of the FMLSS model. In Section III-A
we define the notion of moment for 2-D FMLSS models,
and characterize 0-moments using the solution of a Sylvester-
like equation. A steady-state characterization is presented in
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III-B. Section IV presents a family of reduced-order models
achieving moment matching and an approach to enforce an
additional property. In Section V the developed theory is
illustrated by a 2-D filter reduction problem. The paper ends
with some concluding remarks.

Notation: Throughout this paper, we use standard notation.
R and C denote the sets of real and complex numbers,
respectively. The set of non-negative integers is denoted by
Z≥0. The n × n identity matrix is denoted by the symbol
In, and σ(A) denotes the spectrum of a square matrix A.
The operator vec(A) indicates the vectorization of a matrix
A ∈ Rn×m, which is the nm×1 vector obtained by stacking
the columns of the matrix A one on top of the other. For a
vector a, diag(a) denotes a square diagonal matrix with the
elements of a on the main diagonal. For a set X , ||X|| denotes
the supremum norm of the set. ι denotes the imaginary unit.

II. PRELIMINARIES

In this section we recall the theory of model reduction
by moment matching for 1-D linear systems and introduce
a state-space representation of 2-D systems described by
the FMLSS model, together with its notion of asymptotic
stability.

A. Model Reduction by Moment Matching for 1-D Systems

Consider a linear, discrete-time 1-D system described by

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k),
(1)

with state x(k) ∈ Rn, input u(k) ∈ R, output y(k) ∈ R,
A ∈ Rn×n, B ∈ Rn×1 and C ∈ R1×n. Let

W (z) = C(zI −A)−1B

be the associated transfer function. Assume system (1) is
minimal, i.e., reachable and observable. The definition of the
moments for such system is given as follows.

Definition 1. The 0-moment of system (1) at zi ∈ C \ σ(A)
is the complex number η0(zi) = W (zi). The k-moment
of system (1) at zi is the complex number ηk(zi) =
(−1)k

k!

[
dk

dzkW (z)
]
z=zi

, where k ≥ 1 is an integer.

It has been shown in [23] that the moments can be linked
to the solution of a particular Sylvester equation that involves
only real-valued matrices. We recall this result as formulated
in [11], adapting it straightforwardly to the discrete-time case.

Theorem 1. Consider system (1) and let zi ∈ C \ σ(A),
for i = 1, . . . , ρ. Assume that the matrix S ∈ Rν×ν

is non-derogatory2 with characteristic polynomial p(λ) =∏ρ
i=1(λ−zi)ki , and ν =

∑ρ
i=1 ki. Let L ∈ R1×ν be such that

(S,L) is observable. Then, the moments of system (1), namely
η0(z1), . . . , ηk1−1(z1), . . . , η0(zρ), . . . , ηkρ−1(zρ), are in a
one-to-one relation with the matrix CΠ, in which Π ∈ Rn×ν

2A matrix is non-derogatory if its characteristic and minimal polynomial
coincide.

is the unique solution of the Sylvester equation

AΠ+BL = ΠS. (2)

A family of models that achieve moment matching at
S, i.e., system (1) and the reduced-order model have the
same moments at the frequencies zi ∈ σ(S), is described by
equations of the form

ξ(k + 1) = (S −GL)ξ(k) +Gu(k), (3a)
ψ(k) = CΠξ(k), (3b)

for any G ∈ Rν×1 such that σ(S − GL) ∩ σ(S) = ∅. This
parameterized family contains all the ν-order models that
achieve moment matching at σ(S).

B. FMLSS Description of 2-D Linear Systems

Throughout this paper, we consider a linear, strictly causal3,
discrete-time 2-D system described by an FMLSS model of
the form

x(i+ 1, j + 1) = A1x(i, j + 1) +A2x(i+ 1, j)

+B1u(i, j + 1) +B2u(i+ 1, j),

y(i, j) = Cx(i, j),

(4)

where i ∈ Z≥0 and j ∈ Z≥0 are coordinates of the horizontal
and vertical directions4, respectively, x(i, j) ∈ Rn is the local
state vector, u(i, j) ∈ R is the input, y(i, j) ∈ R is the output
and A1 ∈ Rn×n, A2 ∈ Rn×n, B1 ∈ Rn×1, B2 ∈ Rn×1 and
C ∈ R1×n are known matrices. The boundary conditions are
given by x(i, 0) and x(0, j), for i, j ∈ Z≥0. By applying the
2-D z-transform [1], the transfer function of system (4) is
obtained as

W (z1, z2) = C(z1z2I−z2A1−z1A2)
−1(z2B1+z1B2), (5)

in which z1 and z2 are the z-transform shift operators in the
horizontal and vertical directions, respectively.

2-D systems fundamentally differ from 1-D systems in the
fact that there exist two5 independent dimensions/directions
along which the information is propagated, hence the local
state x(i, j) provides the minimal size of recursion rather
than a sufficient summary of the past. To summarize all
past information of the system, we introduce the global state
defined as the set X (κ) = {x(i, j) : i + j = κ}, indicating
that 2-D system (4) is an infinite-dimensional system.

We conclude this section, by recalling the notion of
asymptotic stability for 2-D systems and a sufficient and
necessary condition that ensures such a property.

Definition 2 (see [8]). System (4) is asymptotically stable, if
for u(i, j) ≡ 0 and any finite ||X (0)||, limκ→+∞ ||X (κ)|| =
0.

Theorem 2 (see [8]). System (4) is asymptotic stable if
and only if the polynomial ρ(z1, z2) = det(z1z2I − z2A1 −
z1A2) ̸= 0 in D = {(z1, z2) ∈ C× C : |z1| ≥ 1, |z2| ≥ 1}.

3An FMLSS model is said to be strictly causal if it possesses no
feedforward term.

4Neither of these two directions is necessarily associated with time.
52-D systems and the FMLSS model (4) can be generalized to multi-

dimensional (n-D) systems, see, e.g., [9].
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III. MOMENTS FOR 2-D SYSTEMS

In this section we first define the notion of moment for
2-D FMLSS models, based on which two characterizations
of moment are derived by means of a Sylvester-like equation
and the steady-state response of a particular system intercon-
nection.

A. Definition of Moments

Based on the notion of 2-D transfer function, a natural
definition of the moments for system (4) at spatial frequency
pairs (z1, z2) is proposed as follows.

Definition 3. Let z∗1 , z
∗
2 ∈ C with ρ(z∗1 , z

∗
2) ̸= 0. The 0-

moment of system (4) at (z∗1 , z
∗
2) is the complex number

η0(z
∗
1 , z

∗
2) =W (z∗1 , z

∗
2).

The 0-moments (provided they exist) can be characterized
as the (unique) solution of certain Sylvester-like equations,
as shown in the following results.

Lemma 3. Consider system (4) and (z∗1 , z
∗
2) ∈ C× C with

ρ(z∗1 , z
∗
2) ̸= 0. Then, the moment η0(z∗1 , z

∗
2) = CΠ, with

Π ∈ Cn×1 the unique solution of the Sylvester-like equation

A1Πz
∗
2 +A2Πz

∗
1 +B1z

∗
2 +B2z

∗
1 = Πz∗1z

∗
2 . (6)

Lemma 4. Consider system (4) and let the set
(z

(1)
1 , z

(1)
2 ), (z

(2)
1 , z

(2)
2 ), . . . , (z

(ν)
1 , z

(ν)
2 ) ⊂ C×C be such that

ρ(z
(k)
1 , z

(k)
2 ) ̸= 0 for k = 1, . . . , ν. Then[
η0(z

(1)
1 , z

(1)
2 ) · · · η0(z

(ν)
1 , z

(ν)
2 )

]
= CΠ,

in which Π ∈ Cn×ν is the unique solution of the Sylvester-
like equation

A1ΠΣ2 +A2ΠΣ1 +B1L̃Σ2 +B2L̃Σ1 = ΠΣ1Σ2, (7)

with L̃ = [1, 1, . . . , 1] ∈ R1×ν , Σ1 = diag([z
(1)
1 , . . . , z

(ν)
1 ])

and Σ2 = diag([z
(1)
2 , . . . , z

(ν)
2 ]).

The above result characterizes the moments with a linear
equation of matrices with complex values or special structure.
In what follows we relax this restriction by linking the
moments to the solution of a real-valued Sylvester-like
equation with matrices S1, S2 and L of greater structural
flexibility.

Theorem 5. Consider system (4) and let the set
(z

(1)
1 , z

(1)
2 ), (z

(2)
1 , z

(2)
2 ), . . . , (z

(ν)
1 , z

(ν)
2 ) ⊂ C × C be such

that ρ(z(k)1 , z
(k)
2 ) ̸= 0 for k = 1, . . . , ν. Let S1 ∈ Rν×ν

and S2 ∈ Rν×ν be any simultaneously diagonalizable6

matrices with diagonal form Σ1 and Σ2, respectively, where
Σ1 = diag([z

(1)
1 , . . . , z

(ν)
1 ]) and Σ2 = diag([z

(1)
2 , . . . , z

(ν)
2 ]).

Let L ∈ R1×ν be such that (S1, L) and (S2, L) are both
observable. Then, there exists a one-to-one relation between
the moments η0(z

(1)
1 , z

(1)
2 ), η0(z

(2)
1 , z

(2)
2 ), . . . , η0(z

(ν)
1 , z

(ν)
2 )

6Square matrices S1 and S2 are simultaneously diagonalizable if there is
a single non-singular matrix T such that TS1T−1 and TS2T−1 are both
diagonal. An equivalent statement is that S1 and S2 are diagonalizable and
S1S2 = S2S1. See [24, Section 1.3] for more details.

and the matrix CΠ, with Π ∈ Rn×ν the unique solution of
the Sylvester-like equation

A1ΠS2 +A2ΠS1 +B1LS2 +B2LS1 = ΠS1S2. (8)

Remark 1. The condition that the real matrices S1 and S2 are
simultaneously diagonalizable is without loss of generality
and can be guaranteed with the use of Jordan blocks. To
show this, convert the complex diagonal matrices Σ1,Σ2

into the real matrices Σ̄1, Σ̄2 with 2-by-2 Jordan blocks
with multiplicity 1 (each associated with a conjugate pair of
complex eigenvalues) in the main diagonal. Under the choice
S1 = Σ̄1 and S2 = Σ̄2, S1 and S2 are diagonalizable in C and
they commute, hence they are simultaneously diagonalizable.
In addition, selecting L = L̄ := [1 0 1 0 . . . 1 0] with
each entry of 1 associated with a Jordan block, ensures the
observability for both pairs (S1, L) and (S2, L). Note further
that for any non-singular matrix M ∈ Rν×ν , the matrices
S1 = M−1Σ̄1M , S2 = M−1Σ̄2M and L = L̄M are such
that the conditions on simultaneous diagonalizability and
observability hold.

Remark 2. Each interpolation pair is determined by an exact
pairing of specific eigenvalues of S1 and S2. As such, the
order in which the eigenvalues of S1 and S2 appear in their
simultaneous diagonalized forms plays a role in characterizing
the interpolation pairs. This is in contrast with the 1-D case
in Theorem 1, where any complex diagonal form of S is
equivalent as long as the characteristic polynomial remains
the same.

Remark 3. It can be observed that if A1 = 0 and B1 = 0,
or A2 = 0 and B2 = 0 in system (4), the information is
now only propagated in a single direction. In other words,
system (4) reduces to a 1-D system in the form of system
(1). Note that in this case, the Sylvester-like equation (8) also
reduces to the Sylvester equation (2) accordingly.

As the Sylvester-like equation (8) is a linear matrix equation
in Π, it can be solved, for instance by exploiting the property7

of the vectorization operator, yielding

(S⊤
1 S

⊤
2 ⊗ In − S⊤

2 ⊗A1 − S⊤
1 ⊗A2) vec(Π)

= (S⊤
2 ⊗B1 + S⊤

1 ⊗B2)L
⊤.

The above equation has a unique solution if and only if the
matrix (S⊤

1 S
⊤
2 ⊗ In − S⊤

2 ⊗A1 − S⊤
1 ⊗A2) is non-singular,

which holds if and only if ρ(z(k)1 , z
(k)
2 ) ̸= 0 for k = 1, . . . , ν.

B. Steady-State Characterization of Moments

We now link the moments with the steady-state response
of a particular interconnection between a signal generator
and the system to be reduced.

Theorem 6. Let S1 ∈ Rν×ν and S2 ∈ Rν×ν be any
simultaneously diagonalizable matrices with diagonal form Σ1

and Σ2, respectively, where Σ1 = diag([z
(1)
1 , . . . , z

(ν)
1 ]) and

Σ2 = diag([z
(1)
2 , . . . , z

(ν)
2 ]). Consider system (4) and assume

7vec(ABC) = (C⊤ ⊗ A) vec(B), with A,B and C of compatible
dimensions.
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ρ(z
(k)
1 , z

(k)
2 ) ̸= 0 with k = 1, . . . , ν. Assume that system (4)

is asymptotically stable with finite ||X (0)||. Consider the
interconnection between system (4) and the 2-D signal
generator

ω(i+ 1, j) = S1ω(i, j),

ω(i, j + 1) = S2ω(i, j),

u(i, j) = Lω(i, j),

(9)

with L such that (S1, L) and (S2, L) are both observable, and
ω(0, 0) such that (S1, ω(0, 0)) and (S2, ω(0, 0)) are both ex-
citable8. Then, there exists a one-to-one relation between the
moments η0(z

(1)
1 , z

(1)
2 ), η0(z

(2)
1 , z

(2)
2 ), . . . , η0(z

(ν)
1 , z

(ν)
2 ) and

the steady-state response of the output of such interconnected
system.

Theorem 6 provides an alternative characterization of
moments for 2-D systems based on the steady-state response
of the interconnected system. This implies that a reduced-
order model by moment matching would exhibit the same
steady-state output response of the original system when
excited by the same class of “matched” input signals (those
generated by (9)). A major advantage of this steady-state-
based characterization comes from the fact that it opens the
possibility of extending the notion of moment to systems that
do not admit a transfer function, e.g., 2-D nonlinear systems
(see [22]). Furthermore, from a practical perspective, the
theorem also allows developing algorithms to asymptotically
estimate the matrix CΠ from input-output space-domain
samples, in line with the ideas in [26].

Remark 4. The signal generator (9) is in a special Roesser
form, not in the FMLSS form. If the generator (9) is replaced
with a general FMLSS model then two observations are
in order. First, the resulting steady-state becomes much
more complex. In fact, it can be shown that the steady-state
dynamics become infinite-dimensional and it is not possible
to characterize this with a finite-dimensional Sylvester-like
equation. This leads to the second observation: the steady-state
response of such a system would not describe the moments
formalised in Definition 3, but much richer objects. Currently,
it is unclear what those objects would be or if they are of
any use for model reduction.

IV. MODEL REDUCTION BY MOMENT MATCHING

Based on the result in Theorem 5, in this section we present
a parameterized family of models which interpolate the 0-
moments at frequency pairs characterized by S1 and S2, and
discuss how to exploit some free parameters to impose an
additional property.

Theorem 7. Consider system (4) and let the set
(z

(1)
1 , z

(1)
2 ), (z

(2)
1 , z

(2)
2 ), . . . , (z

(ν)
1 , z

(ν)
2 ) ⊂ C × C be such

that ρ(z(k)1 , z
(k)
2 ) ̸= 0 for k = 1, . . . , ν. Let S1 ∈ Rν×ν

and S2 ∈ Rν×ν be any simultaneously diagonalizable
matrices with diagonal form Σ1 and Σ2, respectively, where
Σ1 = diag([z

(1)
1 , . . . , z

(ν)
1 ]) and Σ2 = diag([z

(1)
2 , . . . , z

(ν)
2 ]).

8See [25] for the definition of excitable pair.

Let L ∈ R1×ν be such that (S1, L) and (S2, L) are both
observable. Then, the system described by the equations

ξ(i+ 1, j + 1) = F1ξ(i, j + 1) + F2ξ(i+ 1, j)

+G1u(i, j + 1) +G2u(i+ 1, j),

ϕ(i, j) = Hξ(i, j),

(10)

with ξ(i, j) ∈ Rν , ϕ(i, j) ∈ R, F1 ∈ Rν×ν , F2 ∈ Rν×ν ,
B1 ∈ Rν×1, B2 ∈ Rν×1 and H ∈ R1×ν , is a model of
system (4) at (S1, S2), if

det(z
(k)
1 z

(k)
2 I − z

(k)
2 F1 − z

(k)
1 F2) ̸= 0, (11)

for all k = 1, . . . , ν, and there exists a unique solution P ∈
Rν×ν to the Sylvester-like equation

F1PS2 + F2PS1 +G1LS2 +G2LS1 = PS1S2, (12)

such that
CΠ = HP, (13)

where Π is the unique solution of (8).

Note that condition (11) ensures that (12) has a unique
solution, condition (12) ensures well-defined moments for
system (10), namely HP , and condition (13) enforces a
moment matching condition. F1, F2, G1, G2, H and P are
variables to be used to satisfy the conditions of the theorem.

System (10) matches the moments of system (4) at all
interpolation pairs (z

(k)
1 , z

(k)
2 ) characterized by the pair

(S1, S2). In particular, it is called a reduced-order model of
system (4) if ν < n. Without loss of generality, we assume
ν < n throughout the remainder of the paper.

Based on Theorem 7, by simply selecting P = I
(which is a choice that can be always performed without
loss of generality), a family of reduced-order models that
achieves moment matching at (S1, S2) is obtained with the
parameterization

F1 = Γ1, F2 = Γ2, G1 = ∆1,

G2 = ∆2, H = CΠ,
(14)

with ∆1, ∆2, Γ1 and Γ2 any matrices such that

Γ1S2 + Γ2S1 = S1S2 −∆1LS2 −∆2LS1 (15)

and condition (11) holds. In particular, when S2 (S1, re-
spectively) is non-singular, i.e., z(k)2 (z

(k)
1 , respectively) ̸= 0

with k = 1, . . . , ν, Γ1 (Γ2, respectively) can be uniquely
determined as Γ1 = S1 − ∆1L − ∆2LS1S

−1
2 − Γ2S1S

−1
2

(Γ2 = S2−∆2L−∆1LS2S
−1
1 −Γ1S2S

−1
1 , respectively) for

any ∆1,∆2 and Γ2 (Γ1, respectively) such that condition (11)
holds. In the case that S1 and S2 are both singular, the
solution can be determined by solving a linear programme
with the equality constraint (15) for any ∆1,∆2 such that
condition (11) holds.

With a change of coordinates one can show that system (14)
contains all models of order ν that achieve moment matching
at (S1, S2).

The above shows that when we match a set of ν moments,
we have a great level of design freedom to select parameters

4969



∆1, ∆2, Γ1 and Γ2. A special selection of parameters is
given by Γ2 = 0 and ∆2 = 0, resulting in a 1-D reduced-
order model. This selection leads to reducing an infinite-
dimensional system with a finite-dimensional system. This
may not be desirable for some applications since it would
alter the structure of the system and may result in loss of
essential behaviours and characteristics. Thus, instead of this
trivial selection which “wastes” the design freedom, in the
next subsection we show how to exploit these free parameters
to enforce one desired property onto the reduced-order model.

A. Interpolating with Prescribed Eigenvalues

Consider the parameterization (14) and the problem of de-
termining ∆1 and ∆2 such that the eigenvalues of the reduced-
order model are prescribed, i.e., σ(F1) = {λ1, . . . , λν} and
σ(F2) = {λν+1, . . . , λ2ν}, for some λ’s such that condition
(11) holds. To this end, from (15) we are able to select
Γ1S2 = αS1S2−∆1LS2 and Γ2S1 = (1−α)S1S2−∆2LS1,
for any 0 < α < 1. Then we notice that the goal can be
achieved by selecting ∆1 such that

σ(αS1 −∆1L) = {λ1, . . . , λν}, (16)

and selecting ∆2 such that

σ((1− α)S2 −∆2L) = {λν+1, . . . , λ2ν}. (17)

By the observability of (S1, L) and (S2, L), there exist unique
values of ∆1 amd ∆2 such that conditions (16) and (17) hold,
and then F1 and F2 can be obtained as Γ1 = αS1 −∆1L
and Γ1 = (1−α)S2 −∆2L. The constant α can be adjusted
to control the magnitude of the obtained ∆1 and ∆2.

V. EXAMPLE

To demonstrate the developed 2-D moment matching theory,
we consider the problem of reducing a low-pass filter used in
[16]. The system is originally described by a Roesser model,
which we embed into an FMLSS model of order n = 12
by performing the transformation in [9] (see equation (1.23)
therein).

We consider the set of interpolation pairs as
(e

π
3 ι, e

π
4 ι), (e−

π
3 ι, e−

π
4 ι), (e

π
7 ι, e

π
5 ι), (e−

π
7 ι, e−

π
5 ι), resulting

in a reduced order of ν = 4. The signal generator matrices
S1 and S2 are constructed using the technique presented in
Remark 1. We look for a stable reduced-order model. To
this end, we use the parameterization (14) and determine the
free parameters by optimizing over Γ1,Γ2,∆1 and ∆2 to
minimize the sum of the L2 norms of Γ1 and Γ2 subject
to constraint (15). Driven by the inputs u(i, j) generated
by the signal generator characterized by S1 and S2, the
space-domain responses of the original and the reduced-order
model are recorded in Fig. 1 and Fig. 2, respectively. It
can be observed that although the (transient) responses
are significantly different at the boundary, the steady-state
responses exhibit a similar pattern. This observation is also
verified by computing the absolute errors between y(i, j)
and ϕ(i, j), which decay rapidly to 0 as i + j increases,
as shown in Fig. 3. These plots demonstrate the fact that

the reduced-order model interpolates the moments of the
original system at our selected pairs.

VI. CONCLUSIONS

This paper presented a solution to the problem of model
reduction by matching the zero-order moments of 2-D systems
in the FMLSS framework. A parameterized family of reduced-
order models that achieve moment matching was proposed. To
showcase the practical use of the developed theory, a 2-D filter
reduction problem was presented. Various potential research
paths have been highlighted for future interest. These include
the matching of high-order moments and the extension of the
moment matching framework to 2-D nonlinear systems and
general n-D systems.
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