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Abstract— Complex networks pose significant challenges for
design of control systems. This paper proposes a partitioning
method for large-scale networks to be employed for use in
decentralized and distributed control. The paper is divided into
two parts. In the first part, a new formulation of the partitioning
problem considering both computational and communication
costs associated with control is established, and the controllabil-
ity of the subsystems are also taken into account. In the second
part, an effective algorithm is developed to find the solution to
the network decomposition problem. The proposed approach is
illustrated on a water distribution system benchmark.

I. INTRODUCTION

Control of large-scale networks, such as water networks,
power grids, and traffic systems are attracting increased
interest since they are critical infrastructure [1], [2]. One
option is to employ well-known control methods, such as
linear quadratic regulator (LQR) or model predictive control
(MPC), to design a centralized controller for the whole
network [3]. However, dependence on a centralized controller
makes the network prone to single-point failures [4]. It also
leads to high computational costs and sensitive to failures
associated with measurement collection and transmission
of command signals to actuators [5]. To circumvent these
problems, the use of decentralized and distributed control
systems have gathered momentum. The general idea is to
partition the system into smaller subsystems. Each subsystem
is operated by a local controller, and the overall control
system is the combined actions of these local controllers [6],
[7]. Partitioning of the network into subsystems is the first
step in the design of decentralized and distributed controllers.

Network decomposition using graph partitioning algo-
rithms has been deployed in [8]–[14]. The underlying idea
is that a dynamical system can be represented as a directed
graph with states and inputs represented as vertices, and
weighted edges representing dependencies between states
and inputs. Once the graph of the network is derived, graph
clustering approaches can be employed to evaluate subgraphs
based on the desired objectives, e.g. finding subsystems with
minimum couplings.

Although the aforementioned references have shown the
effectiveness of their proposed methods on diverse case
studies, there are some remaining challenges in the network
decomposition problem. Firstly, the controllability of sub-
systems should be guaranteed for design of decentralized
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control systems to make sure all states can be steered to
desired values using local controllers. Secondly, the parti-
tioning objectives in terms of minimizing communication
and computational costs of the control systems to be designed
should be taken into account. Finally, most of the above cited
works, such as [9]–[12], have only considered a fixed number
of partitions. However, the number of partitions can have a
significant impact on the resulting control performance.

The contributions of this paper are summarized as follows:
• A new formulation of the network partitioning problem,

considering the number of partitions as a decision
variable;

• Several new candidate objective functions for minimiza-
tion of communication and computational costs;

• The use of controllability of subsystems as a constraint
in the partitioning algorithm;

• An efficient algorithm for solving the partitioning prob-
lem.

The proposed approach is applied to the Richmond water
distribution network and the results show the effectiveness
of the proposed algorithm in terms of partitioning cost and
control performance.

The paper is organized as follows: Section II gives the
problem statement. The proposed objectives for the partition-
ing problem are discussed in Section III. Section IV develops
an algorithm to solve the network decomposition problem.
Simulation results are shown in Section V and conclusions
are given in Section VI.

Notation: Sets are indicated by calligraphic upper case
letters, e.g., V . The square of weighted Euclidean norm is
denoted by ∥.∥2R, i.e, ∥x∥2R = xTRx for all x ∈ Rn. Graphs
are denoted as G = (V, E), where V and E are sets of
vertices and edges, respectively. If V contains n vertices,
the n× n matrix of binary values in which (i, j) entry is 1
if eij ∈ E and 0 otherwise, is the adjacency matrix of the
graph. The neighborhood set of a vertex θ ∈ V is denoted
by Nθ and contains the vertices that are connected to θ, i.e.,
Nθ = {v|eθv ∈ E} ∪ {v|evθ ∈ E}. Finally, for an edge eij
in a directed graph, i ∈ V is called the starting vertex and
j ∈ V is be the end vertex.

II. PROBLEM STATEMENT
The problem of decomposing a large-scale network into

multiple subsystems is a crucial step in the design of a
decentralized or distributed control system. To this end, a
general mathematical model for water networks as a case
study for this paper is derived, and the partitioning problem is
described in this section. Although the proposed partitioning
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algorithm is general, we have restricted our attention to water
networks.

A. Mathematical Model of Water Distribution Networks
A water distribution network comprises tanks, actuators

(pumps and control valves), nodes, pipes, and demand sec-
tors, which are modeled in the following parts. The overall
water network model is the combination of the models of
the different components [15]–[17].

A control-oriented model for water networks can be es-
tablished by applying a volume-balance to the tanks and a
flow-balance to nodes [10], [16]. The volume-balance for the
l-th tank is given by:

xl(k + 1) = xl(k) +
∆t

Sl
(qi,l(k)− qo,l(k)), (1)

where xl denotes the water level, qi,l and qo,l are in- and
out-flows, and ∆t is the sampling time, and Sl is the area
of tank l. Similarly, the flow-balance for a node states that
the sum of the inflows is equal to the sum of the outflows:

ni,l∑
w=1

qli,w(k) =

no,l∑
j=1

qlo,j(k), (2)

where ni,l and no,l are the number of in- and out-flows for
the l-th node.

The flows in (1) and (2) can be divided into two types:
flows that are set by actuators denoted by u and flows that
represent demands denoted by d. The overall state-space
model can be constructed from (1) and (2):

x(k + 1) = Ax(k) +Buu(k) +Bdd(k), (3a)
0 = Euu(k) + Edd(k), (3b)

where x ∈ Rn are states representing water levels in tanks,
u ∈ Rm are the water flows through pumps and control
valves, while d ∈ Rp are water demands. A,Bu, Bd, Eu, Ed

are matrices of appropriate dimensions.
The water levels and manipulated flows through actuators

must satisfy physical limitations set by the tank capacity and
actuator characteristics:

x ≤ x ≤ x, u ≤ u ≤ u, (4)

where x and x, are lower and upper bounds of water level,
and u and u are lower and upper bounds of manipulated
flow through actuators. (The inequalities in (4) hold element
wise.)

The derived model in (3) can be represented as a directed
graph. To this end, the states, nodes and inputs are considered
as graph vertices, and the edges are evaluated using the state-
space representation matrices in (3).

Example 1: Fig. 1 depicts the graph representation of
a system with two states and one node (denoted by N1),

and the matrices in (3) given by A =

[
1 0
0 1

]
, Bu =[

0.5 1 0
0 3 0

]
, Bd =

[
0 0
1 0

]
, Eu =

[
0 −1 1

]
, Ed =[

0 −1
]
. Inputs and demands are shown in brown, states in

yellow, and the node in blue in Fig. 1.

Fig. 1. Graph representation of the state-space model in Example 1.

B. Network Decomposition Problem

For large-scale water networks, the model in (3) and (4)
can have many states, e.g., the Barcelona drinking water
network model has 17 states [10]. Models of networks like
power grids and traffic systems also have a large number
of states [18], [19]. Therefore, deploying decentralized or
distributed control systems may lead to a reduced com-
putational burden, an increased reliability, and enhanced
flexibility against network changes.

A typical objective is to minimize the couplings among
subsystems to avoid excessive communications. Thus, it can
be implied that the number of partitions should be reduced to
a minimum. However, the subsystems should be sufficiently
small to overcome problems with a centralized controller
structure. Providing a trade-off between the computational
and the communication burden is a challenging problem.
Moreover, the controllability of the subsystems is crucial for
decentralized control.

This paper consider the following optimization-based par-
titioning problem:

Problem 1: Consider a network as a directed graph
with set of vertices, V . The partitioning problem consists
of finding the number of subsets P and a partitioning
V1,V2, . . . ,VP of V such that the following criterion is
minimised subject to the given constraints.

min
P∈{1,2,...,m}

min
V1,V2,...,VP

P∑
i=1

w1fcm(Vi) + w2fcp(Vi), (5a)

subject to:
P⋃
i=1

Vi = V, Vi ∩ Vj = ∅, (5b)

rank(Ci) = ni, i = 1, 2, . . . , P, (5c)

The partitioning cost function can be defined as follows:

ft(V) =
P∑
i=1

w1fcm(Vi) + w2fcp(Vi), (6)

where fcm, and fcp are functions related to communication
and computational costs, respectively. m is the total number
of inputs, w1, and w2 are weights, ni is the number of states
in the i-th subsystem, and (5c) guarantees the controllability
of the subsystems by requiring local controllability matrices

Ci = C(Ai, Bu,i) = [Bu,i AiBu,i, . . . , A
ni−1
i Bu,i], (7)

to be full rank. Ai and Bu,i are the state-space representation
matrices of the i-th subsystem corresponding to Vi and Ei.

In the next section, we will discuss several options for can-
didate functions for the communication and computational
costs.
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III. CANDIDATE FUNCTIONS FOR COMMUNICATION AND
COMPUTATIONAL COSTS

In this section, several candidate functions are proposed
to capture the computational and communication costs.

A. Communication Cost

1) Number of cuts: Number of cuts is defined as the
minimum number of edges that must be removed from a
graph such that a subsystem becomes isolated. The number
of communication links between controllers can be repre-
sented by the number of cuts in the graph. As described in
Section II-B, it is preferred to reduce the number of couplings
among subsystems, so that the number of communications
among local controllers in a distributed control strategy is
minimized. Moreover, the disturbances caused by control
actions in another subsystem should be small.

This goal can be fulfilled by minimizing the number of
cuts in the graph [8] considering the weight of the edges.
This idea can be further generalized to include the weights
of the edges in a directed graph as follows:

fct(Vl) =
∑
i∈Vl

∑
j∈V\Vl

aij + aji, (8)

where aij and aji are the weights of the links that connect the
l-th subsystem to its neighbors. The weights are computed
using the model representation in (3), as depicted in Fig. 1.

2) Total communication delay: From a control perspec-
tive, a delay can degrade the control performance. Fig. 2
illustrates the necessity for considering the communication
delay in the partitioning procedure. The number of cuts are
equal for both partitioning in Fig. 2.

Assume that there is only one low bandwidth communi-
cation channel between each pair of controllers such that the
controllers can transmit one signal (input) at a time with time
delay Td. Assuming that parallel communication between
different subsystems can take place, the total communication
delay equals the maximum couplings between each pair of
subsystems. This value for the partitioning in (2a) and (2b)
are equal to 2Td and 3Td, respectively. The total delay for the
aforementioned communication protocol can be expressed
as:

fcd(Vl) = max
Vt

∑
i∈Vl

∑
j∈Vt

(aij + aji)Td,

∀ l, t ∈ {1, 2, . . . , P}, t ̸= l,

(9)

where aij equals one if aij is nonzero and zero otherwise.
In order to provide a trade-off between the aforementioned
costs, a combination of (8) and (9) with suitable weights is
proposed as the communication cost:

fcm(Vl) = α1fct(Vl) + α2fcd(Vl), (10)

If the communication channels between local controllers
have a high bandwidth and can transmit all packages at the
same time, the delay will not be an issue, and in that case
α2 can be chosen small or set to zero.

Fig. 2. Partitions with equal number of cuts and different total delay.

B. Computational Cost
Assume a control strategy such as MPC is selected to

design local controllers. The computational complexity of
solving the associated optimization problems relies on sev-
eral factors, such as the number of decision variables, states,
and the algorithm used for finding the solution. The latter
is usually expressed using big-O notation. For example,
the computational complexity for solving an MPC problem
using quadratic programming, with n states, m inputs, and
a prediction horizon of N by utilizing an interior point
method is O(N3(n + m)3) [20]. Hence, the computational
cost function can be expressed as:

fcp(Vl) = O(g(nl,ml, T )), (11)

where the function g(.) depends on the algorithm for solving
the problem, and nl and ml are number of states and inputs
in the l-th subsystem. T denotes variables associated with
the controller, such as the prediction horizon in the case of
MPC.

The following proposition sheds light on the relationship
between having a balanced number of states and inputs at
each subsystem and the computational cost.

Proposition 1: If g(nl,ml, T ) = f(T )(nk1

l +mk2

l ) in (11)
with f a non-negative function, and k1 and k2 are positive
integers. Then, assigning a balanced number of states and
inputs to each subsystem leads to a minimum computational
cost.

Proof: The minimization problem is:

min
n1,...,nP−1
m1,...,mP−1

P∑
i=1

f(T )(nk1
i +mk2

i ), (12a)

subject to :

P∑
i=1

ni = n,

P∑
i=1

mi = m. (12b)

By introducing Lagrange multipliers λ and µ, we obtain:

L =

P∑
i=1

f(T )(nk1
i +mk2

i )−λ(

P∑
i=1

ni−n)−µ(

P∑
i=1

mi−m),

(13)
By taking partial derivatives of (13), and solving ∂L

∂ni
= 0

and ∂L
∂mi

= 0, we have:

ni =
k1−1

√
λ

f(T )k1
, mi = k2−1

√
µ

f(T )k2
. (14)
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Since the right hand sides in (14) do not depend on i, the
number of states for all subsystems must be equal, and the
same holds for the number of inputs. From (12b) and (14),
we have:

n∗
i =

n

P
, m∗

i =
m

P
. (15)

Based on Proposition 1, the following imbalance cost,
which was employed in [9], [11], [12] as well, is proposed
to be considered as the computational cost function:

fcp(Vl) = (nl −
n

P
)2 + (ml −

m

P
)2. (16)

IV. THE PROPOSED PARTITIONING ALGORITHM

In this section an algorithm is developed to solve the
network partitioning problem in (5). The proposed approach
is based on the method in [12]. The proposed algorithm
contains an initialization part, a selection of an initial parti-
tioning, and the refinement stage.

A. Initialization

It is desirable to provide the algorithm with a warm start
to enhance the convergence speed. To this aim, the vertices
are aggregated such that the controllability of some states
are guaranteed during the partitioning procedure. Based on
[21], the following assignment rule is applied:

Assignment rule: For a network represented as a directed
graph and with decoupled states, if a state (a water level
in a tank) is connected to only one input (an actuator),
their corresponding vertices are merged to guarantee they
are assigned to the same partition.

The adjacency matrix is correspondingly modified, and the
modified adjacency matrix denoted by Ar, will be used. This
step also includes selecting weights in (5a), and specifying
the number of states and inputs, i.e., n and m.

B. Initial Partitioning

The main idea behind the initial partitioning step is to put
the vertices with strong connectivity in the same partition.
Thus, the optimization problem is not addressed in this stage.
Hence, the first P inputs with highest degree centrality, i.e.,
highest number of edges connected to a vertex, are assigned
as the centers of each partition. Starting from subsystem 1,
other vertices that have not been assigned to any partition yet,
and have the highest number of couplings to the evaluated
subsystem, are assigned to it. (If some vertices have the same
maximum number of couplings to a subsystem, we choose
the assigned vertex randomly from the maximizers). After a
vertex is assigned to a subsystem, we proceed to the next
subsystem. The procedure is repeated until all vertices are
assigned to a subsystem.

Furthermore, the initial partitioning should be controllable.
This is achieved in this stage by ensuring each state is
connected to at least one input.

C. Refinement Stage

The output of previous steps is a decomposition of the
network into P controllable partitions. The initial partitions
are next modified so that the total cost function in (5a) is
reduced and the constraints in (5b)-(5c) are fulfilled.

The proposed algorithm is given in Algorithm 1. The
refinement process starts with the subsystem with highest
local cost. The possible modification for this subsystem is to
move a single vertex that has coupling to other partitions
to the neighboring partitions. These vertices are put in a
set called V̂l. Moving a vertex in V̂l to the neighboring
subsystems would give a new value for the cost function
in (5a). The vertex which gives the largest reduction in the
cost function is selected and transferred to the neighboring
partitions. After a vertex has been assigned to a new subsys-
tem, we repeat sorting process based on highest local costs.
The refinement algorithm will be repeated until a stopping
criterion is satisfied.

Algorithm 1 Proposed partitioning method
1: Initialization: n,m,w1, w2, α1, α2, and Ar

2: for P = 1 to m do
3: Inputs: Generate an initial partitioning using the proce-

dure in Section IV.B. Call it Vo. Set r = 1, c = 0, j = 1
4: Sort each subsystem in Vo according to local cost in

descending order into an array of subsystems Vso

5: while c ≤ P do
6: Vl = Vso(j)
7: V̂l = {θw|ewz ∈ E , θw ∈ Vl, θz ∈ V\Vl}
8: for each θ ∈ V̂l do
9: NV̂l

= {Vh ∈ Vo|Nθ ∩ Vh ̸= ∅}\Vl

10: Vn
l = Vl\{θ}

11: for each Vt ∈ NV̂l
do

12: Vn
t = Vt ∪ {θ}

13: Vn = {Vn
l ,Vn

t ,Vo\{Vl,Vt}}
14: ∆ft = ft(Vo)− ft(Vn) using (6)
15: if ∆ft > 0 then
16: Fd(r) = ∆ft, V

′(r) = Vn

17: r = r + 1
18: end if
19: end for Vt

20: end for θ
21: if r > 1 then
22: Find r that maximizes Fd(r) and gives full

rank controllability matrices for V ′(r).
23: Vo = V ′(r), c = 0, Sort Vo and store it in

Vso, j = 0
24: else
25: c = c+ 1
26: end if
27: Reset Fd, V

′, and r
28: j = j + 1
29: end while c
30: Vp(P ) = Vo, fp(P ) = ft(Vo)
31: end for P
32: Output: P ∗ and Vp(P

∗), which give minimum fp(P )
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Note that the total cost function for each partitioning
is non-increasing using the proposed algorithm, since the
partitioning is modified only if the total cost is reduced.
The refinement stage is repeated until no improvement in the
partitioning is seen or a maximum number of iterations is not
exceeded in the case of large scale network. A convergence
proof for a similar algorithm is given in [12].

Lastly, the optimization problem defined in (5) proposes
a min-min formulation to find the optimal number of par-
titions, P , as well. Accordingly, the initial partitioning and
refinement steps are repeated for all values of P to find the
subsystems, which minimizes total cost. The upper bound
on the number of partitions is m to guarantee that each each
subsystem contains at least one input.

V. CASE STUDY: RICHMOND WATER NETWORK

The Richmond water network is part of the Yorkshire
water supply area in U.K. ([22] and [23]). A schematic
representation of this network called “Richmond skeleton”
[23], is shown in Fig. 3. The corresponding vertices for the
pumps in 1A, 2A, and 3A have been merged and labeled as
uA.

Fig. 3. The partitioning results for the Richmond skeleton water network.

1) Network Partitioning Results: For this case study, we
consider n = 6,m = 6, w1 = 1, w2 = 1, α1 = 2, α2 = 0.
Moreover, (10) and (16) were selected as communication
and computational costs. The obtained partitions using the
proposed partitioning algorithm are indicated in Fig. 3 with
different colors. The values of the total cost for different
number of partitions are shown in Table I. From Table I, it
is evident that P = 2 gives the minimum value.

TABLE I
PARTITIONING COST FOR RICHMOND WATER NETWORK.

P 2 3 4 5 6
Partitioning Cost 2 8 8 9.6 10

2) Comparison of the control performance using the ob-
tained partitions: A comparison of the control performance
for different number of subsystems using a distributed coop-
erative economic MPC strategy is presented in this part. The
control objectives are minimization of energy cost due to
pumping and smoothness of control actions [16]. Following
[24], each controller solves the following problem at each

iteration, r, until a stopping criterion is satisfied:

[u∗
l (k), . . . , u

∗
l (k +N − 1)] =

arg min
ul(k),...,ul(k+N−1)

N−1∑
j=0

J(ul(k + j), u−l(k + j)),

(17a)
subject to (3) and (4), for j = 0, . . . , N − 1

ur
−l(k + j) = ur−1

−l (k + j), (17b)

ur
l (k + j) = βlu

r−1
l (k + j) + (1− βl)u

∗
l (k + j). (17c)

with

u(k) = [ul(k), u−l(k)]
T (18a)

J(u(k)) =

P∑
l=1

α(k)ul(k) + ∥∆ul(k)∥2Rl
, (18b)

∆ul(k) = ul(k)− ul(k − 1), (18c)

stopping criterion:

|J(ur(k))− J(uc(k))| ≤ ϵ or r ≥ r (19)

where ul(k) and u−l(k) denote the inputs in l-th and
other subsystems, respectively. uc(k) is the solution of the
centralized controller, ur is the input vector in (18a) at r-
th iteration, r̄ is the upper bound for number of iterations,
ϵ shows the desired accuracy, N is the prediction horizon,
α(k) denotes the electricity tariff, Rl is weight for input
smoothness in the l-th subsystem. After each iteration, the
controllers communicate their solutions to each other. The
control actions by the other subsystems act as disturbances
on the subsystem under consideration in (17b). Moreover, the
input trajectory at iteration r, ur

l (k), is computed in (17c) us-
ing the solution in the previous iteration, the optimal solution
found by (17a), and βl. In this case study, J(uc(k)) = 70298
ϵ = 2000, r̄ = 24, N = 24 hours, the total simulation
period was 72 hours, Rl = 10Iml

, ∆t = 5 minutes, x =
[3.37, 3.65, 2, 2.11, 2.19]T , x = 0.5x, u = 50, u = 0, and
βl = 0.5. Note that we used the stopping condition in (19),

Fig. 4. Normalized electricity tariff and demand multiplier.
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since J(uc) was easy to obtain. In general, the centralized
solution is unknown, and |J(ur(k)) − J(ur−1(k))| ≤ ϵ
can be employed as the termination condition. Moreover,
electricity tariff and demand multiplier are shown in Fig. 4.
The demands are given by d(k) = m(k)d̄ where m(k) is the
demand multiplier shown in Fig. 4. The same demand mul-
tiplier was assumed for all demands. The demand multiplier
has an average of 1, and hence the average demand is d̄. The
simulation results are given in Table II.

TABLE II
COMPARISON OF CONTROL PERFORMANCE FOR DIFFERENT PARTITIONS.

P Tr(s) Ir Ts(s) Ce Cs Total operating cost
2 0.38 2.25 0.86 63584 7233 70817
3 0.41 3.69 1.51 63752 7364 71116
4 0.30 9.34 2.80 63759 7488 71247
5 0.29 15.4 4.46 64035 7691 71726
6 0.09 23.6 2.13 66248 7933 74181

Tr is the average simulation time per iteration for the
most computationally demanding subsystem, Ir is the av-
erage number of iterations per time step, Ts is the average
simulation time per time step for the most computationally
demanding subsystem, Ce is the energy cost, and Cs is the
input smoothness cost.

From Table II, it is evident that the number of iterations to
find the solution increases as the number of subsystems in-
creases because more subsystems needs to communicate their
results to each other. It can be seen from Table II that P = 2
led to the best control performance in terms of simulation
time and total control cost. This statement is compatible with
the partitioning result in Table I. Furthermore, it is evident
that Tr for P = 6 is decreased considerably in comparison
to P = 5. The main reason is that the largest subsystem in
the case of P = 5 contains two inputs and two states, while
it includes one state and one input for P = 6.

VI. CONCLUSION

A novel method for network decomposition has been
proposed. The aim of the approach is find a partition such
that the computational costs for local controllers and the
communication costs between local controllers is minimized.
To achieve this, a graph representation of the network was
used and several costs functions were proposed, and control-
lability constraints were imposed. An efficient method was
also proposed for solving the obtained partitioning problem.

The proposed approach was applied to a case study, and
simulation results comprising the obtained partitions and
control performance for different number of partitions were
presented. The algorithm successfully found the partitioning
that led to the best control performance, demonstrating its
suitability.
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