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Abstract— A Pontryagin-based differential game approach to
solve a class of robust Nonlinear Model Predictive Control is
proposed. The methodology defines an optimal control policy
that takes into account non-accurate predictions of the system
dynamics due to modeling errors and/or unknown exogenous
disturbance, which may seriously compromise the controller
performances. To this end, we propose a Pontryagin-based
solution to the nonlinear min-max problem, which can be
viewed as a zero-sum differential game, where the two players
are the controlled input and the system’s uncertainty/external
disturbance. We show that, under suitable assumptions on
system’s dynamics, the game admits a Nash equilibrium, whose
knowledge drastically decreases the high algorithmic complexity
usually required for min-max optimization schemes. Finally,
the theoretical results are confirmed by numerical simulations,
performed on the Van der Pol nonlinear oscillator.

I. INTRODUCTION

In recent decades, Nonlinear Model Predictive Control
(NMPC) has gained an extraordinary attention within the in-
dustrial and academic communities as a reliable and flexible
control tool for a wide range of practical applications [1]–
[6]. The reason for such a success relies on its capability to
deal with nonlinear dynamics and to provide optimal control
commands for multivariable systems in the presence of input,
output, and state constraints [7].

NMPC is based on three operations: i) prediction of
the system’s behavior along a finite-time horizon; ii) opti-
mization of a suitable performance index; and iii) receding
horizon strategy. Focusing on the first operation, the system’s
prediction is usually performed by employing a simplified
and/or approximated model of the system’s dynamics, when
the latter is highly complex and/or not completely known.
In these situations, non-accurate predictions due to modeling
errors may seriously hamper the performance of the NMPC.
Moreover, it may happen that uncertainties do not only affect
the dynamics, but also the input and state constraints which,
in turn, depend on the state variables themselves.

This calls for the development of robust versions of classic
NMPC, to which we shall refer to with the acronym RNMPC.
In this regard, many recent works have been devoted to
defining different methodologies to address this key problem.
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A common nonlinear approach, proposed in [8], consists
in the so-called tube-based RNMPC (see also [9], [10]).
Nevertheless, as remarked in [8] and [11], tube-based control
is based on the determination of both a nominal or refer-
ence trajectory and an ancillary controller that constraints
deviations of the state of the uncertain systems from the
nominal trajectory. Indeed, the ancillary controller forces
the trajectories of the uncertain system to remain in a
tube surrounding the reference trajectory. Unfortunately, the
identification of such neighborhood is, unlike the linear case,
a challenging problem.

Other types of RNMPC are learning-based [12]–[14],
stochastic [15], [16], and H∞-based approaches [17]–[20].
These methods, however, can suffer from a high computa-
tional complexity, making them rather unsuitable for on-line
applications. Moreover, learning-based RNMPC methods are
often highly dependent on the quality of the training data-
set which, in turn, can be rarely available for some specific
applications (e.g., satellite attitude and orbit control), and
they lack of a solid formal theoretical framework in terms of
closed-loop stability. On the other hand, stochastic RNMPC
methods require an accurate modeling of uncertainties and
disturbances. If they are not representative of the actual
system behavior, the controller might overestimate or under-
estimate their effect, ultimately jeopardizing the performance
of the controller. Finally, the H∞-based RNMPC is based on
an offline computation of a pre-compensation H∞ control
law —as solution of the differential Riccati equation— and
then summed to a second control term as solution of the
min-max optimal control problem.

Here, we aim at extending this range of approaches by
proposing a novel methodology to address this problem.
In our approach, we define a min-max RNMPC scheme,
together with the Pontryagin Minimum (maximum, in the
original version) Principle (PMP) [21]. Robust versions of
PMP have been widely discussed, in a general form, in [22],
[23]. However, these works propose a min-max approach
that may be hardly implementable in practical applications.
Here, we follow a different approach, inspired by the well-
established methodology that deals with the min-max prob-
lem as a zero-sum differential game, whose players are
the controlled input and the uncertainty/disturbance (here,
termed adversary input) [24]–[26]. A general PMP-based
game-theoretic framework is proposed in [27] where the
min-max problem is cast as a zero-sum differential game
with a Nash equilibrium (NE). However, in order to find the
NE, one has to take into account two different Hamiltonians
and to simultaneously, one for the input and one for the
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uncertainty, with each solution depending on the other, dra-
matically increasing its computational burden. To overcome
this limitation, [28] and [29] defined a min-max solution
employing a single covector set, by observing that, in some
special cases, a joint Hamiltonian can be defined, such that
it is convex in the input and concave in the uncertainty.

In this paper, we take a step further, joining the PMP-based
NMPC approach presented in [30], together with some of the
results depicted in [28] and [29]. Specifically, we present a
PMP-based RNMPC whose min-max problem is resembled
as a differential game which, when employing some special
classes of functionals, admits a NE, corresponding to the
saddle point condition on the Hamiltonian. By exploiting
such property, the covector referred to the uncertainty is
equal in modulus and opposite in sign to the one of the
control input. This result drastically simplify the min-max
problem that can be solved by defining a single Hamiltonian
and set of covectors evolving along the prediction horizon.
Then, we focus on the game separability. As observed in [31],
the separability of the Hamiltonian does not necessarily
imply the separability of the cost function itself, which is
non-convex. To this end, we will show that, if the system’s
dynamics is affine in the input and uncertainty, the optimal
uncertainty input policy does not depend on the optimal
control policy, so that the adversary input plays as “first”
and it does not change its behavior during the game.

The novel contribution in this work is two-fold. First, a
PMP-based game-theoretic approach is applied to a RNMPC.
The RNMPC min-max problem takes advantage of the
existence of a NE which allows to drastically simplify the
classic solution of the min-max problems. Second, unlike
the existing works concerning PMP-based min-max [26]–
[29], we do not assume a-priori that the separability of
the Hamiltonian imply the separability of the original cost
function. A discussion on this topic is proposed. To the best
of our knowledge, this is the first work that takes into account
these aspects in a receding horizon scheme. The generality of
the proposed approach, whose effectiveness is demonstrated
in a case study, paves the way for a broad range of real-
world applications, including the implementation of RNMPC
schemes in automotive and aerospace problems —application
fields where NMPC is gaining more and more attention
in recent years [3], [32]–[35]— where a fast and reliable
robust controller is required for real-time implementation of
RNMPC schemes on embedded processors.

The rest of the paper is organized as follows. In Section II,
we introduce the problem statement. In Section III, we
present the Pontryagin-based differential game solution. The
numerical example is discussed in Section IV. Section V
concludes the paper and outlines the future research.

A. Notation

We denote the set of real and strictly positive integer
numbers as R and N+, respectively. Given n,m ∈ N+,
a (column) real-valued vector is denoted as x ∈ Rn, x⊤

denotes its transpose, and A ∈ Rn×m denotes a real-valued
matrix. Given z ∈ Rn and W = diag(w1, ..., wn), wi ≥ 0,

∥z∥2W
.
= zTWz is the (square) weighted norm of z. Finally,

∇z(·) is the gradient operator with respect to the variable z.

II. PROBLEM STATEMENT

Consider the following affine-in-the-input nonlinear sys-
tem, affected by an affine uncertainty and/or disturbance:

ẋ(t) = f(x(t)) + g(x(t))u(t) + ℓ(x(t))µ(t) (1)

where x(t) ∈ X ≡ Rnx is the state vector at time t ∈ R
u(t) ∈ U ⊆ Rnu is the input vector (where U ⊆ Rnu is a
compact set such that 0 ∈ U). On the other hand, µ(t) ∈
W ⊂ Rnw is a parameter of the system. Note that, f , g, and
ℓ are generic nonlinear functions. Below, we will specify
some mild regularity assumptions for these functions.

We assume that the measurements of the state vector are
sampled with period TS > 0. At each sampling time t = tk,
a prediction of the system state x̂(t) over the time interval
[tk, tk+Tp] is performed —where Tp ≥ TS is the prediction
horizon. Such a prediction is obtained by integrating an
approximated model of the plant

˙̂x(t) = f(x̂(t)) + g(x̂(t))u(t) + ℓ(x̂(t))µ̂(t) (2)

coming from an incomplete knowledge of the system.
In (2), x̂ is the (predicted) model state vector, which

evolves according to the same nonlinear functions f , g, and
ℓ. In the following, we will assume that x̂(t) ∈ X . Briefly,
this means that the state space X (or, at least, a super-set
of it) is known a-priori, which is a reasonable assumption.
Note that, at the initial time t = tk, it holds x(tk) = x̂(tk).

Assumption 1: Assume that f ∈ C1(X → X ), g ∈
C1(X → X × U), and ℓ ∈ C1(X → X ×W) with Γ being
the Lipschitz constant of the system.

Remark 1: Let us define µ̂(t) = µ(t) − w(t). In detail,
the quantity w(t) can represent, alternatively, a system un-
certainty, a parametric uncertainty, or an additive disturbance.
Henceforth, we deal with w(t) as a system uncertainty
coming from an incomplete/imperfect knowledge of the
dynamics and we shall refer to it as adversary input.

The min-max problem is formulated by defining a cost
function to be minimized with respect the control signal
u over the worst-case adversary input w. The optimal pair
(u∗, w∗) is the solution of the following problem:

(u∗, w∗) = argminu maxw J(x, u, w) (3)

subject to the following constraints:

˙̂x(τ) = f(x̂(τ)) + g(x̂(τ))u(τ) + ℓ(x(τ))µ(t),

x̂(tk) = x(tk)

u(τ) ∈ U , w(τ) ∈ W, ∀τ ∈ [tk, tk + Tp]

u(·) ∈ KC
(
[tk, tk + Tp]

)
.

(4)

Here, U , and W are compact sets describing constraints on
the the input and the adversary input, respectively, and KC
is the space of piece-wise continuous functions. Note that,
both U and W are required to be convex.
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Remark 2: Here, for the sake of simplicity, we neglect
constraints on the state variable, that is to assume x(t) ∈
X ≡ Rnx . A possible fashion of implementing state con-
straints within the optimization problem consist of augment-
ing the cost function J with a suitable penalty function, as
described in [30]. In this latter case, one has to consider that
the NE of the game changes with respect to the unconstrained
case. Indeed, some of the results that will be presented in
Theorem 1 may not be valid anymore. The implementation
of state constraints within the proposed Pontryagin-based
differential game framework is a topic of ongoing research.

We thus define the finite-horizon NMPC quadratic cost
function as

J(x, u, w) =

∫ tk+Tp

tk

∥u(τ)∥2Rdτ + ∥x̃(tk + Tp)∥2P (5)

where x̃(t) = xr − x̂(t) is the predicted tracking error, xr

is a (constant) reference signal of interest1, and R and P
are positive diagonal matrices weighting the contributions of
the entries of the two vectors. Briefly, the first term of (5)
accounts for the control signal over the prediction horizon,
the second for the error at the end of the prediction horizon.

A. Robust NMPC Cost Function

In the previous section we highlighted that W ⊂ Rnw .
Here, we take a step further by encapsulating the bounds on
w within the cost function J . In the following, we assume
that the set W is defined as the ball W = {w : ∥w∥2 ≤ w̄},
where w̄ is defined by the knowledge of W .

Hence, the bounds on ∥w∥2 can be included within the
cost function J . Hence, there exists an arbitrary and unique
γ > 0, ∀t ≥ 0, such that the following min-max problem:

(u∗, w∗) = argminu maxw Jw(x, u, w) (6)

Jw(x, u, w) =

∫ tk+Tp

tk

(
∥u(τ)∥2R − γ∥w(τ)∥22

)
dτ+

+ ∥x̃(tk + Tp)∥2P.
(7)

and subject to the same constraints in (4), is equivalent to
the the min-max problem (3)–(5).

To sum up, the optimal control problem in (6), with cost
function (7), can be seen as a zero-sum differential game,
whose players are the control input u and the uncertainty
w, respectively, with payoff functions equal to Jw and
−Jw, respectively. In other words, the goal of the control
input u is to minimize the payoff function, while the goal
of the uncertainty w is to maximize it (i.e., minimize its
opposite). In this particular setting, the pair (u∗, w∗) is the
corresponding saddle point of the game, i.e., the NE, and
the optimal value of Jw corresponds to the value of the
payoff for the control input at such NE. Furthermore, we
shall remark that, in this symmetric scenario, each one of
the two players has to make their own choice without any
a-priori information on the strategy taken by the opponent.

1For simplicity, we assume that the reference xr is constant. In practice,
the controller can be also applied for slowly changing reference signals.

III. PMP-BASED DIFFERENTIAL GAME SOLUTION

According to the NE definition [27], the pair (u∗, w∗)
is the solution of the min-max problem if and only if the
following conditions are simultaneously satisfied:

u∗ = argminu Jw(u,w) (8a)
w∗ = argminw −Jw(u,w) = argmaxw Jw(u,w) (8b)

over the choice of all inputs u(t) ∈ U and adversary inputs
w(t) ∈ W , for all t ∈ [tk, tk + Tp].

By taking into account (1), (7), (8a), and (8b), the pair of
Hamiltonians H(u), H(w) ∈ C1(X × X × U ×W → R) are
defined as

H(u) = ∥u∥2R − γ∥w∥22+ (9a)

+ λ(u)⊤[f(x(t)) + g(x(t))u(t) + ℓ(x(t))(µ̂+ w(t))
]

H(w) = −∥u∥2R + γ∥w∥22+ (9b)

+ λ(w)⊤[f(x(t)) + g(x(t))u(t) + ℓ(x(t))(µ̂+ w(t))
]

where λ(u), λ(w) ∈ Rnx are the covectors of the minimiza-
tion and maximization problem, respectively. Note that, in
(9a)-(9a) the parameter µ in (1) has been replaced with
µ̂ + w(t), according with the notion presented in Remark
1. Hence, following [21], the necessary conditions for opti-
mality are given by

H(u)(x∗, u∗, w∗, λ∗(u), λ∗(w)) = (10a)

minu H
(u)(x∗, u, w∗, λ∗(u), λ∗(w)),

H(w)(x∗, u∗, w∗, λ∗(u), λ∗(w)) = (10b)

minw H(w)(x∗, u∗, w, λ∗(u), λ∗(w)),

λ̇(u) = −∇xH
(u), (10c)

λ̇(w) = −∇xH
(w), (10d)

λ(u)(tk + Tp) = 2x̃⊤(tk + Tp)P, (10e)

λ(w)(tk + Tp) = −2x̃⊤(tk + Tp)P (10f)

where the minimization operators with respect to u and w
in (10a) and (10b) should be intended over all inputs u such
that u(t) ∈ U , for all t ∈ [tk, tk + Tp], and adversary inputs
w such that w(t) ∈ W , for all t ∈ [tk, tk + Tp].

Note that, since the Hamiltonians are convex in u, and con-
cave in w, the min-max Pontryagin problem is separable and
the joint Hamiltonian admits a saddle point which coincides
with the min-max solution. In this case, there exists a tight
correlation between λ(u) and λ(w), such that the min-max
problem resembles in defining a common Hamiltonian and
finding the solution (i.e., the saddle point) by minimization
of the Hamiltonian with respect to u.

Theorem 1: Consider the min-max necessary conditions
in (10a)–(10f) and let Assumption 1 hold. Then, it holds:

λ(w)(t) = −λ(u)(t), ∀t ∈ [tk, tk + Tp]. (11)

Proof: For the sake of simplicity and readability, we
limit the discussion to the scalar case x, λ(u), λ(w) ∈ R. The
extension to the multidimensional case is straightforward, as
discussed at the end of the proof.
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From (10e) and (10f), one has that λ(w)(tk + Tp) =
−λ(u)(tk+Tp). By taking into account (1), (10c) and (10d),
the variation of the covectors along the prediction horizon is
equal to

λ̇(u)(t) = (12a)

−
(
∂f

∂x
(x(t)) +

∂g

∂x
(x(t))u(t) +

∂ℓ

∂x
(x(t))µ(t)

)
λ(u)(t),

λ̇(w)(t) = (12b)

−
(
∂f

∂x
(x(t)) +

∂g

∂x
(x(t))u(t) +

∂ℓ

∂x
(x(t))µ(t)

)
λ(w)(t),

that consist in a set of backward first-order differential
equation integration within the TPBVP, and recalling that
µ(t) = µ̂− w(t). Let us introduce the auxiliary variable

ϱ(t)
.
=

λ(u)(t)

λ(w)(t)
(13)

whose final condition, from (10e) and (10f), is ϱ(tk +Tp) =
−1. The time derivative of ϱ(t) is then computed, obtaining

ϱ̇(t) =
λ̇(u)(t)

λ(w)(t)
− λ(u)(t)λ̇(w)(t)

λ(w)2(t)
. (14)

Upon substituting (12a)-(12b) into (14), and defining

ξ(t)=−
(∂f
∂x

(x(t))+
∂g

∂x
(x(t))u(t)+

∂ℓ

∂x
(x(t))µ(t)

)
(15)

one has that

ϱ̇(t) =
ξ(t)λ(u)(t)− ξ(t)λ(u)(t)

λ(w)(t)
= 0. (16)

Clearly, holding Assumption 1, from the solution properties
of the Lipschitz-continuous differential equations, we have

ϱ(t) = ϱ(tk + Tp)−
∫ τ

tk+Tp

ϱ̇(τ)dτ (17)

which, taking into account (16) and recalling that ϱ(tk +
Tp) = −1, leads to the following expression:

ϱ(t) =
λ(u)(t)

λ(w)(t)
= −1, ∀t ∈ [tk, tk + Tp] (18)

yielding the statement. In the multidimensional case, these
arguments are still valid, with the understanding that
element-wise operations should be used in (13)–(18).

We conclude this section by discussing some important
consequences of the theoretical findings in Theorem 1.

Remark 3: From Theorem 1, we observe that:
• A joint Hamiltonian H and a common covector λ of

the min-max problem can be defined. H can be picked
as H(u) and λ(t) = λ(u)(t) = −λ(w)(t), or vice-versa2.
Hence,

u∗(t) = argminu H(x(t), λ(t), u(t), w(t)), (19a)
w∗(t) = argminw H(x(t),−λ(t), u(t), w(t)) (19b)

2One can pick H(w) as joint Hamiltonian. In this case, the signs of the
covectors are inverted.

for u and w such that u(t) ∈ U and w(t) ∈ W , for all
t ∈ [tk, tk + Tp].

• There exists a NE of the min-max problem which co-
incides with the joint Hamiltonian saddle point. In this
situation, a pair (u∗, w∗) exits such that H(u∗, w) ≤
H(u∗, w∗) ≤ H(u,w∗).

• Being the joint Hamiltonian convex in u and concave
in w (i.e., separable), it is sufficient to find only the
solution of one TPBVP. Covectors of both problems are
opposite and they can be obtained from the first-order
necessary conditions from the joint Hamiltonian.

A. Game Separability

The separability of H generally does not imply the
separability of the cost function J , then, the implication
minu maxw J = maxw minu J does not always hold [31].
In the following, we further discuss this aspect.

Indeed, from (7), we observe that the cost function Jw
includes a term that accounts for the terminal cost (∥x̃(tk +
Tp)∥2P), which depends on the state variable and, ultimately,
on both inputs u and w. Therefore, the condition for sepa-
rability —i.e., that the mixed second-order derivative of the
cost function with respect to u and w is identically equal to
zero [31]— is not met in general.

Nonetheless, in our formulation in (1), we have assumed
that the dynamics is affine in u and w. Hence, the policy of
the adversary input w(t) does not depend on the input u(t),
being the two contributions disjoint, but just on the state x(t).
Moreover, it still makes sense to apply our methodology even
in more general scenarios, when the dynamics of u and w
are related in a more complex and non-affine fashion. In fact,
similar to what is assumed in [31], while it makes sense
to develop approaches that are robust with respect to the
worst-case scenario of the adversary input, it is unrealistic
to assume that such an input can change in an adaptive
fashion with the input. In other words, even in more complex
scenarios, it is always reasonable to assume that the worst-
case adversary input is set “at first,” and it is not changed as
the game evolves as a feedback of the control input.

Hence, in view of these considerations, and keeping in
mind the inherent complexity of the nonlinear problem
under investigation, which forces us to deal with sub-optimal
solutions, we believe that the solutions of our PMP-based
differential game are still useful. The example reported in the
following section help illustrate our method and demonstrate
the validity of the proposed approach.

IV. NUMERICAL EXAMPLE

We a Van der Pol oscillator with exogenous input u and
uncertainty w affecting the parameter φ, which yield the
following planar system of (nonautonomous) equations:

ẋ1 = x2

ẋ2 = (φ+ w)(1− x2
1)x2 − x1 + u

(20)

where we set φ = 0.5 and w ≤ 0.7. Here, the prediction
model assumes w = 0. By employing the robust cost
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Fig. 1: Evolution of (a) the state variables x(t) =
(x1(t), x2(t)), (b) the input signals u(t), and (c) state-
space trajectories for the Van der Pol oscillator discussed
in Section IV for the three different NMPC approaches:
unperturbed (blue), nominal (orange), and our PMP-based
RNMPC (yellow).

function (7), the corresponding Hamiltonians are

H(u) = Ru2 − γw2 + λ1ẋ1 + λ2ẋ2 (21a)

H(w) = −Ru2 + γw2 + λ1ẋ1 + λ2ẋ2 (21b)

whereas it has been accounted that u∗ = argminu J and
w∗ = argmaxw J . The Euler-Lagrange equations are jointly
defined as

λ̇1 = λ2(2x1x2(w + φ) + 1)

λ̇2 = λ2(w + φ)(x2
1 − 1)− λ1.

(22)

Then, the optimal control and adversary input are, over the
corresponding sets, equal to

u∗ = satU

(
− λ2

2R

)
(23a)

w∗ = satW

(
λ2x2

x2
1 − 1

2γ

)
(23b)

respectively, where sat(·) is the element-wise saturation
operator that copes with the constraints [30]. By the saddle
condition of the min-max game, λ(w) = −λ(u).

In our numerical simulations, we set the initial condition
as x0 = [2,−1]⊤, while the reference is set to xr = [0, 0]⊤.
Concerning the NMPC parameters, we set TS = 0.01,
Tp = 0.2, γ = 3, R = 1, and P = diag(110, 1). Finally,
concerning the input and state constraints, we set X ≡ Rnx

and |u| ≤ 10. Note that, the extension to the state-constrained
problem can be carried out by augmenting the cost function
with a suitable penalty, by following the approach in [30].

In Fig. 1, we report the comparison among three different
scenarios: i) a nominal NMPC approach where the plant
and the prediction model are described by the same equa-
tions (unperturbed NMPC); ii) a nominal NMPC approach
that does not take into account the parameter uncertainty
(nominal NMPC); and iii) our PMP-based RNMPC. All
the three approaches are able to track the reference, still,
with a different behavior along the trajectory. Trivially, the
unperturbed scenario has the best tracking performance,
offering lower oscillations during the time evolution. This
scenario is shown as a best-case scenario, but it is not
achievable if the exact dynamics of the system is not know,
as in most real-world scenarios. On the other hand, it is worth
noticing that our RNMPC presents less evident overshoots
in the oscillations peaks than the nominal approach.

These findings confirm the effectiveness of the proposed
PMP-based RNMPC. Indeed, the latter is also able to reach
better tracking performance providing a lower control au-
thority with respect the nominal scenario: by considering the
overall impulse as I =

∫ tf
t0

|u(t)|dt, one has that IuNMPC =
1514.2, InNMPC = 2558.7, and IrNMPC = 1978.1 (for
the unperturbed, nominal, and robust scenarios, respectively)
highlighting how our RNMPC has better tracking perfor-
mances with a reduced control impulse.
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V. CONCLUSION

We proposed a novel robust NMPC scheme. By taking
advantage of the classic min-max formulation for robust
optimization, we obtained a control law by developing an
algorithm based on the Pontryagin solution of a zero-sum
differential game, turning the min-max problem into a two-
points boundary value problem. Hence, the optimal control
law was obtained by searching the Hamiltonian saddle point,
which is the analogue of the NE of the game. We showed
that, although the separability of the Hamiltonian does not
strictly imply the separability of the game, under suitable
conditions on system dynamics, the adversary input “plays
as first” and it does not change its strategy along the game.
Thanks to this results, we were able to define a joint Hamil-
tonian (and, consequently, a single set of covectors) whose
minimization leads to the NE of the game, i.e., the solution of
the min-max problem. The proposed methodology was, then,
applied to the Van der Pol oscillator nonlinear dynamics. The
results highlighted the effectiveness of the control algorithm,
showing how the robust controller was more effective with
respect to the nominal controller, in terms of control effort
and reference tracking. Throughout the text, we assumed that
all optimization problems are feasible and that the nonlinear
system, when the optimal control policy is in closed-loop,
is stable. Obtaining conditions for recursive feasibility and
robust stability is a topic of on-going research.
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