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Abstract— This paper considers the hub-based platoon co-
ordination problem in a large-scale transportation network, to
promote cooperation among trucks and optimize the overall
efficiency of the transportation network. We design a dis-
tributed communication model for transportation networks and
transform the problem into a Dec-POMDP (Decentralized-
Partial Observable Markov Decision Process). We then propose
an A-QMIX deep reinforcement learning algorithm to solve the
problem, which adopts centralized training and distributed ex-
ecution and hence provides a reliable model for trucks to make
quick decisions using only partial information. Finally, we carry
out experiments with 100 trucks in the transportation network
of the Yangtze River Delta region in China to demonstrate the
effectiveness of the proposed algorithm.

I. INTRODUCTION

Vehicle platooning is a technology in intelligent trans-
portation networks that allow vehicles to travel closely
together in a column, while maintaining a fixed relative
distance between each other [1]. It can achieve efficient
operation of the transportation system and increase the
capacity of the transportation system [2], especially in heavy
transportation industries such as truck transport. In addition,
vehicle platooning can reduce fuel consumption and carbon
emissions [3], [4].

In the past few decades, truck platooning technology has
been continuously and widely investigated through coordi-
nated control to achieve the stable formation of multiple
trucks, see e.g., [5], [6]. With the developments of platoon
control technology [7] and vehicle-to-vehicle communication
technology [8], it is expected that a large-scale truck platoon
transportation network will be formed in future. Therefore,
platoon coordination in large-scale transportation networks
is an active and challenging research topic [9], which allows
trucks to obtain the benefits of platooning as much as
possible in the transportation network. As far as we know,
the investigated platoon coordination schemes include the
vehicle speed planning [10], the path selection [11], and the
regulation of waiting and departure times at hubs [12].

This work will focus on regulating the waiting time
of trucks at hubs in a large-scale transportation network.
There exist some works proposing centralized schemes to
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resolve the problem. For example, [13], [14] are dedicated
to promoting truck cooperation at hubs in limited-scale
transportation networks to save fuel and improve traffic
efficiency. On the other hand, several other works consider
the problem of non-cooperative platoons of trucks at hubs
in a large-scale transportation network. The authors of [15]
considered platoon coordination for a group of trucks with
the same starting point but different ending points at the
departure hub. Then [12] expanded it to a group of trucks
with different starting and ending points with a centralized
method. However, centralized algorithms will lead to a heavy
computational burden in large-scale transportation networks
and affect the timeliness of the algorithm.

There exist some other works proposing distributed al-
gorithms to schedule the waiting time of trucks at hubs
in large-scale transportation networks. The authors of [16]
proposed a distributed MPC framework to regulate the wait-
ing time for trucks at hubs, and used an event-triggered
mechanism to calculate the waiting time for each truck to
maximize its benefits in future. They further presented a
distributed approximate dynamic programming scheme to
solve the problem of waiting time at hubs that complies
with Hours-of-Service regulations [17]. The aforementioned
works mainly focus on distributed algorithms under non-
cooperative relationships that might lead to a worse system-
level performance than cooperative relationships in a large-
scale transportation network.

Therefore, this paper focuses on proposing a distributed
scheme merely using partial information to resolve the
cooperative truck platoon coordination problem in large-
scale transportation networks. Each truck is treated as an
intelligent agent, hence this problem is transformed into a
large-scale multi-agent cooperative task, which however is
difficult to rapidly achieve a distributed resolution. It is worth
noting from [18] that deep reinforcement learning can ef-
fectively solve large-scale cooperative multi-agent problems
with high-dimensional state space while merely using partial
information. Therefore, based on multi-agent deep reinforce-
ment learning, this work proposes a distributed cooperative
framework that adopts a centralized training and distributed
independent execution method to address the truck platoon
coordination problem with partial information in large-scale
transportation networks. Centralized training concentrates the
experience data of all agents into a centralized training model
to improve the learning efficiency of agents. Then, in the
distributed execution, each agent can independently use the
trained model to make distributed decisions based only on
partial observation information. The main contributions are
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summarized as follows.
• We design a distributed communication model for the

large-scale transportation network, where a single truck
can only receive partial information about nearby trucks
for deciding its waiting time at hubs.

• We propose an A-QMIX deep reinforcement learning
algorithm for the muti-agent cooperative task in the
large-scale transportation network. A-QMIX combines
the truck attention block to promote truck cooperation,
which can be distributedly executed through centralized
training, enabling each truck to independently solve the
scheduling problem with partial information.

• We set up simulation experiments with 100 trucks in the
Yangtze River Delta transportation network in China. In
comparison with the centralized schemes, our method
can achieve similar performance to the centralized al-
gorithm with merely using partial information.

The rest of the paper is organized as follows. Section II
describes the modeling process of a distributed framework
and Dec-POMDP. Section III introduces detailed information
on A-QMIX. Section IV shows the experimental results in
the transportation network. Section V concludes this paper
and outlines future research directions.

II. PROBLEM FORMULATION

This section introduces a large-scale distributed transporta-
tion network architecture and the process of transforming the
platoon coordination at hubs problem into Dec-POMDP. We
first describe the dynamic model of trucks in the transporta-
tion network as follows.

A. Dynamical Model in Transportation Network

We consider the platoon coordination problem based on
the transportation network G = (V,E). Here, V represents
the set of hubs where trucks can wait and form platoons with
other trucks, while E represents the set of edges that connect
the hubs in V . The trucks in the transportation network are
represented by N = {1, 2, . . . , N}.

For each truck i ∈ N in the transportation network,
there is a starting point gi, an endpoint fi, an origi-
nally scheduled departure time di, a fixed set of hubs
Vi = {i1, i2, . . . , iNi

} ⊆ V , and a fixed path Ei =
{(i1, i2), (i2, i3), . . . , (iNi−1, iNi)} ⊆ E from the starting
point gi = i1 to the endpoint fi = iNi . For k ∈
{1, 2, . . . , Ni}, we denote ik as the k-th hub on the journey
of truck i. Meanwhile, for k ∈ {1, 2, . . . , Ni−1}, (ik, ik+1)
represents the directed edge of truck i from hub ik to the
next hub ik+1. The starting point gi = i1 is indexed by the
1-th hub while the ending point fi = iNi is indexed by the
Ni-th hub.

Each truck can wait at a hub for a certain amount of time
before departing to form a platoon with other trucks. As
shown in Fig. 1, for every truck i ∈ N at hub ik+1, its
departure time is defined as

tdi (ik+1) = tai (ik+1) + τwi (ik+1), (1)

where tai (ik+1) denotes the arrival time of truck i at hub
ik+1 and τwi (ik+1) ∈ Z+ is the waiting time of truck i at
hub ik+1. In particular, tdi (i1) = di + τwi (i1). The arrival
time of truck i at hub ik+1 is given by

tai (ik+1) = tdi (ik) + τi(ik, ik+1), (2)

where τi(ik, ik+1) ∈ N represents the travel time of truck i
on edge (ik, ik+1).

Fig. 1. Truck i in the transportation network

Similarly to [16] considering the travel time as a known
constant, we also assume that each truck j ∈ N takes the
same known travel time τj(ik, ik+1) on edge (ik, ik+1).

Platoon Definition: For two trucks i, j ∈ N , i 6= j, if
there exist k ∈ {1, 2, . . . , Ni} and k′ ∈ {1, 2, . . . , Nj} such
that (ik, ik+1) = (jk′ , jk′+1) and tdi (ik) = tdj (jk′). Then
truck i and truck j form a platoon on edge (ik, ik+1).

Each truck decides its waiting time at the hub to form a
platoon. And the reward of the truck depends on whether it
can accurately calculate the waiting time at the hub to form
a platoon. But in a large-scale transportation network, due to
some uncertain factors, it is hard to obtain accurate global
information to calculate the waiting time of long-distance
hubs. Therefore, we will propose a distributed architecture
in the following subsection to provide partial information for
truck decision-making.

B. Distributed Communication in Transportation Network

We first denote the state of the transportation network by
S = {s1, s2, . . . , sN}. For every truck i ∈ N , we define
si as a two-tuple (s1i , s

2
i ). When truck i is at hub ik, k ∈

{1, 2, . . . , Ni}, we denote by s1i = ik and let s2i be the time
that the truck i has already waited at hub ik. When truck i
is traveling on edge (ik, ik+1), we denote by s1i = (ik, ik+1)
and let si2 represent the remaining travel time of truck i to
hub ik+1. Thus, si defined is as follows.

(s1i , s
2
i ) =


(ik, τ

aw
i (ik)), truck i at hub ik,

((ik, ik+1), τ ri (ik, ik+1)),
truck i traveling on edge (ik, ik+1).

(3)
Here, τawi (ik) ∈ N denotes the time that truck i has already
waited at hub ik, while τ ri (ik, ik+1) ∈ N represents the
remaining travel time of truck i from hub ik to ik+1.

In the transportation network, each truck i ∈ N can
communicate with some hub hi(si) defined below.

hi(si) =

{
ik, s1i = ik,

ik+1, s1i = (ik, ik+1).
(4)

For example, as shown in Fig. 2, the orange truck i located at
hub ik will communicate with hub ik, while the blue truck
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j driving on edge (jk′ , jk′+1) will communicate with hub
jk′+1. The communicated information of truck i through hub
hi(si) is denoted by Mi(si) = (M1

i (si),M
2
i (si)), where

M1
i (si) denotes the next hub of the hub hi(si) that truck i

is going to, and M2
i (si) = s2i . Thus, Mi(si) is defined by

Mi(si) = (M1
i (si),M

2
i (si))

{
(ik+1, s

2
i ), s1i = ik,

(ik+2, s
2
i ), s1i = (ik, ik+1).

(5)

Fig. 2. Distributed communication in transportation network

The set of trucks that has the same communication hub
hi(si) as truck i is defined as

Ci(si) = {j : hj(sj) = hi(si), j ∈ N , j 6= i}. (6)

Meanwhile, the partner set of truck i, representing the set of
trucks that may form a platoon with truck i, is denoted as

Pi(si) = {j : j ∈ Ci(si),M1
i (si) = M1

j (sj)}. (7)

When truck i is at hub hi(si), i.e., si = ik for some
ik ∈ Vi, it has an observation function to obtain information
about nearby trucks, which can be described as

Oi(si) = {sj : j ∈ Pi(si)}. (8)

Specifically, when truck i is driving towards its destination
iNi

, it no longer communicates with hub iNi
.

Under this distributed framework, we transform the prob-
lem of scheduling truck wait time at hubs into a multi-
agent cooperative problem. It will be reformulated as a Dec-
POMDP as shown in the next subsection, which can be
solved using deep reinforcement learning.

C. Dec-POMDP Formulation
The Dec-POMDP problem is composed of a tuple G =

(N,S,A, T,R, Z,O, γ) [19]. Here, N = |N | represents the
number of agents, and γ ∈ [0, 1) represents the discount fac-
tor, which defines the relative importance of future rewards to
current rewards. In the following, we will show G in details.

1) State Space: State space S = {s1, s2, . . . , sN}, where
each si, i ∈ N is defined as (3).

2) Action Space: The joint action space of all trucks is
defined as A = {a1, a2, . . . , aN}. The action space ai of
truck i is represented as

ai =


0, truck i waits at a hub,
1, truck i departs from a hub,
2, truck i travels on an edge.

(9)

Specifically, if truck i is traveling on an edge, it can only
take the action ai = 2, i.e., if si = (ik, ik+1), then ai = 2.

3) State Transition Function: T (S,A) : S × A → S′

represents the function that S transfers to S′ after performing
the joint action A. We define ∆t to be the time step for the
state space to change from S to S′.

Since each truck’s decision is independent of the others,
changing its actions will not affect the state of other trucks.
So, the transfer function Ti of truck i depends only on the
state si and the action ai. When s1i = (ik, ik+1), namely,
truck i is traveling on edge (ik, ik+1), ai = 2, (i) if the
remaining travel time s2i > ∆t, then at the next stage,
the truck i is still traveling on edge (ik, ik+1), while the
remaining travel time is decreased to s2i − ∆t; (ii) if the
remaining travel time s2i ≤ ∆t, since ∆t is small enough,
it can be considered that the truck has arrived at the hub
ik+1 at the next stage and the waiting time is 0. When
s1i = ik, namely, truck i is at hub ik, (i) if ai = 0, then
the truck will wait at the hub for ∆t, hence at the next
stage, the truck i is still located at hub ik while the waiting
time is increased to s2i + ∆t; (ii) if ai = 1, then the truck
i departs from hub ik, hence at the next stage, the truck i
traveling on the edge (ik, ik+1) and the remaining travel time
is τi(ik, ik+1)−∆t. In summary, the transfer function Ti of
truck i after performing action ai can be denoted as

Ti(si, ai) =



(s1i , s
2
i −∆t), s1i = (ik, ik+1) ∧ s2i > ∆t,

(ik+1, 0), s1i = (ik, ik+1) ∧ s2i ≤ ∆t,

(s1i , s
2
i + ∆t), s1i = ik ∧ ai = 0,

((ik, ik+1), τi(ik, ik+1)−∆t),
s1i = ik ∧ ai = 1.

(10)
In particular, if truck i arrives at its ending point iNi

(i.e.,
s1i = iNi ), its state si = (iNi , 0) will not change.

4) Observation Space and Observation Function: Obser-
vation space is denoted by Z = {z1, z2, . . . , zN}. According
to (8), when truck i is at hub ik, zi = Oi(si). And when
truck i is traveling on an edge, zi = ∅.

5) Reward: Our goal is to form as many platoons as
possible while reducing waiting time. Extensive experiments
have shown that the fuel savings for followers in a platoon
are roughly the same, and leaders almost do not save fuel
[20][21]. Therefore, we distribute the fuel benefits obtained
by the platoon equally among each truck in the platoon.

We let cu represent the fuel profit per time step ∆t while
truck i is driving in a platoon. If truck i is at hub ik (i.e.,
s1i = ik) and will depart from ik, we let N p

i (·) represent the
set of trucks that will form a platoon with truck i (formally
defined in (11)). Its reward is cu(|Np

i (ik)|−1)
|Np

i (ik)| . When truck i

is traveling on the edge (ik, ik+1) (i.e., s1i = (ik, ik+1)), we
let N p

i ((ik, ik+1)) represent the set of trucks that formed a
platoon with truck i (formally defined in (12)). Its reward is
computed as cu(|Np

i (ik,ik+1)|−1)
|Np

i (ik,ik+1)| .

N p
i (ik) =

{
j : j ∈ N , s1j = ik ∧ tdi (ik) = tdj (s

1
j )
}
, (11)

N p
i ((ik, ik+1)) = {j : j ∈ N , s1j = (ik, ik+1) ∧ s2i = s2j}.

(12)
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Let Ci(ik) denote the reward of truck i for waiting in hub
ik, which will be defined in (14). Thus, for every time step
∆t, the reward function of truck i is defined as follows.

Ri(si, ai) =


cu(|Np

i (ik,ik+1)|−1)
|Np

i (ik,ik+1)| , s1i = (ik, ik+1),

−Ci(ik), s1i = ik ∧ ai = 0,
cu(|Np

i (ik)|−1)
|Np

i (ik)| , s1i = ik ∧ ai = 1.

(13)
Let wtotal(ik) =

∑x=k
x=0 τ

aw
i (ix) represent the sum of the

waiting time for truck i to pass through the hub. Taking into
consideration the potential loss of benefits caused by delays
resulting from trucks waiting at hubs, we give a maximum
waiting time wbound for trucks and set the loss function for
truck i as follows.

Ci(ik) =

{
cw, wtotal(ik) ≤ wbound
cbound, wtotal(ik) > wbound

(14)

Here, cw is the penalty factor for waiting, and cbound is a
large penalty factor for exceeding the waiting time limit.

The total reward of the whole transportation network is:

R =

N∑
i=1

Ri(si, ai). (15)

III. A-QMIX ALGORITHM FOR PLATOON
COORDINATION

This section elaborates on the operational process of
applying multi-agent reinforcement learning algorithms to
the formulated problem.

A. Transformation for State and Observation

Neural networks usually require fixed-length inputs. S-
ince the dimensions of S = {s1, s2, . . . , sN} and Z =
{z1, z2, . . . , zN} are determined by the number of trucks,
they do not apply to the neural network. Considering the
variability of the transportation network scale, we transform
the state and the observation into a fixed size.

For each edge em ∈ E, we discretize the travel time τ(em)
into α segments as follows.

τ̄(em) = (τ(em[1]), τ(em[2]), . . . , τ(em[α])), (16)

where

τ(em[j]) =

(
α− j
α

τ(em),
α+ 1− j

α
τ(em)

]
,

j ∈ {1, 2, . . . , α}.
We let the state of edge em be the number of trucks driving

on each segment of the edge, i.e.,

Sm = {|M(em[1])|, |M(em[2])|, . . . , |M(em[α])|}. (17)

Here, M(em[j]), j ∈ {1, 2, . . . , α} denotes the set of trucks
driving on the edge em, for which the remaining travel time
belongs to the time interval τ(em[j]), i.e., M(em[j]) =
{i : i ∈ N , s1i = em ∧ s2i ∈ τ(em[j])}. Specifically,
when truck i is at the starting hub of edge em, we let
i ∈ M(em[1]). Hence the state of all edges is denoted as
S = (S1,S2, . . . ,S |E|), which has a fixed size of α|E|.

Likewise, for each truck i’s observation at hub hi(si), we
discretize the remaining travel time to hub hi(si) into β
segments. We define λ = wbound

β as the time of each segment.
Let Oi(q) denote the truck o, o ∈ Pi of which the remaining
travel time belongs to the time interval (λ(q − 1), λq], i.e.,

Oi(q) = {o : o ∈ Pi, s2o ∈ (λ(q − 1), λq]},
q ∈ {1, 2, . . . , β}.

(18)

The new observation of truck i is denoted as

Zi = {|Oi(0)|, |Oi(1)|, . . . , |Oi(β)|}, (19)

where Oi(0) represents the set of the partners o, o ∈ Pi
at hub hi(si). When truck i is traveling on an edge, ∀q ∈
{1, 2, . . . , β}, |Oi(q)| = 0. Hence, the new observation Z =
{Z1,Z2, . . . ,Z |N |} has a fixed size of (β + 1)|N |.

B. A-QMIX for Large-scale Platoon Coordination

QMIX is a well-known deep reinforcement learning algo-
rithm to resolve multi-agent cooperative problems [22]. For
a variable-scale transportation network, we will propose A-
QMIX combined with the attention block [23] to solve the
platoon problem.

A-QMIX consists of N individual agent networks,
{Q̄i}Ni=1 with parameters {ωi}Ni=1, and an attention mixing
network f with parameters ωf . Similarly to QMIX, A-
QMIX also employs the target network method for training,
which has target agent networks {Q̄′i}Ni=1 with parameters
{ω′i}Ni=1, and a target attention mixing network f ′ with
parameters ωf ′ .

1) Agent Network: {Q̄i}Ni=1 adopt DRQN (Deep Recur-
rent Q-Network) [24], which captures time dependencies
between states through recurrent neural networks, enabling
trucks to consider previous decision information when mak-
ing decisions at hubs and handle continuous decision prob-
lems. We define t ∈ {1, 2, . . . , Te} with time step ∆t, where
Te represents a time constant long enough for the last truck
to reach its ending point. At each t, Q̄i takes Zit and previous
action ait−1 as input to calculate Qit.

Qit = max
ai

Q̄i(Zit , ait−1, ai;ωi), (20)

where ait−1 is the action taken by truck i at time t − 1,
ai represents the action space of truck i defined in (9).
Especially, ai0 = 0. Qit is the prediction of future rewards
for truck i after acting.

Likewise, the calculation formula of Q̄′i is denoted as

Q′it+1 = max
ai

Q̄′i(Zit+1, a
i
t, ai;ω

′i). (21)

2) Attention Mixing Network: Attention mixing net-
work f takes St = {S1t ,S2t , . . . ,S

|E|
t } and Qt =

{Q1
t , Q

2
t , . . . , Q

N
t } as input and Qtotalt as output, which can

be denoted as

Qtotalt = f(St,Qt) = f2(Qt, f1(St)). (22)
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Here, Qtotalt aims to measure the quality of the joint action
space of multiple trucks at time t. In addition, f ′ has the
same structure as f in (23).

Q′totalt+1
= f ′(St+1,Qt+1) = f ′2(Qt+1, f

′
1(St+1)). (23)

Moreover, attention mixing network f can be divided into
f1 and f2. As shown in (24) and (25), f1 aims to encode the
state St at time t as weights.

f1(St) = (W1, B1,W2, B2). (24)

(W1, B1,W2, B2) = (f11(St), f12(St), f13(St), f14(St)).
(25)

Here, f11(·),f12(·),f13(·) represent the three independent
linear layers. f14(·) consists of a linear layer and a ReLU
activation function.

Although S → S makes the size of the state fixed, the
information between trucks is lost. It is hard to find which
trucks may form a platoon based on S. From this, we
combine the attention block [23] to let the network learn the
weight of each segment explicitly and find the correlation
between trucks. Specifically, the truck attention block is
W ′1 = fscale(fa(W1),W1) = W a

1 · W1, where fa(·) is a
linear layer equal in size to W1. Fig. 3 illustrates the process
of the truck attention block.

Fig. 3. Truck attention block

Equation (26) illustrates that f2 multiplies the weights by
Qt calculated by the agent networks.

f2(Qt,W1, B1,W2, B2) =

|W2| · ELU(|W ′1| ·Qt +B1) +B2,
(26)

where ELU(·) is the ELU activation function. | · | is the
absolute activation function, which is to ensure W ′1 and W2

are non-negative. By adding absolute value constraints to the
weights, the contribution of each truck’s action to the global
joint action is reasonable (i.e., each truck tends to cooperate
with the other).

C. Training Process

The entire training process can be divided into experience
data generation and network training, which alternate in
execution. We summarize the pseudo-code of A-QMIX in
Algorithm 1.

1) Experience Data Generation: During experience data
generation, each truck i ∈ N continuously makes decisions
based on its current Q̄i in the environment until all trucks
reach the endpoint (complete an episode). The generated data
is then stored in the experience replay buffer D. The process
of experience data generation can be found in (Algorithm 1,
lines 3-8).

Algorithm 1 Training Process of A-QMIX Algorithm
Input: N trucks in the transport network, Replay buffer D,

episode length Te, joint action space a, batch size B,
discount factor γ, target network update frequency C,
greedy policy ε.

Output: Agent-networks {Q̄i}Ni=1 and attention mixing net-
work f characterized by {wi}Ni=1 and wf respectively.

1: Initialize Agent-networks {Q̄i}Ni=1 with random weights
{wi}Ni=1, target Agent-networks {Q̄′i}Ni=1 with weights
{w′i}Ni=1 ← {wi}Ni=1, attention mixing network f with
random weights wf , target attention mixing network f ′

with weights wf ′ ← wf .
2: for each training step do
3: for t = 1 to Te do
4: Obtain joint observation zt, last joint actions

at−1and state st.
5: Sample joint actions at from the Agent-networks

with ε-greedy policy.
6: Execute at and observe rewards rt, next joint

observation zt+1 and next state st+1.
7: end for
8: Store transition (z1:Te+1,a0:Te

, s1:Te+1, r1:Te
) in D.

9: if |D| ≥ B then
10: Choose min-batch of transitions with B samples

in D.
11: for t = 1 to Te do
12: for b = 1 to B do
13: Calculate each truck’s local Q-values Qb

t

and local target Q-values Q′bt+1 by (20) and (21).
14: Calculate total Q-value Qbtotalt and target

Q-value Q′btotalt+1
with Qb

t and Q′bt+1 by (22) and (23).
15: end for
16: end for
17: Calculate A-QMIX loss by (27).
18: Perform a gradient descent step on
L({wi}Ni=1, wf ) with respect to the parameters
{wi}Ni=1 and wf .

19: end if
20: Every C train steps reset {w′i}Ni=1 ← {wi}Ni=1,

wf ′ ← wf .
21: end for

2) Network Training: After data generation, B episode
data is randomly selected from the buffer for training.
According to (20) and (21), for t ∈ {1, 2, . . . , Te} and b ∈
{1, 2, . . . , B}, the agent networks and the target networks
calculate Qb

t and Q′bt+1 from the data. Then f and f ′ output
the total Q-value Qtotalt and Q′totalt+1

according to (22) and
(23). The process can be found in (Algorithm 1, lines 9-14).

Finally, A-QMIX is trained by the following loss:

L({ωi}Ni=1, ωf ) =

B∑
b=1

(r1:Te + γQ′btotal2:Te+1
−Qbtotal1:Te

)2.

(27)
Here, r1:T represents the reward from time 1 to Te, and γ
represents the discount factor.
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Distributed execute: For each truck i, the trained model
Q̄i is used to make decisions throughout the traveling jour-
ney. Algorithm 2 illustrates the process.

Algorithm 2 Execute Process of Single Truck
1: Initialize truck i’s agent-network Q̄i with the trained

weights wi, state si, action space ai, depearture time di,
a fixed set of hubs Vi = {i1, i2, . . . , iNi}, k ← 1.

2: for t = di to Te do
3: Obtain observation Zit , last actions ait−1and state si.
4: ait = argmax

ai

Q̄i(Zit , ait−1, ai;ωi).

5: if si = ik ∧ ait = 1 then
6: k ← k + 1.
7: end if
8: si ← Ti(si, a

i
t),

9: end for

IV. EXPERIMENT

This section will introduce experiments on the transporta-
tion network in the Yangtze River Delta region of China
to demonstrate the effectiveness of the proposed method. As
shown in Fig. 4, the transportation network covers Shanghai,
Zhejiang, Jiangsu, and Anhui provinces, including 41 hubs
with each hub corresponding to a city, and 202 directed
edges. The transportation network data comes from Amap1.

Fig. 4. Transportation Network Map of Yangtze River Delta Region

Experiment settings. We set N = 100 and assume that
the starting and ending points of each truck are random and
have the shortest fixed driving route. The departure time
of 100 trucks is randomly selected between 5:00 am and
11:00 am. During the entire journey, we assume that the
truck moves at a uniform speed of 80 km/h, and time step
∆t = 1 minute. The longest waiting time is wbound = 20
minutes. The platoon benefits variable and waiting time
penalty variables are set as cu = 1.7, cw = 4.4, and
cbound = 500. We assume that the driving time is not affected

1The city location and road information come from www.amap.com/
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Fig. 5. Training process

by the distance between the starting and ending points. We
set up a training set and a test set for training, and they both
choose 100 randomly initialized values. The random initial
values include the starting point, ending point, driving route,
and departure time of 100 trucks.

In Algorithm 1, we set the number of training steps as
4000, the batch size B = 32, the experience replay buffer
size |D| = 100, the episode length T = 1500, γ = 0.99, and
let the target network update every 50 epochs. We set the
initial value of the greedy policy ε to be 1 and the minimum
value as 0.05, and let it decrease by 0.00019 each time step.
Each edge of the transportation network is divided into α =
10 segments and observation parameters are set as λ = 4
minutes and β = 5.
A. Training Result

The training process of the model is shown in Fig. 5, where
the horizontal axis represents the number of training steps,
and the vertical axis represents the average reward obtained
by testing the current model in the training set. The purple
solid line represents the training performance of the model at
different stages, where a test is conducted every 40 epochs.
The grey dashed line represents the average reward obtained
by the trucks that make no decision at hubs.

B. Comparison Experiment

We now compare our method with the Nash method
[12], which considers each truck as a non-cooperative agent
and uses potential games to calculate the Nash equilibrium
solution for all trucks in the transportation network. This
method essentially uses the potential game to solve the
optimal solution at the decision-making moment of the
transportation network. It is worth noting that our method
merely used partial information for decision in comparison
with global information utilized by the Nash method.

We implement the two methods under the same initial
values, where the Nash method has a calculation interval of 5
minutes and a node number of H = 1 in [12]. The empirical
rewards are displayed in Fig. 6. In addition, we compare the
two methods on the test set for 100 initial values that has
not been seen before and demonstrate the empirical results
in Fig. 7. This indicates that our well-trained model is not
sensitive to the initial values and can find decision results
similar to the Nash method in the same scenario.
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Fig. 6. Training set comparison results
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Fig. 7. Testing set comparison results

V. CONCLUSION

In this paper, we propose a distributed decision-making
framework based on A-QMIX deep reinforcement learning
that uses partial information to address the coordination
problem in the large-scale transportation network. We then
validate the effectiveness of the algorithm by simulating
a transportation network with 100 trucks in the Chinese
transportation map. It is of interest to expand the action space
of the agents to combine multiple heterogeneous strategies,
enabling simultaneous decisions on driving speed, driving
path, and waiting time to further optimize the overall benefits
of the transportation network.
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