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Abstract— Recently, the area of decision and control has
been interested in studying the connectivity of large-scale
networks. As networks under study are large, to have a
complete knowledge of the network is impossible, whereas
little but representative information is available with an effi-
cient exploration scheme. Machine learning approaches were
presented and used to tackle this difficulty to hold it up.
In this regard, we present and prove the convergence of
an efficient algorithm that converges to the Fielder vector
when the topology is initially unknown and the only accessible
information is gathered by a random walk process throughout
the entire network. The Rayleigh quotient optimization problem
and the notion of stochastic approximation are the foundations
of our technique. We consider multiple sampling strategies
that are categorized under random walks, as well as adapting
another sampling approach that are considered random walk,
the Gibbs sampling, and it showed better results. Finally, we
demonstrate its performance on different network topologies.

I. INTRODUCTION

Estimating spectrum properties of large scale graphs is a
very hot topic in Computer and Network Science commu-
nities. In particular, the connectivity of large scale networks
is essential for the study of their performance. Especially,
in the context of overlay networks [PDL14] and ad-hoc
wireless networks [SB14] such understanding is critical.
Machine learning algorithms based on the Power iteration
or the Rayleigh quotient techniques have been used to
estimate graph spectral properties [UH12]. When the graph
is unknown, these techniques have been considered recently
in [ARM21] by coupling with a random walk exploration of
the graph.

Due to the large size of the network, it is impossible to
compute explicitly node metrics such as centrality measures.
Having this difficulty in mind, in this work we propose
to design an efficient effective online learning algorithm
that explores a large graph and estimates at the same time
a specific structural property of the underlying graph, the
algebraic connectivity, also called Fiedler value [GY04]. In
particular, we build a controlled random walk process on
the network such that an estimator of the Fiedler vector,
the eigenvector associated to the Fiedler value, is updated
at each step of the stochastic process. This vector, as well as
the eigenvalue associated with, has a relation with structural
properties of the network. In particular, the Fiedler value
is positive if and only if the graph is connected. Also, the
Fiedler vector can be used to find a partition of the nodes
[BMS14]. Consider a connected graph consisting of a union
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of categories. In some problems, only some categories are
considered to estimate a particular metric. This can be done
optimally using stratified sampling with full knowledge about
the graph, and as the graph is explored via crawling, a
method has been proposed in [KGBM11] to deal with such
issues. The sampling is named Sampling Weighted Random
Walk (S-WRW), as it was built by a weighted random walk
that approximates the stratified sampling, starting from an
ideal solution under WIS and taking into account graph
exploration, then performing a simple weighted random walk
and collect samples. This method was applied to the social
graph of Facebook, studying a social phenomena related to
college members. The authors have used S-WRW to sample
13-15 times more college members than a simple Random
walk exploration. A normalized stochastic version of Oja’s
algorithm was presented in [BM12]. Given a connected
graph, with Laplacian matrix L, a stochastic approximation
scheme based on the Oja’s algorithm is studied to estimate
the first eigenvalues and the corresponding first eigenvectors.
The convergence of this scheme has been demonstrated,
and with some adaptation, it has been applied to study the
Spectral Decomposition of a Markov Chain [BM12]. But this
scheme and the previous ones assume a global knowledge
of the entire network topology which is not the case in our
approach.

Contributions: An effective algorithm that converges to
the Fielder vector is proposed in this paper, and its theoretical
and analytical convergence is studied. This algorithm is
related to stochastic approximation algorithms in the space
of manifolds with Markovian noise, where we use the online
learning technique on the Rayleigh quotient method and the
proof of the convergence of our algorithm is done by the
mean of the Poisson equation. Given that the information
required to learn the fielder vector is obtained by a random
walk. To hasten convergence, we also use a new sampling
scheme driven by the spectral properties of the graph and
employ other sampling distributions that all fall within the
category of random walks using the spectral properties of
the network. Section II introduces the model, the notations
and the Rayleigh Quotient scheme which is the core of our
algorithm. A stochastic approximation based algorithm is
presented in section III and the main theorem that proves
its convergence is given. Several sampling methods based on
random walks are defined in section IV and several numerical
illustrations about their performance in section V. Finally we
conclude the paper in section VI.
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II. MODEL

Let G := (V,E) be an undirected unweighted graph,
where V := {1, . . . , n} is the set of nodes and E is the
set of edges. The adjacency matrix of G is the matrix
A := [aij ]i,j=1:n, where the ij-entry of A is given by aij :=
1(i,j)∈E . The neighborhood of a node i is the set N (i) :=
{j ∈ V | aij = 1}. We assume that for all node i, aii = 0.
The degree of a node i is given by deg(i) :=

∑n
i′=1 aii′

and the degree matrix is equal to D := [δijdeg(i)]i,j=1:n

where δ·· is the Kronecker delta operator. We also define
the Laplacian matrix as L := D −A. The spectrum of the
Laplacian matrix L will be used to measure the connectivity
of the graph. Let {λi}i=1:n represent the eigenvalues of
L, with λ1 < λ2 < λ3 ≤ . . . ≤ λn, and v1, . . . ,vn

the corresponding unit norm eigenvectors. More precisely,
we are interested in the estimation of the second smallest
eigenvalue λ2 of L denoted by λ∗. We assume that the graph
is connected and therefore λ1 = 0 and λ∗ is strictly positive
[VS10]. λ∗ is called the algebraic connectivity (or Fiedler
value) and we denote by v∗ it’s associated eigenvector. One
well-known efficient method to compute this eigenvector is
based on the Rayleigh Quotient function.

A. Raleigh Quotient

For any symmetric matrix W , the Rayleigh quotient rW :
Rn → R is the smooth function defined by:

rW (x) = xTWx∥x∥−2. (1)

Let Un−1 := {x ∈ Rn, |∥x∥ = 1} be the unit sphere
in Rn. Then by considering the restriction of the Rayleigh
quotient on the unit sphere Un−1, the eigenvalues of a
real symmetric matrix are characterized using the Rayleigh
Quotient [UH12] and in particular:

λmin(W ) = min
x∈Un−1

rW (x).

Therefore, the smallest eigenvalue of W can be obtained by
solving an optimization problem on the manifold Un−1. One
approach to solve this optimization problem is to apply the
gradient flow in order to search for the dominant eigenvector
of W . This leads to the well known Rayleight Quotient
Gradient Flow defined as the following ordinary differential
equations:

ẋ =
h(x(t))

||x(t)||2
, x(0) = x0 ∈ Un−1, (2)

with h(x) = −(W − rW (x)In)x. It can be proved that
under specific conditions (λmin < λ2, W is a symmetric
matrix) that x converges to the eigenvector associated to the
eigenvalue λmin (see [UH12]).

B. Space reduction

Recall that λ1 = 0 and v1 = 1√
n

1I, with 1I = [1, . . . , 1]T .
Then, tracking v2 can be done equivalently by tracking
the eigenvector associated with the largest eigenvalue of
the matrix I − 1

n1I1IT − ϵL for ϵ < λ−1
n . This method

is called deflation [PDL14]. When λn is large this could

lead to numerical issues. Then a reduction technique is
proposed in [ARM21] where instead of looking at the second
smallest eigenvalue of L, the problem is to find the smallest
eigenvalue of the matrix S such that

S = QTLQ,

with Q = [q1, . . . , qn−1] ∈ Rn×n−1 and

qk =
1√

k(k + 1)
[1, . . . , 1,−k, 0, . . . , 0]T

(k entries are equal to
√
k(k + 1)

−1
). The eigenvalues of

matrix S are λ2 < λ3 ≤ . . . ≤ λn and corresponding unit
norm eigenvectors (w2, , . . . ,wn) := (QTv2, . . . ,Q

Tvn).
Then the Rayleight quotient method is applied directly on
matrix S.

III. STOCHASTIC APPROXIMATION BASED ALGORITHM

In this work, a discrete time random walk Yk is used
to explore the graph step-by-step. This is what we call
Markovian sampling. At each time step k, the stochastic
process Y is in vertex ik ∈ V and the neighboring nodes
N (ik) are observable. Then, after the k-th step of the random
walk process, the σ-algebra H(k) is given by H(k) :=
{i1,N (i1), . . . , ik,N (ik)}. At instants k, line ik of L is
observed and denoted by lik . Then matrix L is replaced
by the following instantaneous matrix Lk = (0 lik 0)

T ,
where only line ik of Lk is nonzero. Then, the instantaneous
version of matrix S is Sk = QTLkQ. Note that the
stochastic process Yk is a Markov process and we denote by
qx(ik+1, ik) := P (Yk+1 = ik+1|Yk = ik,x) its transition
kernel. This transition kernel is state dependent, it means
that the transition probability of the stochastic process Y
can depend on current estimator vector x. Under a specific
exploration scheme u, note that the Markov process Y is
assumed to be ergodic and the control is such that the Markov
process is irreducible and aperiodic. Then there is a unique
stationary distribution denoted by Γu.

Uniform Random walk, or any other types of exploration
scheme u induced a bias in the discovery process. If the
bias is known it can be corrected by an appropriate re-
weighting of the measured vector using Hansen-Hurwitz
estimator [KGBM11]. Since we have that S =

∑k
i=i Si,

for any time step k, the Hansen-Hurwitz estimator will be
for any exploration scheme u:

S′ =
1

k

k∑
i=1

Si

Γu(i)

where Γu(i) is the probability of visiting node i in the
stationary distribution using exploration scheme u and this
estimator is unbiased. Thus in order to correct the bias it is
sufficient to divide the stochastic approximation scheme by
the stationary distribution Γu(i) when the exploration process
is at node i.

The Rayleigh quotient method states that the minimum
the Rayleigh quotient function corresponds to the smallest
eigenvector of the matrix. Moreover, as the observation of the
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matrix is noisy, a stochastic approximation (SA) algorithm
can be used to update the estimator of the smallest eigenvec-
tor v2. Considering the retraction function Rx(y) :=

x+y
||x+y|| ,

our SA scheme can be written as:

xk+1 = Rxk

(
ϵk
H(xk, Yk)

Γu(Yk)

)
,

with H(xk, Yk) = −(Sk − rSk
(xk)In)xk, x0 is the initial

point, xk are the iterates and ϵk is the kth step-size. Note that
our framework corresponds to a Stochastic Approximation
scheme with Markovian noise which lives on the unit sphere
manifold. Proofs of convergence under specific assumptions
for the SA scheme with Markovian noise but not on a
manifold and without Markovian noise on manifold have
been done in recent works [CLP13] and [Sha21] respectively.
But the proof of convergence of this SA scheme with
Markovian noise and on a manifold has never been proved.
That is the aim of the following theorem. First, the following
conditions have to be satisfied:

1) Step-size:The step size ϵk = 1
k verifies

∑∞
k=0 ϵk = ∞

and
∑∞

k=0 ϵ
2
k < ∞ by using the p-series test it states

that a series of the form
∑

( 1
np ) converges if p > 1

and diverges if p ≤ 1.
2) Stationary Distribution of Markov chain: For every

x ∈ Un−1, we assume that the Markov chain generated
by the transition matrix π(x) := [[π(i, j,x)]]i,j , where
P(Y+1 = j | Yk = i,x) =: π(i, j,x) is an irreducible
and aperiodic Markov chain. The unique stationary
distribution to π(x) is denoted by Γu where u describe
the exploration scheme.

3) Poisson equation: We assume that for every x, the
solutions of the Poisson equation given by:

(1− πi,x)vx(·) = H1(x, ·)−
∑

j H1(x, j)Γu(i)
where πi,xvx(·) =

∑
j vx(j)π(i, j,x)

are such that sup ∥vx(y)∥ ≤ C with C independent
of y and v·(y) is a smooth vector filed with Un−1

(∥(vx(y))− vx′(y)∥ ≤ L′d(x,x′) for some L′ > 0).

Theorem 1. If the assumptions above mentioned are sat-
isfied, then, for any exploration scheme u, the following
stochastic approximation scheme:

xk+1 = Rxk
(ϵkH1(xk, Yk)), (3)

with H1(xk, Yk) =
H(xk,Yk)
Γu(Yk)

converges as k → +∞ to the
eigenvector w2 associated to the smallest eigenvalue of S.

Proof: The main result of the proof is to prove that the
stochastic approximation scheme is behaving asymptotically
as a reparametrized version of the Rayleigh quotient flow.
Once we have been able to prove this fact, then the conclu-
sion is directly from the fact that the Rayleigh quotient is
converging to the Fielder vector, in our case.

Note that ∥xk∥ < ∞ for all every k because
xk ∈ Un−1. To simplify the proof, we will assume
that xk+1 ∈ M̃ ⊂ Un−1 \ {(−1, 0, · · · , 0)}, with M̃ being
compact. If we want to relax this assumption, we should
construct the same atlas as the one proposed in [Sha21]. We

assume that the bijection Ψ : M̃ → Rn−1 associated with
M̃ is given by the stereographic projection ψ(x) = x−1

1+x1
,

where x−1 := [x2, . . . , xn]. Note that Dψ(x) is bounded
for all x ∈ M̃ .

(Step 1) The first step of the proof is to rewrite
our stochastic approximation using the Poisson equation:
The Poisson equation (H1(xk, yk) − h1(xk) = vxk

(yk) −∑
y′ vxk

(y′)πxk
(yk, y

′)) implies that

H1(xk, yk)− h1(xk) = vxk
(yk)− πxk

vxk
(yk)

= vxk
(yk+1)− πxk

vxk
(yk)︸ ︷︷ ︸

L1
k+1

+ vxk
(yk)− vxk+1

(yk+1)︸ ︷︷ ︸
L2

k+1

+ vxk+1
(yk+1)− vxk

(yk+1)︸ ︷︷ ︸
L3

k+1

.

Therefore, our stochastic approximation scheme can be
rewritten as:

xk+1 = Rxk
[ϵkH1(xk, yk)]

= Rxk
[ϵkh1(xk) + ϵk(H1(xk, yk)− h1(xk, yk))]

= Rxk
[ϵkh1(xk) + ϵk(L

1
k+1 + L2

k+1 + L3
k+1)].

(Step 2) Local parametrization of the stochastic approx-
imation and the O.D.E: In this second step, using the
local parametrization Ψ(·), we study the error between the
O.D.E and the stochastic approximation in Rn−1 and not in
M̃ . We define x̂k = ψ(xk), ĥ1(x̂k) = Dψ(xk)[h1(xk)]
and L̂i

k+1 = Dψ(xk)[L
i
k+1]. Let us also define t(k) :=∑k−1

k′=0 ϵk′ and x(t) the interpolated version of x̂k (i.e.
x(t(k)) = x̂k and x is linear by part. We now consider the
ODE on the manifold expressed using the local parametriza-
tion x̂tk(t) = ψ(xtk(t)), where x̂tk(tk) = x̂k and x̂tk(t) is
a solution of ẋ = h1(x(t)). Note that we have ˙̂x = ĥ1(x̂).

x̂k+1 = ψ(Rxk
[ϵk(h1(xk) + L1

k+1 + L2
k+1 + L3

k+1)])

By using the local rigidity property of a retraction, the
fact that Rx(0x) = x and the linearity of Dψ(x) we obtain,
using a simple Taylor approximation we obtain that:

ψ(Rxk
[ϵk(h1(xk) + L1

k+1 + L2
k+1 + L3

k+1)])

= x̂k + ϵkĥ1(x̂k) + ϵk(L̂
1
k+1 + L̂3

k+1 + L̂3
k+1) +O(ϵk).

We can now write x̂k+m as follows:

x̂k+m = x̂k +

m−1∑
u=k

(ϵuĥ1(x̂u)) + δk,u +O(ϵ2k), (4)

where:

δk,k+m =

m−1∑
u=k

ϵuL̂
1
u+1︸ ︷︷ ︸

δ1k,k+m

+

m−1∑
u=k

L̂2
u+1︸ ︷︷ ︸

δ2k,k+m

+

m−1∑
u=k

ϵuL̂
3
u+1︸ ︷︷ ︸

δ3k,k+m

.(5)
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Note that the error term is easy to O(ϵ2k) because converging
to 0 when k is going to infinity. Let tk+m ∈ [tk, tk + T ]
for all T > 0. We are interested to study the behavior
of supt∈[s,s+T ] ∥x(t) − x̂tk(t)∥ for all T when s tends to
infinity. We can study such term by simply restricting the
proof to the {tk}. The error due to the linear interpolation
is easy to handle by following the same steps as in [Sha21].
For all k, we have by definition:

∥x(t)− x̂tk(tk+m)∥ ≤ ∥x̂k − x̂tk(tk)∥
+∥δ1k,k+m∥+ ∥δ2k,k+m∥+ ∥δ3k,k+m∥

+

∫ tk+k

tk

∥ĥ1(x̂tk(t))− ĥ1(x̂
tk([t]))∥dt

+

m−1∑
u=k

ϵu∥ĥ1(x̂u)− ĥ1(x̂
tk(tu))∥

In the rest of the proof we will focus on studying
the convergence of the stochastic term δik,k+m when
k tends to infinity. The rest of the proof, including of
the convergence of the interpolation term is standard∫ tk+k

tk
∥ĥ1(x̂tk(t)) − ĥ1(x̂

tk([t]))∥dt and can be found in
[Sha21].

(Step 3) Convergence of the stochastic terms:

δ1k,k+m =

m−1∑
u=k

ϵuDψn(xu)[L
1
u+1]

=

m−1∑
u=k

ϵuDψu(xu)[vxu(yu+1)

−πxuvxu(yu)]

We can notice that vxk
(yk+1)− πxk

vxk
(yk) is a zero mean

martingale with respect to the filtration Fk and by the
linearity of Dψ(.) we get that L̂1

u+1 is martingale difference
sequence. Also, we have ∥vxk

(yk+1) − vxk
(yk)∥ ≤

∥vxk
(yk+1)∥ + ∥vxk

(yk)∥ and ||vxk
(yk)|| ≤ C.

This implies that E[∥Dψ(xk)L
1
k+1∥2|Fk] ≤

∥Dψ(xk)∥2E[∥L1
k+1∥2|Fk] < ∞. Hence, using

the martingale convergence theorem and the fact
that the step-size are square summable, we get that
limk→∞ supm δ1k,k+m = 0 a.s.

One can write Dψ(x) =: A(x) as a matrix depending on
x. We get the following following bound on δ2k,k+m:

∥δ2k,k+m∥ = ∥
m−1∑
u=k

ϵuA(xu)[L
2
u+1] +O(ϵk+m−1)∥

= ∥
m−1∑
u=k

ϵuA(xu)[vxu
(yu)− (vxu+1

(yu+1))∥

≤ ϵk∥A(xk)[vxk
(yk)]∥

+ϵm+1∥A(xm−1)vxm
(ym)∥

+∥
m−1∑
u=1

(ϵuA(xu)− ϵu−1A(xu−1)[vxu
(yu)]∥.

From the fact that ∥A(x)[vx(y)]∥ is bounded we get that
ϵk∥A(xk)[vxk

(yk)]∥+ ϵm+1∥A(xm−1)vxm(ym)∥ −−−−→
k→∞

0.

Moreover, using the Taylor expansion and the fact that
xu = xu−1 − ϵu−1H1(xu−1, yu−1) we get that: A(xu) =
A(xu−1)− ϵu−1∇A(xu−1)H1(xu−1, yu−1) +O(ϵ2u−1)

Let denote the last term δ2
′

n,n+m, we obtain the following
upper bound:

δ2′k,k+m = ∥
m−1∑
u=1

(ϵu − ϵu−1A(xu)[vxu
(yu)]

−ϵuϵu−1∇A(xu−1)H1(xu−1, yu−1)∥

≤
m−1∑
u=1

(ϵu − ϵu−1)∥A(xu)[vxu
(yu)]∥

+ϵuϵu−1∥∇A(xu−1)H1(xu−1, yu−1)∥

≤
m−1∑
u=1

(ϵu − ϵu−1)∥A(xu)[vxu
(yu)]∥

+ϵ2u∥∇A(xu−1)H1(xu−1, yu−1)∥

And all these terms we converge to zero as k approaches
infinity. thus we get the following result:

∥δ2k,k+,m∥ ≤
m−1∑
u=k

ϵ2uCst −−−−→
k→∞

0

Finally, by the fact that v·(y) is L′-Lipschitz we get:

∥δ3k,k+m∥ = ∥
m−1∑
u=k

ϵuA(xu)[(vxu+1(yu+1))− vxu(yu+1)]∥

=

m−1∑
u=k

ϵu∥A(xu)∥∥(vxu+1(yu+1))− vxu(yu+1)∥

≤
m−1∑
u=k

L′ϵu∥A(xu)∥d(xu+1,xu) ≤ Cϵu,

where the last inequality is coming the fact that H1 is a
smooth vector field. We get the following result:

∥δ3n,n+,m∥ ≤
m−1∑
u=n

ϵ2uCst −−−−→
n→∞

0.

The previous theorem shows that any exploration scheme
u can be used to estimate the smallest eigenvector w2 :=
QTv2 of matrix S. Then, the transformation v2 =
(QT )−1w2 is used to obtain the fielder vector of matrix
L. The next section illustrates the stochastic approximation
scheme considering diverse sampling methods u.

IV. SAMPLING METHODS

Three different sampling methods are described. The first
one is the only naive one as the next step of the random
walk is totally random on the connected nodes and does not
consider the exploration process so far. The two other random
walk schemes are smarter as they have specific properties
depending on the values of the indices of the Fielder vector
explored so far that hold the properties of the graph.
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A. Uncontrolled Markovian sampling

The first sampling studied in this paper is the uncontrolled
Markovian sampling. In this context, we assume that the
network is explored using a standard random walk. Let {Yk}
be a finite state space Markov chain that captures which node
is observed at time k. The transition matrix associated to this
Markov chain is given by:

P(Yk+1 = j | Yk = i) :=


1

| N(i) |
, if j ∈ N(i)

0, otherwise.

In this case, the stationary distribution is given by

Γu(i) =
|N(i)|∑
j=1 |N(j)|

, ∀i.

This exploration scheme is interesting as such, even if it
is not driven by the current estimate of the Fiedler vector.
Indeed, random walks sampling schemes are a fundamental
in networks applications and distributed systems, due their
local and lightweight nature (see [SMP15], [DSNPT13]).
Moreover random walk are naturally designed to handle
dynamic networks. The uniform random walk may be stuck
in one cluster and stays there without leaving for a large
number of iterations and thus losing a lot of information.
Given this and the bias generated by this sample, the uniform
random walk is not an efficient sample distribution that
can be used for all types of networks. This keeps us with
introducing another Markov chain distributions.

B. Metropolis-Hastings sampling

The aim is to build a particular sampling such that each
node is sampled the same number of times in average. Such a
sample is well-known in Markov theory and can be achieved
via the Metropolis-Hastings algorithm [Hit03]. With such
exploration process, the stationary distribution should verify:

Γu(i) =
1

N
, ∀i.

The Metropolis-Hastings algorithm gives the following ran-
dom walk transition probabilities:

P(Yk+1 = j | Yk = i) :=
0, if j /∈ N(i),

1
|N(i)| min

(
|N(i)|
|N(j)| , 1

)
, if j ∈ N(i)

1−
∑

j ̸=i P(Yk+1 = j | Yk = i), if j = i

The main interesting property of this exploration scheme
is that each node is visited in average the same number of
times and thus there is a limited risk that the exploration
process stays very large in a particular region of the network.
However, this scheme tends to visit all nodes evenly, even
those that are very isolated, and thus not very important for
global connectivity.

C. Gibbs sampling

Inspired by [BMS14], we propose a random walk sam-
pling algorithm driven by the current estimate of xk of the
Fiedler vector. To mimic the set-up proposed in [BMS14],
we first define a function Ψ : V ×Rn → R which associates
to every node i, and for a given x a value Ψ(i,x) defined
as follow:

Ψ(i,x) := − 1

N(i)

∑
j∈N(i)

(xi − xj)
2. (6)

If we assume that x is the true Fiedler vector, then the node
with the lowest Ψ(i,x) will be the one with, on average,
the highest difference of its own value xi, with respect to
its neighbors. Of course other definitions of Ψ(i,x) can
be considered. The goal of the random walk designed in
[BMS14] is to have a stationary distribution that is peaking to
the argmin of Ψ(·,x). Coming back to our case, this would
mean that we will be able to design a random walk that
will focus on nodes with the lowest value of Ψ(i,x). As a
result of the fact that nodes that create links between two or
more clusters will have the lowest value of the function ψ,
we will enhance the likelihood of visiting nodes that connect
the graph’s clusters, increasing the likelihood of moving from
one cluster to another and thus not being get stuck in one
cluster for a long time. The online algorithm can visit all
of them and quickly learn more about the characteristics of
the graph. We assume that the transition probability of the
Markov chain {Yk} is given by:

P(Yk+1 = j | Yk = i) :=
1

| N(i) |e
−[Ψ(j,xk)−Ψ(i,xk)]+ if j ∈ N(i)

1− 1

| N(i) |
∑
j

e−[Ψ(j,xk)−Ψ(i,xk)]+ if j = i

0, otherwise,

with [x]+ := max(x, 0). This Markov chain has the unique
stationary distribution:

Γu(i) =
|N(i)|
Z

e
∑

j(xi−xj)
2

,

where Z =
∑I

j=1 |N(j)|e
∑

j(xi−xj)
2

is a normalization
factor. This exploration scheme is designed to explore the
network based on the current estimation of the connectivity
measure of each node. We next illustrate the performance of
the different schemes on two types of network topology.

V. NUMERICAL ILLUSTRATIONS

We select two real-world networks and a random social
one for our evaluation. The networks are Karate, Open-Street
and a random one, having from 33 to 179 nodes and from
156 to 860 edges. The numerical experiments done here
are based on using the stochastic approximation scheme
with different Markovian sampling: Uniform Random walk,
Metropolis-Hastings, and Gibbs samplings. The results are
compared with the exact solution computed offline. The
Laplacian matrix (only one row can be observed at each
time slot k ∈ N), the sampling distribution, the number of
iterations, and the step-size ϵk = 1

k+1 .
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Network Social Geometric karate
Number of nodes 50 200 33
Number of edges 600 860 156

A. Convergence of the scheme

In the first numerical experiment, we aim to study the
convergence of the stochastic approximation scheme for all
Markovian samples, as well as plotting the confidence inter-
vals for these samples. To plot the confidence interval, 10
simulations were performed for each sampling distribution
with 5 × 105 iterations. We restrict this study to the social
network. In the following figure, the x-axis represents the
sampling distribution used, and the y-axis represents the
range of the error estimated by the stochastic scheme using
the sampling distributions after 5× 105.

B. Extension to other types of network

The second numerical study applies the same scheme
to other networks and compares the performance there.
Two important issues are considered in this context: the
effect of using a different Markov chain distribution and
its performance on different graphs. This keeps us with 9
simulations (3 networks and 3 sampling distributions). The
error in each simulation is given after 105 and 106 iterations,
for better comparison.

TABLE I
ERROR NORM CALCULATED AFTER 105 AND 106 ITERATIONS USING

DIFFERENT SAMPLING TECHNIQUES ON DIFFERENT NETWORKS

Networks Social Geometric karate
Random Walk 105 It 0.3 0.95 0.22

106 It 0.15 0.9 0.1
Metropolis-Hastings 105 It 0.4 0.45 0.06

106 It 0.1 0.25 0.02
Gibbs 105 It 0.16 0.35 0.035

106 It 0.02 0.2 0.005

It is clear that the error varies when different sampling
distributions are used, all of which are categorized as ran-
dom walks. According to the table above, using the Gibbs
distribution is the best among all, demonstrating its efficiency
on various types of networks, including networks without
clusters (Karate network), networks with 2-4 clusters (Social
network), and networks with more than 5 clusters (Geometric
network), helping thus to reduce the time of convergence.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have proposed an efficient exploration of
random walks in order to estimate online the global connec-
tivity of large-scale networks. Our main result is the proof
of the convergence of our scheme using stochastic approxi-
mation techniques over manifolds. We have shown numeri-
cally that different sampling methods (uniform, Metropolis-
Hastings, and Gibbs) lead to different performances in terms
of convergence time. Then, a first natural extension of this
work is to study in detail the convergence time of our explo-
ration process depending on the scheme used and the type of
network under study. Another interesting aspect is to consider
a dynamic network in which nodes and/or links appear and
disappear in a dynamic fashion. Therefore it could be very
interesting to understand how our scheme can track a global
connectivity measure like the algebraic connectivity for such
a dynamic network. Finally, another metric like the Ricci
curvature of the network can be estimated instead of the
global connectivity.
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