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Abstract—Among sub-optimal Multi-Agent Path Finding
(MAPF) solvers, rule-based algorithms are particularly appealing
since they are complete. Even in crowded scenarios, they allow
finding a feasible solution that brings each agent to its target,
preventing deadlock situations. However, generally, rule-based
algorithms provide solutions that are much longer than the opti-
mal one. The main contribution of this paper is the introduction
of an iterative local search procedure in MAPF. We start from a
feasible suboptimal solution and we perform a local search in a
neighborhood of this solution, to find a shorter one. Iteratively, we
repeat this procedure until the solution cannot be shortened any
longer. At the end, we obtain a solution, that is still sub-optimal,
but, in general, of much better quality than the initial one. We
use dynamic programming for the local search procedure. Under
this respect, the fact that our search is local is fundamental
to reduce the time complexity of the algorithm. Indeed, if we
apply a standard dynamic programming the number of explored
states grows exponentially with the number of agents. As we will
see, the introduction of a locality constraint allows solving the
(local) dynamic programming problem in a time that grows only
polynomially with respect to the number of agents.

I. INTRODUCTION

We focus on the Multi-Agent Path Finding (MAPF) problem
[1, 2]. We consider a directed graph and a set of agents. Each
agent occupies a different node and can move to free nodes,
i.e., nodes not occupied by other agents. The MAPF problem
consists in computing a sequence of movements that reposi-
tions all agents to assigned target nodes, avoiding collisions.
The main motivation comes from the management of fleets
of automated guided vehicles (AGVs). AGVs move items
between different locations in a warehouse. Each AGV follows
predefined paths, that connect the locations in which items are
stored or processed. We associate the layout of the paths to a
directed graph. The nodes represent positions in which items
are picked up and delivered, together with additional locations
used for routing. The directed arcs represent the precomputed
paths that connect these locations. If various AGVs move in a
small scenario, each AGV represents an obstacle for the other
ones. In some cases, the fleet can reach a deadlock situation,
in which every vehicle is unable to reach its target. Hence,
it is important to find a feasible solution to MAPF, even in
crowded configurations.

Literature review. Various works address the problem
of finding the optimal solution of MAPF (i.e., the solution
with the minimum number of moves). For instance, CBS is
a two-level algorithm which uses a search tree, based on
conflicts between individual agents (see [3]). However, finding
the optimal solution of MAPF is NP-hard (see [4]), and
computational time grows exponentially with the number of
agents. Therefore, optimal solvers are usually applied when the
number of agents is relatively small. Conversely, sub-optimal
solvers are usually employed when the number of agents is
large. In such cases, the aim is to quickly find a path for the
different agents, and it is often intractable to guarantee that a

given solution is optimal. Among these, search-based solvers
aim to provide a high quality solution, but are not complete
(i.e., they are not always able to return a feasible solution). A
prominent example is HCA∗ [5], in which agents are planned
one at a time according to some predefined order. Instead, rule-
based approaches include specific movement rules for different
scenarios. They favor completeness at low computational cost
over solution quality. One of the first important results in this
field is from Kornhauser’s thesis [6], which presents a rule-
based procedure to solve MAPF (or to establish that MAPF
has no feasible solution). Two relevant recent rule-based
algorithms are TASS [7] and Push and Rotate [8] [9]. TASS
is a tree-based agent swapping strategy which is complete on
trees, while Push and Rotate solves every MAPF instance
on graphs that contains at least two holes (i.e., unoccupied
vertices). Reference [10] presents a method that converts the
graph into a tree (as in [11]), and solves the resulting problem
with TASS. Rule-based algorithms are also used for directed
graph with at least two holes. In particular, reference [12]
presents diSC algorithm, which solve any MAPF instance on
strongly connected digraphs, i.e., directed graphs in which it
is possible to reach any node starting from any other node.
Another relevant reference is [13], which proposes diBOX, an
algorithm that solves MAPF on the specific class of bicon-
nected digraphs, i.e., strongly connected digraphs where the
undirected graphs obtained by ignoring the edge orientations
have no cutting vertices.

Motivations and statement of contribution. Among sub-
optimal MAPF solvers, rule-based algorithms are particularly
appealing since they are complete. Even in crowded scenarios,
they allow finding a feasible solution that brings each agent to
its target, preventing deadlock situations [12, 13]. However,
generally, rule-based algorithms provide solutions that are
much longer than the optimal one. This is a crucial limitation
in industrial applications. The main contribution of this paper
is the introduction of an iterative local search procedure in
MAPF. We start from a feasible suboptimal solution, for
instance the one provided by a rule-based algorithm. We
perform a local search in a neighborhood of this solution,
to find a shorter one. Iteratively, we repeat this procedure
until the solution cannot be shortened any longer. At the
end, we obtain a solution, that is still sub-optimal, but, in
general, of much better quality than the initial one. We use
dynamic programming for the local search procedure. Under
this respect, the fact that our search is local is fundamental
to reduce the time complexity of the algorithm. Indeed, in
principle, it is possible to solve the general MAPF problem
by dynamic programming. However, the number of explored
states grows exponentially with the number of agents, so that
we cannot apply standard dynamic programming to problems
involving many agents. As we will see, the introduction
of a locality constraint allows solving the (local) dynamic
programming problem in a time that grows only polynomially
with respect to the number of agents (see Theorem IV.1).
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II. PROBLEM DEFINITION

A. MAPF problems

Let G = (V,E) be a directed graph, with vertex set V
and edge set E. We assign a unique label to each agent,
and set P contains these labels. A configuration is a function
A : P → V that assigns the occupied vertex to each agent.
A configuration is valid if it is injective (i.e., each vertex is
occupied by at most one agent). Set C ⊂ {P → V } represents
all valid configurations.

Time is assumed to be discretized. At every time step, each
agent occupies one vertex and executes a single action. There
are two types of actions: wait and move. We denote the wait
action by ι. An agent that executes this action remains in its
current vertex for another time step. We denote a move action
by u→ v. In this case, the agent moves from its current vertex
u to an adjacent vertex v (i.e., (u, v) ∈ E). Therefore, the set
of all possible actions for a single agent is Ē = E ∪ {ι}.

Function ρ : C × Ē → C is a partially defined transition
function such that A′ = ρ(A, u → v) is the configuration
obtained by moving an agent from u to v:

A′(q) :=

{
v, if A(q) = u;
A(q), otherwise . (1)

Notation ρ(A, u→ v)! means that the function is well-defined.
In other words ρ(A, u → v)! if and only if (u, v) ∈ E and
A′ ∈ C. Moreover, (∀A ∈ C) ρ(A, ι)! and ρ(A, ι) = A.

Since the movements of the agents can be synchronous, at
each time step an action is an element of E = Ē|P |, a =
(a1, . . . , a|P |) where ai is the single move of agent i. We can
extend function ρ : C × Ē → C to ρ : C × E → C, by setting
A′ = ρ(A, a) equal to the configuration obtained by moving
agent i along edge ai (or by not moving the agent if ai = ι).
In this case, (∀a ∈ E ,A ∈ C) ρ(A, a)! if and only if the
following conditions hold:

1) A′ ∈ C: two or more agents cannot occupy the same
vertex at the same time step;

2) ∀i = 1, . . . , |P |, if ai = (u, v), then ̸ ∃j ∈ {1, . . . , |P |}
such that aj = (v, u): two agents cannot swap locations
in a single time step.

We represent plans as ordered sequences of actions. It is
convenient to view the elements of E as the symbols of a
language. We denote by E∗ the Kleene star of E , that is the
set of ordered sequences of elements of E with arbitrary length,
together with the empty string ϵ: E∗ =

⋃∞
i=1 E i ∪ {ϵ}.

We extend function ρ : C × E → C to ρ : C × E∗ → C.
(∀s ∈ E∗, e ∈ E ,A ∈ C) ρ(A, se)! if and only if ρ(A, s)! and
ρ(ρ(A, s), e)! and, if ρ(A, se)!, then ρ(A, se) = ρ(ρ(A, s), e).

Note that ϵ is the trivial plan that keeps all agents and holes
at their positions.

We denote by E∗
A = {f ∈ E∗ : ρ(A, f)!} the set of plans

such that ρ(A, f) is well defined. The problem of detecting a
feasible solution is the following:

Problem 1: (Feasibility MAPF problem). Given a digraph
G = (V,E), an agent set P , an initial valid configuration As,
and a final valid configuration At, find a plan f such that
At = ρ(As, f).

Now, for a feasible plan f , we define |f | as the length of
plan f , i.e., the number of time steps needed to let all agents
reach the final configuration through plan f . Furthermore,
given k ∈ N, we denote by fk the k-th prefix of f (that

is, the prefix of f of length k, made up of the first k actions
of f ). Note that |fk| = k.

We aim to solve a given MAPF instance while minimizing a
global cumulative cost function. We employ the cost function
called Makespan, equal to the time when the last agent reaches
its destination (i.e., the maximum of the individual costs).

Problem 2: (Optimization MAPF problem). Given As and
At initial and final valid configurations on a digraph G, the
optimization MAPF problem with Makespan is defined as

min |f |

s.t. At = ρ(As, f)

f ∈ E∗
As .

(2)

Let f1 and f2 be two solutions of the feasibility MAPF
problem. We say that f1 has better quality than f2 (or,
equivalently, f2 is longer then f1) if |f1| < |f2|. Other cost
functions have also been used in the literature. Sum-of-costs,
for example, is the summation, over all agents, of the number
of time steps that an agent employs to reach its target without
leaving it again. Unfortunately, finding the optimal solution,
i.e., the minimal Makespan or sum-of-costs, has been shown
to be NP-hard [4]. Therefore, in this paper we propose an
approach to detect a good quality sub-optimal solution in
polynomial time.

B. Distances
As said, we propose a solution approach based on the

exploration of a neighborhood of a reference plan. To define
a neighborhood, we introduce distances between vertices,
configurations, and plans. Let G = (V,E) be a digraph and
P be a set of agents. We define the distance of vertex u from
vertex v as the length of the shortest path on G from v to u:
d(u, v) = ℓ(πvu), where πvu is the shortest path in G from
v to u and ℓ(πvu) is the length of that path, defined as the
number of edges of πvu. Note that d is not symmetrical, since
πuv and πvu can be different. Next, we define the distance
of configuration A1 from configuration A2 as the sum of the
distances between the vertices that each agent occupies in the
two configurations:

d : C × C → N d(A1,A2) =
∑
p∈P

d(A1(p),A2(p)).

Finally, we define the asymmetrical distance between two
plans in E∗. To do that, we associate to each plan a function
in L = {ψ : N → C} using the following

ΦA : E∗
A → L, f → ψf (k) :=

{
ρ(A, fk), k < |f |,
ρ(A, f), k ≥ |f |,

where ψf is the function which associates to each k ∈ N the
configuration at step k, that depends on the k-th prefix of f .
We define the distance of plan f from plan g as the distance
between the associated functions ΦA(f),ΦA(g):

d : E∗
A × E∗

A → N d(f, g) := d̄(ΦA(f),ΦA(g)).

We can define d̄ in various ways, leading to different defini-
tions of the distance between plans f and g:

1) ∞-distance:

d̄∞(ΦA(f),ΦA(g)) := max
1≤k≤min{|f |,|g|}

d(ψf (k), ψg(k));

2) 1-distance:
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d̄1(ΦA(f),ΦA(g)) :=

min{|f |,|g|}∑
k=1

d(ψf (k), ψg(k));

3) max-min distance:

d̄∗∞(ΦA(f),ΦA(g)) := max
k∈N

min
h∈N

d(ψf (k), ψg(h));

4) sum-min distance:

d̄∗1(ΦA(f),ΦA(g)) :=

min{|f |,|g|}∑
k=1

min
h∈N

d(ψf (k), ψg(h)).

Namely, with the ∞-distance, the distance of plans f and
g corresponds to the maximum, with respect to time-step k,
of the distance between the corresponding configurations at
k. With the 1-distance, this distance corresponds to the sum,
with respect to time-step k, of the distances between the
corresponding configurations at k. With the max-min distance
(respectively, the sum-min distance), this distance corresponds
to the maximum (respectively, the sum) with respect to k, of
the distance of the configuration that plan f reaches at step
k with respect to the set of all configurations encountered
by plan g. It is easy to see that, for each couple of plans
f , g, the distance obtained from the 1-distance is the largest
of the four, while the distance obtained from the max-min
distance is the smallest. After having defined these distances,
we can introduce an interesting variant of the optimization
MAPF problem (2), namely, the optimization MAPF problem
constrained to a given plan. This problem is faced when we
have a sub-optimal solution f0 of a MAPF instance, and we
want to find another solution of the same problem which is
not too far from f0 and has better quality, i.e., shorter length.
Given As and At, initial and final valid configurations on a
digraph G, given f0 ∈ E∗

As such that At = ρ(As, f0) (i.e.,
f0 is a feasible solution of the MAPF instance), and given
r ∈ N and a distance d between plans, the optimization MAPF
problem with Makespan constrained to f0 is defined as

min |f |

s.t. At = ρ(As, f)

f ∈ E∗
As , d(f, f0) ≤ r.

(3)

C. Domain reduction of Problems (2) and (3)
In Problems (2) and (3), variable f belongs to the set of

well-defined plans E∗
As . In order to reduce the cardinality of

the feasible set of these two problems, we leverage some
invariance properties. Namely, we define two equivalence
relations on the set of plans E∗

As such that the objective
function of Problems (2) and (3) has the same value for
all plans on the same equivalence class. Further, a plan is
feasible if and only if all plans of the same equivalence class
are feasible. In this way, we can convert Problems (2) and
(3) into equivalent problems that have the set of equivalence
classes as the optimization domain. Note that the set of
equivalence classes corresponds to the states set that we will
use in the dynamic programming solution algorithm. We will
consider the following two equivalence relations on E∗

A.

Definition 2.1: Let f0 ∈ E∗
A be a reference plan. Given

f, g ∈ E∗
A, then

1) f ∼1 g if and only if
a) |f | = |g|;
b) ρ(A, f) = ρ(A, g).

2) f ∼2 g if and only if
a) f ∼1 g;
b) d(f, f0) = d(g, f0).

We denote by Ẽ i
A the set of all equivalence classes of ∼i

on E∗
A. Let f̂ ∈ Ẽ i

A and f ∈ E∗
A be a representative of the

equivalence class f̂ . We define:
• the length of f̂ , |f̂ | := |f |;
• a new transition function,

ρ∗ : C × Ẽ i
A → C, ρ∗(A, f̂) := ρ(A, f).

• the distance from f̂0 (the equivalence class to which f0
belongs), d(f̂ , f0) := d(f, f0) (only if i = 2).

Note that |f̂ | is well-defined, since, by definition, all ele-
ments of equivalence class f̂ have the same length. Similarly,
ρ∗ and d are well-defined since, for all elements f1, f2
of equivalence class f̂ , ρ(A, f1) = ρ(A, f2) and, for ∼2,
d(f1, f0) = d(f2, f0).

Let α1 : Ẽ1
A → N× C be such that

α1(f̂) = (|f̂ |, ρ∗(A, f̂)). (4)

This function is well-defined because if f1 ∼1 f2 then
|f1| = |f2| and ρ(A, f1) = ρ(A, f2). Moreover, α1 is
injective because, if f̂1 and f̂2 are such that α1(f̂1) = α1(f̂2),
then |f̂1| = |f̂2| and ρ∗(A, f̂1) = ρ∗(A, f̂2), and, therefore,
f̂1 = f̂2.

Let α2 : Ẽ2
A → N× C × N be defined as follows:

α2(f̂) = (|f̂ |, ρ∗(A, f̂), d(f̂ , f0)). (5)

This function is well defined because if f1 ∼2 f2, then
|f1| = |f2|, ρ(A, f1) = ρ(A, f2) and d(f1, f0) = d(f2, f0).
Moreover, α2 is injective because, if f̂1 and f̂2 are such that
α1(f̂1) = α2(f̂2), then |f̂1| = |f̂2|, ρ∗(A, f̂1) = ρ∗(A, f̂2),
d(f̂1, f0) = d(f̂2, f0), and, therefore, f̂1 = f̂2.

Since f ∼i g, i = 1, 2, implies that |f | = |g|, ρ(As, f) =
ρ(As, g) and d(f, f0) ≤ r ↔ d(g, f0) ≤ r, it turns out
that problems (2) and (3) are invariant under the equivalence
relations ∼i. Therefore, given f̂0 ∈ Ẽ i

As , problem (3) (similar
for problem (2)) can be defined as follows over the set of
equivalence classes:

min |f̂ |

s.t. At = ρ∗(As, f̂)

f̂ ∈ Ẽ i
As , d(f̂ , f0) ≤ r.

(6)

D. Neighborhoods
Given the distances defined in Section II-B and the def-

inition of the equivalence classes in Section II-C, we can
define the neighborhood of an equivalence class and estimate
its cardinality. Such estimate is needed to evaluate the time
needed to explore the neighborhoods, an operation that is
central in the approach proposed in this paper.
Given a radius r ∈ N, we define the following neighborhood
of f0 ∈ E∗

A:

Nr(f0) := {ĝ ∈ Ẽ i
A : |ĝ| ≤ |f0|, d(ĝ, f0) ≤ r}.

Here we consider the distance based on the max-min distance.
However, each of the distances defined in Section II-B can be
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used to define the neighborhood. As we will see, different
neighborhoods lead to different exploration policies of the
MAPF solutions. The following proposition proved in [14]
provides an upper bound on the cardinality of Nr(f0).

Proposition II.1: The neighborhood of f0 of radius r has a
polynomial cardinality with respect to the number of nodes.
In particular, ∃C = C(r) ∈ R such that

|Nr(f0)| ≤ |f0|2 (1 + C(r + k)rϕr) ,

where k = |P | and ϕ = outdeg(G).
Note that, since the max-min distance is the smallest among
the considered distances, the upper bound provided in the
proposition is also valid for the distances based on the other
distances previously discussed.

III. ITERATIVE NEIGHBORHOOD SEARCH

In this section we describe the proposed iterative approach
to detect a sub-optimal solution of Problem (2), or the equiv-
alent counterpart of this problem defined over the set of
equivalence classes. The returned solution is locally optimal
with respect to the neighborhood of a reference solution. At
each iteration, we solve an instance of Problem (6). More
in detail, the algorithm takes as input a feasible solution f0,
that may be of poor quality. For instance, we can obtain f0
from a rule-based algorithm, such as diSC [12] . We aim at
improving f0, obtaining a shorter solution. To this end, we
solve Problem (6) with a dynamic programming algorithm.
Namely, in neighborhood Nr(f0) we search for plans shorter
than f0 through algorithm DynProg, that we will describe
below. If we cannot obtain a solution shorter than f0 (that
is, f0 is locally optimal) we stop the algorithm. Otherwise, if
we obtain an improved solution f∗, we redefine the reference
solution as f0 = f∗ and solve again Problem (6). We iterate
this procedure until we cannot shorten the current solution any
further.

This algorithm can be classified as a Neighborhood Search
algorithm (see [15]).

To define the neighborhood Nr(f0), we can use any distance
function among those presented in Section II-B. In our numer-
ical experiments, we used the sum-min distance. Algorithm 1
presents the steps of the procedure.

Algorithm 1 Neighborhood Search
Input: f0, r,As,At

Output: f∗

f∗ ← f0
do

f0 ← f∗

f∗ ← DynProg(f0, r,As,At)
while |f∗| < |f0|
return f∗

In Algorithm 1, r is the local search radius, As is the initial
configuration, and At is the final one.

IV. DYNAMIC PROGRAMMING ALGORITHM

To search for the optimal solution of Problem (6), we
employ a Dynamic Programming (DP) algorithm. In generic
DP problems we are given a state space S where A ⊂ S are
the target states, an expansion function g : S → P (S), where
P is the power set of S, and an objective function c : S → R.
Starting from an initial state s0 ∈ S, we iteratively expand
states with function g to explore the state space and compute
st = gn(s0) ∈ A with the minimal objective function.

In our case, the states represent the equivalence classes of
relation ∼2, defined in Section II-C. Namely, we use injection
α2 : Ẽ2

A → N× C × N to associate to each equivalence class
f̂ a triple (β, γ, σ) = α2(f̂), where β is the length of f̂ , γ the
configuration obtained by applying a plan representative of f̂
to the initial state As, and σ is the distance of a representative
of f̂ from reference plan f0. Namely, the state space is

S := α2(Ẽ2
A) ⊂ N× C × N,

where α2 is defined in (5). Since α2 is injective, S and Ẽ2
A are

in one-to-one correspondence. Each state s = (β, γ, σ) ∈ S,
represents the equivalence class:

α−1
2 (s) = {f ∈ EA : β = |f |, γ = ρ(As, f), σ = d(f, f0)}.

The initial state is s0 = α2(ϵ) = (0,As, 0). We use a priority
queue Q to store the states that have not been visited yet.
At the beginning, Q = {s0}. We define a partial ordering
on S based on length. Namely, if s1 = (β1, γ1, σ1), s2 =
(β2, γ2, σ2), s1 < s2 if β1 < β2. We order the elements of Q
according to this partial ordering.

A state s1 = (β1, γ1, σ1) dominates s2 = (β2, γ2, σ2) if
• β1 ≤ β2,
• γ1 = γ2,
• σ1 ≤ σ2.
In other words, s1 dominates s2 if the plans f1, f2,

corresponding to s1 and s2, satisfy the following properties.
Plan f1 is not longer than f2, f1 and f2 lead to the same
final configuration, and the distance of f1 from the reference
solution f0 is not larger than the one of f2. If s1 dominates
s2, we can discard s2. In general, we remove from Q all
dominated states. We also define the following transition
function, which allows to (possibly) add new states to the
priority queue:

ρ̃ : S × E → S

ρ̃((β, γ, σ), e) := (β +1, ρ(γ, e), σ+min
k∈N

d(ρ(γ, e), ψf0(k))).

Applying this function on a state s = (β, γ, σ):
• adds 1 to the length of the class α−1

2 (s);
• updates the final configuration of the equivalence class,

applying the function ρ(γ, e) to the final configuration of
α−1
2 (s) with e being the chosen set of edges;

• updates σ, adding the computed minimum distance be-
tween the updated final configuration ρ(γ, e) and the
reference plan f0.

We define Σ := {ρ̃((β, γ, σ), e) : e ∈ E and ρ(γ, e) ∈ Br(γ)}
⊂ S, the set of new states which can be generated through
the transition function ρ̃ applied to the current state (β, γ, σ)
and all possible actions in E leading to configurations in
Br(γ). Moreover, we denote with Γ := α2(Nr(f0)) ⊂ S, the
set of states that can be visited during a neighborhood search.

A. Algorithm
The Dynamic Programming algorithm is described in Algo-

rithm 2. The priority queue Q maintained inside the algorithm
is a set of states, ordered by the length β of their representa-
tives. Function insert(Q, x) inserts a state x maintaining the
partial order of Q, in the sense that, after the insertion of x,
all the elements of the queue still respect the partial ordering
previously defined. Function remove(Q, x) removes x from
Q. The head of the queue, that is the state with minimal β,
is denoted by Q[0]. The algorithm explores the state space
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starting from the initial state s0. At each iteration, the state
with minimum β is extracted from the queue. If the state
extracted is the target state (that is, if γ = At) the algorithm
stops and we return a representative of the optimal solution
of Problem (6) (for a given equivalence class f̂ , the function
repr(f̂) returns a representative of the class). Otherwise, the
algorithm employs function expand(s, f0, r), based on the
transition function previously defined, to find new states. If
a new state is not dominated, then it is added to the queue
Q. Moreover, all states in Q dominated by the newly added
state are removed from Q. Note that for more complicated
solutions, the algorithm is far more effective.

Algorithm 2 Dynamic Programming with Dominance
Input: f0, r,As,At

Output: f
s0 ← (0,As, 0)
insert(Q, s0)
while Q ̸= ∅ do:

s = (β, γ, σ)← Q[0]
if γ = At then

f ← repr(α−1
2 (s))

Q← ∅
else

Σ← expand(s, f0, r)
for sk ∈ Σ do

if sk is not dominated in Q then
insert(Q, sk)
for si ∈ Q do

if sk dominates si then
remove(Q, si)

return f

Theorem IV.1: Algorithm 1 and 2 have polynomial time
complexity with respect to the number of nodes of the graph.
Proof. In Algorithm 2, the time complexity is O(|Q|2 · |Σ|).
Sets Q and Σ vary with each iteration, but always remain
subsets of Γ. So at each iteration the following upper bound
for their cardinality always holds: |Q| ≤ |Γ|, |Σ| ≤ |Γ|.
Reminding that α2 is injective and using the result of Propo-
sition II.1, |Γ| = |Nr(f0)| ≤ |f0|2 (1 + C(1 + k)rϕr) , where
k = |P | and ϕ = outdeg(G). Therefore, the time complexity
of Algorithm 2 is O(|f0|6 (1 + C(r + k)rϕr)

3
). Algorithm 1

recalls at most |f0| times Algorithm 2, and so it has time
complexity O(|f0|7 (1 + C(r + k)rϕr)

3
).

V. EXPERIMENTAL RESULTS

We performed two sets of experiments on different graphs
and with initial solutions generated in two distinct ways.
In both experiments, we used the Neighborhood Search of
Algorithm 1, with the Dynamic Programming of Algorithm
2, to improve the given initial solutions. The algorithms have
been coded with the C++ programming language, and has
been run on a 11th Gen Intel(R) Core(TM) i7-1165G7 @
2.80GHz processor with a 16 GB RAM.

A. Random Graphs with sequentially generated initial solu-
tion

In the first set of experiments we generated random directed
graphs with a number of nodes |V | ranging from 20 to 100 by
10, and a number of edges |E| equal to 4|V |. The graphs are
generated by creating |E| random ordered pair of nodes and
using them to build a directed graph. Only strongly connected
graphs are selected. The number of agents |P | ranges from 2
to 10, while As and At are randomly generated. To generate
the initial solutions, each agent is brought to its target node
one at a time, following the shortest path, in terms of crossed

edges, from its source to its target in the graph obtained by
removing the nodes currently occupied by all other agents
(either their target or their source, depending on whether they
have been already moved or not). Note that such procedure
is not complete, i.e., it does not guarantee to find a feasible
solution when it exists or to establish that no such feasible
solution exists. We generated 100 random graphs, for which
the described procedure was able to return a feasible solution,
for every combination of number of nodes and number of
agents. After some tuning, we set the radius r of the neigh-
borhood equal to 5, which turned out to be a good compromise
between the quality of the solutions found in the neighborhood
and the time needed to explore the neighborhood (note that
such time increases exponentially with r). Given the initial
solution f0 and the final one f∗ returned by the proposed
approach, the percentage decrease of the final solution w.r.t.
the initial solution is equal to 100 f0−f∗

f0
%. In Figures 1 and

2 we report the median of the average percentage decrease
and of the running time (in seconds), respectively, for every
combination of |P | and |V |. It is worthwhile to remark that
the percentage decrease tends to be lower as the number of
agents increases. A tentative explanation is that for cases with
a greater number of agents, when the sequential procedure to
generate an initial solution is able to return a feasible solution,
such solution is already a good one which cannot be largely
improved. This phenomenon is not observed in the second set
of experiments, where a different procedure to generate an
initial feasible solution is employed. Note that the average
percentage decrease is lower when the number of agents
becomes higher. This can be explained by the nature of the
algorithm employed in finding the initial solution. Increasing
the number of agents without increasing the number of nodes
gives us way less feasible instances and the solutions found
are more difficult to improve.

Figure 1: Average Percentage Decrease per |P | and |V |.

Figure 2: Average Running Time per |P | and |V |.

B. Strongly connected with multiple biconnected components
graphs and rule-based generated initial solution

In the second set of experiments, we generated strongly
connected graphs with multiple biconnected components. The
procedure used to generate such graphs can be found in

8079



[12]. The number of agents |P | ranges from 2 to 6, and the
number of nodes vary from 20 to 50 with an increment of 10.
The initial and final configuration As and At are randomly
generated. In this case the initial solutions (if they exist) are
generated through the diSC algorithm [12] which is complete,
i.e., it always returns a feasible solution in case one exists.
Such initial solutions usually have lower quality (i.e., the initial
plans are usually longer) with respect to the ones used in the
first set of experiments. This might be also the explanation
why the percentage decrease in these experiments (see Figure
3) appears to be larger w.r.t the first set of experiments, and
also tends to increase with the number of agents (differently
from the case of random graphs). Again after some tuning,
we set the radius r of the neighborhood equal to 3. Figures
3 and 4 report the median of the average percentage decrease
and of the running time (in seconds), respectively, for every
combination of |P | and |V |. Note that the graphs employed in
the second set of experiments appear to be more challenging
with respect to the random ones. Indeed, computing times are
larger and increase rapidly with the number of agents.

Figure 3: Average Percentage Decrease per |P | and |V |.

Figure 4: Average Running Time per |P | and |V |.
VI. CONCLUSION AND FUTURE WORKS

We proposed an iterative local search procedure for MAPF,
in order to shorten a known feasible solution. We obtain a
solution, that is still sub-optimal, but, in general, of much
better quality than the initial one. The proposed algorithm
has polynomial time complexity with respect to the number
of agents (see Theorem IV.1) and has computational times
compatible with industrial applications. We can extend the
results in various respects, that will be the focus of future
research:

• We can define locality constraints different from the ones
considered in Section II-B. For instance, we can set a
maximum on the number of agents that modify their path
with respect to the reference solution. Alternatively, we
can set an upper bound on the number of time intervals
in which the solution departs from the reference one.

• We can test the proposed approach on real industrial
scenarios.

• We can improve the complexity bound presented in
Theorem IV.1, currently based on a quite rough bound.
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