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Optimal active sensing control for two-frame systems

Jonas Benhamou, Silvére Bonnabel and Camille Chapdelaine

Abstract— This paper provides a complete characterization
of the trajectories that maximize the information collected
by a moving vehicle, through sensors’ measurements, for the
recently introduced class of nonlinear “two-frame systems”.
The information is quantified in terms of the trace of the
observability Gramian (OG) along a trajectory. In general, this
quantity nontrivially depends on the control inputs and the
state trajectory, resulting in a difficult optimal control problem.
Herein, we leverage the property of invariant filtering that
Jacobians are state-trajectory independent, that is, only depend
on the control inputs, which enables us to mathematically
derive optimal trajectories in closed form. We illustrate the
results numerically on problems from robotics such as 3D robot
localization, and 2D simultaneous localization and mapping.

Index Terms—localization, Lie groups, active estimation,
invariant Kalman filtering.

I. INTRODUCTION

The notion of observability of linear systems does not
depend on the system’s trajectory. By contrast, when turning
to nonlinear systems, some trajectories may make the state
unobservable, whereas others make it observable. As an
extreme example, think of a wheeled robot whose position
is measured: if it stays still, its orientation is unobservble,
whereas if it is moving in straight line, its orientation is
readily recovered. Beyond observability, which is a binary
criterion, some trajectories are more informative than others
in terms of state estimation of nonlinear systems. In the
context of navigation of vehicles, amongst others, it may be
useful to know which trajectory brings the most information
about the state, to safely move in a constrained environment.

This has prompted previous authors to develop methods
for trajectory generation that facilitate state estimation [1]—
[3], or online parameter estimation [4]. This pertains to the
theory of optimal experiment design [5] as these methods
seek to find a control sequence to be applied in order to
maximize the information acquired along the trajectory.

As an information measure, it is customary to use the
observability Gramian, e.g., [6]. Some other criteria were
used, though, such as Fisher’s information, or the covariance
matrix associated to the Riccati equation of an extended
Kalman filter [7], or measures specifically tailored to the
problem, e.g., [8] which targets trajectories leading to easier-
to-exploit images from the onboard camera. More generally,
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active simultaneous localization and mapping (SLAM) im-
proves state estimation through control, see e.g., [9].

The most widespread criterion to measure the extent
of observability brought by a trajectory is the local OG,
introduced by Krener and Ide [10]. In some simple cases, the
optimal trajectories might be computed analytically, see [6],
but this is generally not the case, and one needs to resort to
numerical methods for trajectory planning [11] or trajectory
modification for sensors calibration [1]. Despite the draw-
backs of Gramian maximization based planning methods [7],
the local OG or the closely related Constructibility Gramian
[3] remains a relevant tool to establish the most informative
trajectories, especially when the system’s model is well-
known, i.e., the process noise is low.

In this paper, we consider the recently introduced theory
of two-frame systems [12], which introduces a large class
of navigating vehicles having remarkable properties in terms
of state estimation. For those systems, we benefit from the
properties of invariant filtering that provide state-trajectory
independent Jacobians [13]. This makes the OG independent
of the trajectory being followed, and only dependent on
the controls, and hence simplifies the associated optimal
control problem. Leveraging this property enables us to
derive optimal trajectories in closed form that maximize the
trace of the OG for two-frames systems.

The main contributions of this paper are:

o The use of the invariant errors to make the observability

Gramian independent of the system’s state;

o A general analytical computation of the optimal control
that maximizes the observability Gramian for a broad
class of systems that fall into the theory of two-frames
navigating systems;

« Application to three problems: a vehicle that navigates
in 3D and estimates its state from position measure-
ments performed by a GNSS, a 2D vehicle equipped
with a GNSS mounted on an arm with unknown position
in the vehicle (lever arm), and the problem of SLAM
for a 2D wheeled robot.

Section II formulates the perception-aware control prob-
lem, Section III summarizes the theory of two-frame sys-
tems, Section IV calculates the optimal control to apply
when facing world frame measurements, Section V addresses
the problem when facing vehicle frame measurements, and
Section VI illustrates the results numerically.

II. OPTIMAL PERCEPTION-AWARE TRAJECTORIES

In this section we recall the problem of active sensing.
It is a path planning problem where the objective function
is an information criterion. Therefore, it will be easier to
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estimate the system state along the optimized trajectory. Let
us consider a general discrete-time dynamical system:

Tp4+1 = f(xnaun)7 Zo = xO (1)

where z,, € R? represents the state of the system, u, € R™
is the control input, y,, € RY is the sensor output at time n.
One approach to measure the extent of observability asso-
ciated to a given trajectory is based on the observability
Gramian (OG). The discrete-time OG is defined by:

K
Wik =>» ® HIH,®, 3)
n=1

where H,, = 2n) a0 @, = F,®, 1, ®_; = I; with

F, = W and K the estimation horizon. It should
be noted that in the case of linear systems, F, neither
depends on the state of the system nor the controls. This
implies that the OG does not depend on the trajectory:
all trajectories are equally informative. However, in the
nonlinear case, observability depends on the trajectory, see
[6], [10]. The optimal inference problem consists then in
finding the trajectories along which the OG is maximum.
Thus, the trajectory planning problem writes:

u* = argmax Tr(Wk)
UQ,-- - UK —1

Y Tngr = f(nun) 4)
Vn u, € C,

subject to

*

u* € RPK refers to the sequence of vectors of controls to
apply. At each time instant n, the control vector is required
to belong to a bounded set C,, C RP.

The interest of the above criterion is its simple interpre-
tation in terms of the (linearized) error variables denoted by
0Ty = Ty — Tp, and 0y, := yp — Yn. Up to the first order,
they evolve according to the linearized Jacobians, that is,
0xpy1 = F,dx, and dy, = H,x,. As the initial error is
unknown, we may assume it be random and isotropically
distributed, for instance dz ~ N(0,I;). We have then.

Lemma 1: Assume dzo ~ N(0,1;) denotes the discrep-
ancy between two initial states. We have, neglecting second
order terms, the equality

K

b (Z ||5yn(5$0)|3> =Tr(Wk). S

n=1

This is proved by writing

K
=F Z sxl®THI H,®, 6z

n=1

K
E Z H(Sva((SxO)”%
n=1
K
=Y E(Tr (62§ @) HY H,®,,60))

o AT H,®, FE(6x0xl) | = Tr (Wk)

where we used the commutation properties of the trace and
that E((SJJQ(SJJ(IJ;) = 1.

This provides the following simple interpretation: the
optimal sequence of control inputs makes on average the
(first-order) discrepancy between the predicted and measured
outputs as large as possible, for a random error about which
we do not have any information. The trace of the OG is thus
a way of measuring the extent of observability gained from
the generated trajectory.

In general, the optimisation problem is difficult to solve
because of the numerous constraints. To overcome this diffi-
culty, several authors [3], [1] restrict the study to flat systems
[14]. In this case one may perform parametric (suboptimal)
optimization, where the parameters are a number of way-
points for the flat output. In the following, we consider the
recently introduced class of two-frames navigating systems,
and leverage their properties to show problem (4) is amenable
to a more simple optimal control problem, that may be solved
analytically.

III. REMINDER: THE THEORY OF TWO-FRAME SYSTEMS

The theory of two-frame natural systems [12] is general
and encompasses numerous examples from robotics and
inertial navigation. The idea is to consider systems consisting
of a body that navigates, and whose state is defined by a set
of vectors, as well as a variable encoding a change of frame
from the world frame to the frame attached to the body. In
the present paper, we will focus on the following two-frames
systems. The state writes

B 21 «!
z | € SO(@) xR xRM = | 1 |, x=| :
X 2N= s

R € G = SO(d) with d = 2 or d = 3 is a rotation
matrix that encodes the orientation of the frame attached to
the navigating body with respect to the world-fixed frame,
x is a set of N, vectors of R?, that is, the d-dimensional
world in which the body is navigating, which encode physical
quantities expressed in the fixed frame, such as the position
and velocity of a craft, and X is a set of vectors expressed
in the body frame, such as a sensor bias, where the sensor
is attached to the body, see Figure 1.

Craft

Fixed frame

//’REG \\\<
/4

Body frame

Fig. 1. The state of a navigating two-frames system, to be estimated,
consists of a rotation matrix R, and vectors, e.g., the position, velocity,
or sensor biases, stacked in = (when expressed in the fixed frame) and X
(when expressed in the body frame). R transforms vectors of the body frame
denoted by uppercase letters to vectors of the world-fixed frame denoted by
lowercase letters, and as such encodes the orientation of the craft.
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To fix ideas, let us start by giving two examples of interest,
before we turn to the unifying theory of two-frame systems.

A. Examples

The first example is in 2D and the second one in 3D.

1) First example, from [12]: Consider the classical 2D
model of a non-holonomic car, see e.g., [13], or equivalently
a wheeled robot or a unicyle. The position of the car in
2D is described by the middle point of the rear wheels axle
x, € R? , and its orientation (heading) denoted by 6,, € R

and parameterized by the planar rotation matrix R,, of angle
cos —sinf

sinf  cosf
GNSS located at unknown position X,, € R? in the car frame
with respect to point x,, (a lever arm to be estimated), which
provides the world (fixed) frame position measurements

0,, that is . The car is equipped with a

Yn = Tn + Rnxn € R2- (6)

In the schematic diagram below, the triangle is the car and
the square is the position measured by the GNSS.

Yn

x/ / 6,
'/17'71,

The discrete-time dynamics of a mobile wheeled robot write:

Rn+1 == Rnﬂna Tn41 = Tp + RnUn; Xn+1 = Xp,
(N
The control inputs are the angular velocity €,,, which can
be controlled through steering or via the difference between
wheel speeds, and U,, that is the average of wheel speeds.
2) Second example: We consider a body that navigates in
3D, and which is equipped with a GNSS. We consider the
acceleration in the body frame as well as the angular velocity
to be (possibly high-level) control inputs, and discretize the

continuous-time equations, yielding dynamics of the form

Ry11 = Ry,
Prntl = Pn + AL vy, (8)
Upnt1 = Up + RpU,

with observation Y,, = p,.

Let us now turn to the unifying framework of two-frame
systems, that encompasses the two latter examples.

B. Two-frames general theory

In this paper, we consider the following subclass of

discrete-time dynamics amongst the two-frame dynamics of
[12]

Ry 41 R,y
Tn+1 = an +dn + Rn *Up |, (9)
Xn+1 Xn

where * defines the following operation, called an action
Rx!

RxX:= ,
RxNx

x! Raxt
Rxx =R« = : ,

aN= RaN=

and where the matrix F' : Rz 3 RNz ig of the form

anlg ain, 14

F= (1)

an,11q an, N La

with a;; > 0’s real nonnegative numbers, and d,,U, €
R?N= Tt can be readily noticed that such a matrix commutes
with the action, that is F/(R* z) = R * (Fx).

The rotation R maps vectors of the body frame to vectors
of the world-fixed frame. It is reasonable to assume that
the control inputs are vectors expressed in the body frame,
as actuators are attached to the craft. We will therefore
consider d,, to be a known input, and €2,,, U,, to consist of the
(possibly high-level) control inputs we will use for trajectory
generation. The fact that U,, € R%=, does not preclude the
system from being underactuated, since as many components
of U, as necessary may be set to 0 (through constraints). The
reason for the equation X,,+; = X,, in (9) is that the variables
of the body frame that we seek to estimate are considered as
parameters, as is the case of lever arms (see the first example
above) and accelerometer and gyrometer biases in the general
theory of two-frames.

Regarding state estimation, the two-frames systems are
endowed with sensors providing the vehicle with measure-
ments. In the theory of two-frames systems of [12], they are
of two types. Indeed we use either an output map h repre-
senting measurements in the fixed frame, or H representing
measurements in the frame of the vehicle, defined as

‘ fixed-frame: h(R,x,X) = H"z + R x [H*X] ‘ (12)

‘body-frame: H(R,z,X) = R~ % [-H"z] — HXX‘ (13)

with H® : R¥V= 3y Y and H* : R4Vx s ) two linear maps
that commute with the action of G, that is, are of the form

Biila Bin,La

H® = (14)

B, 11a BN, N, La

and similarly for H*, and where ) = RNy denotes the
output space. In the theory, R also acts on )) = Ry via
term-by-term action similarly to (10).

1) Link to the first example: We see the first example fits
the present framework of two-frames systems indeed, as (7)
correspond to (9), with d = 2, N, = 1, Nx = 1, hence action
% 1s trivially the matrix-vector product, and F' = I5. The
measured output corresponds to fixed-frame measurements
(12), with H* = H* = Is.
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2) Link to the second example: We see the second exam-
ple above fits the present framework of two-frames systems
indeed, as (7) correspond to (9), with d = 3, N, =2, Nx =
0, d, =0, action x is R x (p,v) = (RP, Rv), and

(I3 Aty
P= (o )

which is of the form (11). The measured output corresponds
to fixed-frame measurement (12), with H* = I.

C. State-trajectory independent error evolution

The theory of invariant filtering [15], having its roots in the
theory of invariant observers [16], [17], and which underlies
the recent theory of two-frame systems, uses alternative
error variables to recover some properties of linear systems,
especially the fact the errors evolve independently from
the state trajectory. This notably allows for state-trajectory
independent Jacobians, when linearizing the system.

When confronted with observations in the fixed frame
(12), we use as an alternative state error, the left-invariant
error between two states defined as

R'R gl
( n —T) = | B”

— (R7'R) xX EX

If observations are performed in the body frame instead
(13) one should use the right-invariant error defined as

Obs. (12) = |E = R* . (19)

RR™! el
(RR Bxz||i=1e®
* (X —X) e

If we evolve two state variables through (9), the corre-
sponding left-invariant error evolves as:

Obs. (13) = | e = (16)

e, =0, 'efq,
EF = % [FEL + EX x U, — U] (17)

X _ —1-R S
Eni1 =X—Q, B Qy xX.

We see the evolution of the error is independent of the state
variable (R, z,X) but for the last line. However, if d = 2,
rotations commute and the last line becomes E},; = E}
and the error evolution is wholly state-trajectory independent.
This is Theorem 5 of [12].

If we evolve two state variables through (9), the corre-
sponding right-invariant error evolves as:

R _ R
enJrl - en

R
eny =Fpe, +d, —e,dy
X - _
enr1 = ROy * (X — X).

(18)

We see the evolution of the error is independent of the state
variable (R, z,X) but for the last line. However, if d = 2,
rotations commute and the last line becomes e, | = €2, xe}
and the error evolution is wholly state-trajectory independent.
This is Theorem 5 of [12].

D. State-trajectory independent prediction error

Instead of using the usual prediction error y — y =
h(R,z,X)—h(R,Z,X) of state estimation, called innovation
in the literature devoted to Kalman filtering, the theory of
invariant filtering advocates the use of alternative innovation
variables, that also reflect the prediction error. The innovation
variable Z associated to fixed-frame output y, i.e., Obs. (12),
writes:

(z=R'x(y- H'z) ~ H'X] (19)

while the innovation variable z associated to body-frame
output Y, i.e., Obs. (13), writes:

|2 =R+ (Y+HX)+H"7| (20)

The interest of those alternative innovation variables, is the
strong link they bear with the alternative errors we have
defined. Indeed,

Error (15) = z,, = H®E® + He? x BX, 21
Error (16) = 2, = —H*e} — H” (65)71 xel.  (22)

This result of [12] is easily proved. It will allow for state-
independent Jacobian of the output map h, that we are about
to leverage to simplify our perception-aware control problem.

IV. OPTIMAL SOLUTIONS TO ACTIVE SENSING CONTROL
WITH WORLD FRAME MEASUREMENTS

This section addresses the problem of optimal perception-
aware trajectory generation for the class of two-frames
systems we have considered. Our main result is to prove
that they can be computed explicitly for this general enough
class of systems modeling vehicles that navigate.

Our goal is to maximize the global information acquired
over a given future horizon, i.e., K-steps trajectory. This is
measured as the trace of the observability Gramian matrix,
see problem (4). To get this matrix using our alternative
errors, we need the Jacobians resulting from linearizing the
error system. In Subsection IV-C, we will relate this to the
original control objective based on standard linear errors in
the original variables, as classically used by the extended
Kalman filter.

In this section we consider the case of measurements
performed in the world frame. In the next, we will consider
body-frame measurements.

A. Linearized error system and observability Gramian

We would like, for (R, z, X) close to (R, Z, X), a first-order
(i.e., linearized) approximation to the left-invariant error (15).
Recall that we may relate a rotation matrix with a vector
through the matrix exponential R~! R = exp((£%)y) where

0 & &

d=3=¢"eR’ (M= & 0 &
=& H 0

and d=2=¢" e R, (%)« =&J with J = 1 0

Using a first order expansion of the matrix exponential we
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have Ef = R1R ~ I; + (¢%)« and the linearized error is
then defined as (£F, &% €X), where we let €% = 2 — 7 and
& = X — X. Substituting those approximations in (17) we
find in the 2D case d = 2

R
n+1 5

T = K [FEE + JunEl

gn-‘,—l - gfm

and in the 3D case d = 3 by not including X in the state

(23)

Q R
e @
n+1_Qn [an_Unxfn]

where we also used that Q. 1(¢8),Q, = (Q,1¢%) . This

yields the linearized system (hence the Jacobian) associated
to the dynamics, when written in the invariant variables.
Regarding the Jacobian of map £, it is related to the lineariza-
tion of the innovation, which yields from (21) neglecting
second order terms

6z, = H*EE + H*E),. (25)
Our goal is to find the control inputs €2,,, U,,’s that maximize
the trace of the observability Gramian associated to the
linearized systems (23), (25) in 2D and (24)-(25) in 3D.
Recalling the derivation (5), this is equivalent to maximizing
Zszl E (||6Z|[?), for a random isotropically distributed
initial error.

B. Optimal trajectory generation

Recalling that U € R+ is a multi-vector, we take as
constraints that at all time 4, each component U¥ of the input
must remain in a predefined bounded set Cj C RN=.

Our first main theoretical result states that, in the case of
world-frame measurements, optimal solutions are obtained
by maintaining a fixed orientation R,, and taking the control
inputs collinear and of maximum authorized norm.

Theorem 1: Consider a two-frames system with dynamics
(9) and observations in the fixed frame given by (12), such
that the 3;;’s in (14) related to H” (only) are either all
nonnegative or all nonpositive. Moreover, suppose that:

1) Either d = 2, that is, the vehicle evolves in 2D space,
2) or d = 3 and there is no variable X in the state, that
is, the state consists of variables (R, x).

Then, assume we may take ()} = Ig and U} such that
the scalar product across components and times satisfies
up.Ul = maxg,, [|Uf||maxc,, [|U}|] for 0 < i,j < K —
1,1 < k,l < N,. This defines an optimal trajectory.

Proof: We begin noticing from (24) the variable &*
is fixed when d = 2, and when d = 3 we supposed it
was not part of the state. As the components of the error
are assumed initially independent, this yields E (||0zx|?) =
E (|[H=¢E|?) + E (||H*EE|?). As a result all we need is
to maximize Zszl E (|[H7&E|?). Without loss of generality

let us focus on the 3D case (24). By recursion we may prove

& =005 = () el
gg _ (Hk—lﬂ )71 *Fkgg
k (26)
Z H;C Jl 1 *F jU]',1 X §JR71

Jj=1
where we have used that Q2+ and F commute. We see
the goal boils down to ﬁnding the control sequence
that maximizes E|/H® Zf: =t )~ « FRiu;_ x
(I 192) eI,

Lemma 2: Let uy,us € R? with d = 2,3, let Q € SO(d)
and let & ~ N(0,1;). We have F(u; x £ . ug x Q) <
(d = 1)||u1|] |luz|]- Equality is obtained for Q@ = I, and
us = ~yuy,v > 0. For d = 3 it is unique. For d = 2 the
maximum is attained for all combinations 2 € SO(2),us =
~Quy,y > 0.

Proof: Using the properties of mixed product fol-

_]1

lowed by triple product expansion we find wu; X
5 . U2 X Qf = (U1UQ)(£Q€) — (ulﬁ)(UQQﬁ) =
(uy.ue)Tr (7€) — Tr(ulT¢€TQTuy), whose expectation
equals (up.uz)Tr(QEEET)) — Tr(ulf B(6€T)QTuy) =

Tr() (uy.ug) — uf QT ug = g(uq,ua, Q) We write that

max g= max max max ¢
[ua||=luz||=1,2€50(d) [lu||=1 Q€50(d) [|uz||=1

As g(up,ug,Q) = (Tr(Qu; — Quq).us the method
of Lagrange multipliers yields that max|,, =19 is at-
tained for uy = [Tr(Qu; — Qui/||Tr(Q)u; —
Quill, and glupu3, Q) = [Tr(@Qui — Quil| =
V1+Tr(Q)2 - 2Tr(Q)ul Quy. To conclude we use two
facts. First, letting 6 be the rotation angle associated to
Q, we have Tr(Q) = 1+ 2cosf for d = 3. Then, we
have cosf < Quq.uy < 1, for |Jui|| = 1. This stems
from using the Rodrigues formula and the triple product
expansion that proves Qu.u = 1+ (1 —cos(6))((v.u)?—1) >
14+ (1—cos(0))(—1) = cos 0, with v the unit vector encoding
the rotation axis. Thus g% < 1+ Tr(Q)? — 2T7(Q) cos§ =
2 4 2 cos@. This proves g < 2 with equality attained if and
only if cosf = 0, that is, 2 = I3.

If d = 2, only the trace is modified and we find g = 1,
that is, the maximum is non uniquely attained for arbitrary
Q, letting uy = wuj. In particular it is attained for Q = I
and u3 = us. |
Let us go back to our control objective of
maximizing E||H“/’Z (Hk_J1 )7t o« FRiu oy x
(TIE10,)~1¢l||?. We need to recall we are dealing
with multi-vectors, and that H” is of the form (14),
where the ;;’s have the same sign. We may expand
the squared norm, and we recover a linear combination
with positive coefficients of scalar products of the
form E(u; x & s x ), using our assumption
on F and using that for rotation matrices A, B we have
(Afiy)x (A€) . (Biig) x (BE) = 1y x€ . (AT Biig) x (AT B€).
We may bound those terms using the lemma, and to get
an equality we take all ; to be I;. If the condition of
the theorem Uf.Ué- = maxc,, ||UF||maxc,, ||U§|| is met,
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it implies from Cauchy-Schwarz inequality the collinearity
of the components and we see from the lemma the sum
reaches its maximum. ]
For instance, if we consider Example 2 with dynamics (8)
and constraints ||U,|| < 7, we see the optimal trajectory is
obtained by fixing the orientation, and taking full accelera-
tion. Note that, there is no requirement regarding R,, apart
from it being fixed: the maximizing acceleration could be
lateral if constraints permit. Besides, we note that such a
system is not flat, as the vehicle’s orientation is not related
to the trajectory, contrary to wheeled robots.

Remark 1: The optimal trajectory of the theorem is not
necessarily unique mathematically. However, when d = 3,
the proof shows the condition )}, = I; is inevitable.
Moreover, when d = 2, the other maximizing trajectories
are in practice not feasible (they violate the constraints) and
in any case more complicated to achieve while not improving
the objective.

C. Connection to the original variables

We now relate this to the original Gramian maximization
problem. Indeed, the fact that the trajectory be optimal for
given modified error and innovation, does not a priori mean
it is optimal in the problem’s original error variables, or
more prosaically speaking using the conventionally defined
Jacobians in (4). It turns out, though, that in the present case
both are equivalent.

Proposition 1: The optimal trajectories of Theorem 1 are
optimal too for the problem (4) using the original variables
of the problem.

Proof: The proof is based on the use of the equivalent
formulation (5). Indeed, we see that if we take a two-frame
system above, we have Z = R™! % (y — 7), where §j =
H?®Z — R [H*X] denotes the predicted output. As a result
[1Z|] = ||y — 9| so that both objectives coincide. [ |

V. OPTIMAL SOLUTIONS TO ACTIVE SENSING CONTROL
WITH BODY FRAME MEASUREMENTS

In this section, we first provide the counterpart of Theorem
1 for body-frame measurements. Then, we step back and
discuss the trace criterion.

A. Optimal trajectory generation

When facing body-frame measurements, one should use
right-invariant errors, leading to the error system (18). Along
the lines of the theory of two-frames, we see the two
following cases lead to a state-independent error:

1) Either d = 2, that is, the vehicle evolves in 2D space,
2) or d = 3 and there is no variable X in the state, that
is, the state consists of variables (R, x),

which are the hypotheses we used in Theorem 1. In the first
case, the rotations commute, leading to autonomy of the error
evolution. In the case of body-frame measurements, it turns
out that all trajectories bring equal information, exactly as
is the case for linear systems. This is due to the linearized
error system being virtually independent of the controls.

Theorem 2: Consider a two-frame system with dynamics
(9) and observations in the body frame given by (13). Then,
under any of the two assumptions above, all trajectories yield
an equal trace of the observability Gramian, in other words
all trajectories are optimal for problem (4).

Proof: The proof is in two steps. First we show the
result using the Jacobians related to the right-invariant error,
as a natural consequence of the fact the error evolution is
(almost) independent of the controls. Then, we relate the
result to the Jacobians expressed using the original variables.

As before, we may linearize the innovation (22) which
yields dz,, = —H*¢S — H™E;. Both €7 and & evolve inde-
pendently, so that we have E (|[0z;||%) = E (J|[H*¢E|?) +
E (||[H*&||?). The latter term is independent of the controls,
see (18). Regarding &*, we see from (18) that in the case
where it is present in the state, that is, when d = 2, it evolves
as {3 = Qp x &), Recalling we are dealing with multi-
vectors and the form of the matrix (14), and that rotations are
isometries, we see E (|[H*&([|?) is also independent of the
controls. This proves all trajectories yield the same trace of
the Gramian, when using the Jacobians of invariant filtering,
that is, those related to the right-invariant error.

If we turn to the original variables of the problem, we
may exploit the link between problem (4) and relation (5).
Besides, we see that z = R * (Y — Y), where Y = R~1 «
b— R™'x« H*Z — H*X, denotes the predicted output. As a
result ||z|| = ||Y — Y| so that both objectives coincide.

|

B. Discussion and further results

Whether in the case of fixed-frame or body-frame observa-
tions, we were able to derive closed-form expressions for the
trajectories that maximize the information for a large class
of problems, in the sense of the trace of the OG criterion,
for which we provided a probabilistic interpretation in terms
of averaged observed linearized error. In this subsection, we
would like to step back and reflect on the limitations of this
widespread criterion.

Albeit useful, and allowing for closed-form expressions,
the trace criterion might prove insufficient for a number
of applications revolving around navigation of 2-frames
systems. Indeed, as shown in (5), the trace is related to an
average over random (unknown) initial error. A trajectory
that optimizes such a criterion does not preclude the risk
of falling into an unobservable configuration for a particular
initial error, though. As a result, the following objective shall
also be interesting for a variety of applications

K

116z (£0)113, 27)

max min

Uo,...UK — =1
0 Uk -1 160l I=1 £

which coincides with maxy, .y, , min; \;(Wg), i.e., max-
imizing the smallest eigenvalue of the Gramian as seen from
(5), and advocated in [3]. We see that in 3D a uniformly
accelerated motion fails to allow for estimation of the vehi-
cle’s angle around the acceleration axis, and as such it may
be optimal for the Gramian’s trace criterion but not for the
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latter. Deriving the optimal trajectories in closed form - as we
just did - for this max-min eigenvalue may prove involved,
and is left for future research.

There is some overlap between the objectives, though.

Corollary 1: a) Assume that d = 2 and there is no
body-frame-expressed variables X to be estimated in the
state. Then the optimal trajectory of Theorem 1 solves
the minimium eigenvalue optimization problem (27) in the
case of fixed-frame measurements. b) In the case of body-
frame measurements, under the assumption of Theorem 2 all
trajectories are optimal in the sense of (27).

Proof: 1In the 2D case, the last expression of (26) be-
comes (Z?Zl(ﬂé:jl_lQl)*l «* Fk=3 Ju;_1) &L Maximizing
the expectation of its squared norm w.r.t. £&* ~ N(0,1) or
its squared norm with (¢£%)? = 1 yields identical problems.
For body-frame measurements we have independence w.r.t.
the controls. [ ]

VI. NUMERICAL ILLUSTRATIONS

We now illustrate the theoretical results for the two moti-
vating examples of Section III-A, plus a 2D SLAM example.

A. Navigation with GNSS measurement in 3D

In the case of 3D navigation as presented in section III-
A.2, the position of the system is directly observed. However,
the attitude of the vehicle must be estimated. The quality of
the estimation depends on the chosen trajectory. To illustrate
the result of Theorem 1 of Section IV-B, we compare
the evolution of the OG’s trace over time for the optimal
trajectory and an arbitrary trajectory with same (maximum)
energy U. The results in Figure 2 confirm the theorem.

Trace of observability gramian Trajectories

80000 Q variable Q variable

— Q=ly — Q=ly

60000

40000

Trace value

20000

0 5 10 20 25 30

15
Steps

Fig. 2. On the left is shown the evolution of the OG trace for the optimal
trajectory in blue and an arbitrary trajectory in orange. On the right, the
two trajectories in 3D.

B. Navigation with online GNSS lever arm calibration in 2D

One of the advantages of the two-frame theory is the pos-
sibility to apply invariant filtering to state variables expressed
in the body frame. The modelling of a wheeled robot with
unknown lever arm between the GNSS and the middle point
of the rear axle can be found in Section III-A.1. In Theorem
1 of Section IV-B, optimal trajectories were computed. To
illustrate the result, we compute the trace of the OG of the
optimal trajectory and compare it with another trajectory with
identical energy. The results in Figure 3 confirm the theorem.

Trajectories
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8000 m——me ) =/y
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Fig. 3. On the left is shown the evolution of the OG trace for the optimal
trajectory in blue and an arbitrary trajectory in orange. On the right, the
two trajectories in the 2D plane are plotted.

C. 2D Simultaneous localization and mapping

Consider the 2D SLAM problem with two unknown
landmarks and observations of the relative distance between
the vehicle and these points [18]. The state vector is:

En = (9na$n7pi>pi)

where 0, is the vehicle’s heading, x,, € R? is the position
of the vehicle, and p, € R?, i € {1,2} denotes the position
of the unknown landmarks. The system’s equations are [12]:

en = 97171 + Wn
Tp = Tp— + unR enf e
i i 1 (On—1)er ’ (28)
Pn = Pn-1
y; = (gn)T(pZn - xn)

with u,,w, € R the control inputs, R(f) is the rotation
matrix encoding the planar rotation of angle ¢, and ¥ is
the observation of the ¢-th landmark’s position in the vehicle
frame. Letting the error variables &, be classically defined
as:

G=0-0, &=Tn—an, &=p,—0h (29
the system can be linearized as follows:
fn = F7L§7L—1 and z, = Yn — Yn = ann (30)
with
1 0271 02,1 02,1
o UpJRper Izoz 022 022
" 02,1 022 Iaa 022 |’ 31)
02,1 022 0292 Iz2
o (JREL 2. BRI RD 0y
" \JRL(ph —xn) —RL 022 RI)’

Using these error variables, it is not obvious at the first
sight that the Gramian does not depend on the controls and
that all trajectories are equally informative as w,, implicitly
acts on R,, and x,,. However, the system (28) obviously fits
into the class considered here, and applying Theorem 2, we
find that all trajectories lead to identical objective. This is
similar to the linear case, where the Gramian depends neither
on the controls nor on the state. Figure 4 confirms the result.
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Fig. 4. On the left, the traces of the OG for the two trajectories are

identical over time. On the right, the two trajectories are plotted with the
two unknown landmarks.

VII. CONCLUSION

In this paper we have considered the problem of optimal
active sensing, and we have derived the optimal trajectories
in closed form for a large subclass of two-frame systems, that
model vehicles that navigate in 2D and in 3D, leveraging the
properties of invariant filtering and the isometry properties
of rotation matrices. Although the results are not surprising
(straight lines with full acceleration allow for distinguishing
a heading error best), they have the merit of being quite
general. They are nontrivial to derive, in that it is rare to
solve explicitly optimal control problems outside of the LQR
framework, and they have indeed necessitated the combina-
tion of various ingredients: a) the discrete time, which is not
widespread in Gramian-based active sensing (in continuous
time we generally have no closed form for the Gramian
itself), b) a recent general theory, which highlights systems
whose properties are akin to those of linear systems, c) a
proof which is not straightforward and heavily relies on the
properties of scalar and cross products, d) the detour via (5)
while directly maximizing the trace—as is done by numerical
methods—would have been more difficult analytically.

In the future, we would like to derive the counterpart for
the max-min criterion (27) for the same class of systems.
Besides, we would like to consider more general problems
that do not perfectly fit into the invariant filtering theory,
such as navigation with online calibration of gyrometers’ and
accelerometers’ biases. In this case, the trajectory remains
partially state-trajectory independent, which may lead to
speedups of numerical methods, in the spirit of [19].
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