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Abstract— 5G networks have the potential to provide external
sensor data and offload computations for future industrial
mobile robots. To enable these benefits while maintaining safety,
we propose a modular architecture, including an onboard
safety filter for the velocity control loop. The safety filter
leverages robust control barrier functions to guarantee safety
from collisions under bounded localization uncertainty. Initial
experiments are performed to quantify the localization uncer-
tainty and generate suitable bounds for the safety filter. We then
derive the safety filter, and analyze its conservatism numerically.
Finally, the method is demonstrated in experiments using an
ABB Mobile YuMi® Research Platform robot.

I. INTRODUCTION

A. Motivation

As 5G networks are expanding, more applications are
being adapted to run partially or entirely over the network,
instead of locally on individual devices. At the same time,
connected devices can benefit from receiving additional
information from other sensors, which they would otherwise
not have access to. This is possible thanks to previously un-
achievable network characteristics, such as lower latency and
guarantees on quality of service. For industrial applications,
mobile robots are highlighted as one of the key use cases for
5G in a recent white paper by the 5G Alliance for Connected
Industries and Automation (5G-ACIA) [1].

Connected mobile robots could get access to information
about their environment from external sensors, and at the
same time leverage the computational power available in
edge or cloud computers to run more complex algorithms,
enabling simplifications of the robots. To enable these bene-
fits while maintaining safety, a method for taking external
sensor information into account is required. This method
needs to consider the current uncertainty in localization
to avoid obstacles it cannot detect with its own sensors.
Furthermore, the method should allow the robot to continue
operating, even if a new path plan is not yet available from
the offloaded planner, as long as it is safe.

An example of this is shown in Fig. 1, where an oil spill
has been detected by an external sensor and communicated to
the robot over the network, and the robot now has to deviate
from the previously planned path to remain safe. The path
plan is shown as a blue dashed line, with the green cross
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Fig. 1: ABB Mobile YuMi® Research Platform robot avoid-
ing an obstacle identified by an external sensor. The robot
is following a path plan in dashed blue, with the navigation
goal marked by a green cross. The red arrow indicates an
unsafe input that tracks the path, while the green arrow is
a safe input generated by our method. The safe input takes
into account the localization uncertainty shown in pink, and
therefore deviates from the path to avoid entering a forbidden
zone illustrated as the red area with the oil spill on the
ground.

representing the navigation goal. The red arrow illustrates
the best path-following velocity for the robot, while the
green arrow represents a safe velocity input that deviates
from the plan to make sure the robot does not enter the area
containing the oil spill. The safe input takes into account the
localization uncertainty shown in pink, guaranteeing that the
robot remains safe even if its true position would be closer
to the obstacle.

To address the scenario shown in Fig. 1, this paper
proposes a method for safe navigation under localization
uncertainty. We build on the popular open-source navigation
framework Nav2 [2], and implement a robust safety filter
to ensure the velocity inputs sent to the robot are safe
when navigating based on the localization estimates. We
leverage Control Barrier Functions (CBFs) [3] to implement
this safety filter, and evaluate our method in numerical
simulations as well as in experiments on a real mobile robot.
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B. Related Work

Before presenting the contribution of this paper, we review
related work on networked mobile robots and safe navigation
in general, as well as more specific approaches of modeling
the perception uncertainty and compensating for it in the
controller to guarantee safety.

Recently, several works [4], [5], [6] have investigated the
possibility of offloading algorithms from industrial mobile
robots, including those related to the lowest levels of control
and safety. However, if a lot of data is sent over the same
network by several devices, bandwidth limitations might
have to be taken into account in the controller [7], [8].
Alternatively, dynamic bandwidth allocation can be used
to ensure that time-criticality is taken into account when
distributing network resources [9]. In this paper, we focus
on safe control running locally on the robot, while allowing
less time-critical algorithms, such as motion planning, to be
offloaded.

To safely navigate a mobile robot, one approach is to
ensure the path plan is safe from collisions, and then track
the path plan with the motion controller. Numerous methods
for planning collision-free trajectories are covered in many
textbooks, e.g., [10]. Another approach is to separate plan-
ning from safe control by defining a set of safe states, and
then ensuring safety using tools such as Hamilton–Jacobi
reachability analysis [11] or CBFs [3], deviating from the
plan only when it is unsafe. There are also works combining
the two approaches, for example, model predictive control
together with a CBF to ensure the robot follows a plan
guaranteed to be safe [12].

If perception is included in the control loop, the uncer-
tainty introduced from sensor-based estimation also needs
to be taken into account, which has been addressed by
recent works on so-called perception-based control. If safety
is taken into account in the path planning level, there are
methods to guarantee tracking despite uncertainties in state
estimation [13], [14], [15]. For safe navigation, this also
requires taking the uncertainty into account when planning
however, which could be difficult if the uncertainty in
position changes. For the separated planning and control
approach, authors have recently developed methods using
CBFs to take various perception uncertainties into account,
either from sensor-based localization [16], [17] or from direct
obstacle detection [18], [19]. We are inspired by this line of
work. In particular, we extend the setup in [18], where all
obstacles in the environment are represented as a single CBF,
to a robust setting with uncertain localization.

C. Contribution

The contribution of this paper is threefold. First, we
experimentally characterize the localization uncertainty in
a navigation system on a mobile robot. By comparing a
trajectory estimated from localizing in a previously built
map with the same trajectory recorded by a motion capture
system, we obtain a model for the localization uncertainty.

Second, we introduce a method for safe navigation taking
into account the identified localization uncertainty, which we

will refer to as a safety filter. This is achieved by including
the entire environment in a CBF, representing obstacles
identified both by the robot, as well as by other sensors in the
same network. The localization uncertainty is then accounted
for when using this CBF as a constraint in an optimization
problem to generate safe control inputs.

Third, we implement and evaluate this safety filter in
navigation experiments. We first analyze the robustness of
the proposed approach in numerical simulations, and then
validate the achieved safety in an experimental campaign
using an ABB Mobile YuMi®Research Platform robot.

D. Outline

Section II introduces and motivates the problem of safe
navigation under localization uncertainty with an experiment.
A system architecture for navigation including a safety filter
is then proposed to address the problem of uncertain local-
ization. In Section III, we present the theory necessary to im-
plement the safety filter in the proposed system architecture.
The method is evaluated in Section IV, both in simulations
and in real experiments to show the challenges and benefits
of being robust to localization uncertainty. Finally, in Section
V we conclude the paper and discuss possible future work.

II. PROBLEM FORMULATION

In this section, we start with a motivating example to
show the importance of considering localization uncertainty
for safe navigation. We then propose a system architecture
capable of taking the uncertainty into account, and finally
define the problem considered in this paper - the design of
the safety filter in the proposed architecture.

A. Motivating Example

Throughout this paper, we will use an ABB Mobile
YuMi® Research Platform robot to further explore the
scenario shown in Fig. 1. The robot is running the ROS2
navigation stack (Nav2 [2]) on its onboard computer, an
Intel NUC with an eighth generation i7 CPU and 32GB
of RAM. The navigation stack enables functions such as
mapping, localization, path planning and path following. In
terms of sensors, the robot has two SICK TIM781S Lidars,
one facing forward and one facing backward, which it can
use to create, or localize in, a map of the obstacles. The robot
has four steerable wheels, enabling omnidirectional drive.
The wheels are also equipped with encoders that are used
for local odometry estimation.

By combining scan matching of Lidar measurements
against the obstacle map with wheel encoder information,
the localization algorithm estimates the position of the robot.
This position estimate, which we will denote x̂ in the follow-
ing, enables feedback control for path following, which the
robot uses to follow a path plan generated by one of the path
planners available in Nav2. However, while the localization
estimate can be used to drive the robot towards its goal,
it will not correspond exactly to the true position x. Due to
uncertainties in the estimation it will deviate with some error
e such that x̂ = x+e, which could have an impact on safety.
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Fig. 2: Results from running a localization experiment in WARA Robotics. (Left) Trajectories generated by remotely
controlling the robot. The solid blue curve indicate the localization estimate and the dashed black the ground truth obtained
from the motion capture system. (Right) The localization error as a function of time for the experiment shown to the left.

To investigate the localization uncertainty in the navigation
system, we perform a localization experiment with the robot
in the WASP Research Arena for Robotics (WARA Robotics)
at ABB. The robot is remote-controlled to first create a
map, and we then proceed to drive the robot around while
running localization in the map. Whenever a new estimate
is available, we record it together with the latest position
available from the Qualisys motion capture system installed
in WARA Robotics. The resulting trajectories are shown in
the left part of Fig. 2, and the corresponding localization
error is shown in the right part of the Figure. The error was
computed by aligning the trajectories and calculating position
differences ||x̂ − x||2 using evo [20]. Most of the time, the
localization error varies from 0 cm to 15 cm, but in one case
it comes close to 25 cm.

B. System Architecture

We propose the system architecture for safe navigation
illustrated in Fig. 3. The blue boxes indicate features already
available in Nav2 [2]. By combining scan matching of Lidar
measurements against the obstacle map with wheel encoder
information, the localization algorithm estimates x̂, which is
the current position of the robot in the free space Xfree. This
estimate is then used by the path following module to make
the robot follow an externally computed path plan, which is
achieved by applying the velocity control uref.

A safety filter is included in the proposed navigation sys-
tem. It ensures that a safe velocity input usafe is implemented.
This is achieved by comparing the path following velocity
uref with a distance function generated from obstacle mea-
surements. The boundary of the free space ∂Xfree represents
obstacles in the robot map, as well as obstacles identified by
external sensors.

C. Problem Definition

The problem in this paper concerns the design of the
safety filter with respect to the identified uncertainty and the
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Fig. 3: Proposed modular system architecture for safe navi-
gation of a networked mobile robot.

uncertainty model x̂ = x+ e. More specifically, we want to
design a filter that outputs the closest safe velocities usafe to
input reference velocities uref, based on localization estimates
x̂ and obstacle measurements ∂Xfree, which are assumed to
be noise-free.

With some assumptions on the uncertainty e based on the
localization experiment, we will show in the next section how
this can be solved as an optimization problem that guarantees
safe navigation. This is achieved by ensuring the true position
x remains in a set C ⊂ Xfree, where C is chosen so that the
entire robot avoids collisions with ∂Xfree. In the derivation
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of the safety filter, a single integrator system model ẋ = u
will be considered for the robot, but the method can also be
generalized to other models, which is covered briefly.

III. SAFE NAVIGATION UNDER LOCALIZATION
UNCERTAINTY

In this section, the necessary tools to create a robust safety
filter are introduced. We first review basic safety and CBF
formalism, and then show how this can be used to achieve
safe navigation. Finally, the robust safety filter is derived.

A. Preliminaries

For general nonlinear systems, CBFs can be used to
guarantee safety. Consider a nonlinear control affine system:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn, u ∈ Rm, f : Rn → Rn and
g : Rn → Rn×m are locally Lipschitz continuous
on Rn. Given a locally Lipschitz continuous state-feedback
controller k : Rn → Rm, the closed-loop system dynamics
of the system can be defined as:

ẋ = fcl(x) = f(x) + g(x)k(x). (2)

We can then define the safe set C ⊂ Rn as the 0-superlevel
set of a continuously differentiable function h : Rn → R
yielding:

C = {x ∈ Rn : h(x) ≥ 0}. (3)

Further assuming C is nonempty and contains no isolated
points, enables the following definition:

Definition 3.1: (Forward Invariant & Safe) A set C ⊂ Rn

is forward invariant if for every initial condition x(t0) ∈ C,
the solution x(t) to system (2) satisfies x(t) ∈ C for all
t ≥ t0. The system (2) is safe with respect to the set C if
the set C is forward invariant.

Using the notion of extended class K∞ functions
(α ∈ K∞,e) and that c is a regular value of a
continuously differentiable function h : Rn → R if
h(x) = c −→ ∂h

∂x (x) ̸= 0, we can define a zeroing
CBF as follows:

Definition 3.2: (Control barrier function (CBF), [21]) Let
C ⊂ Rn be the 0-superlevel set of a continuously differen-
tiable function h : Rn → R with 0 a regular value. The
function h is a CBF for system (1) if there exists α ∈ K∞,e

such that for all x ∈ C:

sup
u∈Rm

∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u > −α(h(x)). (4)

Given such a CBF h(x) further enables defining a set of
control inputs that render the safe set C forward invariant:

Kh(x) =

{
u ∈ Rm :

∂h

∂x
(x)f(x) +

∂h

∂x
(x)g(x)u ≥ −α(h(x))

}
.

(5)
To obtain a CBF for safe navigation, we use a smooth under-
approximation of the Euclidean Distance Field (EDF) from
[18]. This method generates a function d(x) representing the
distance to the closest obstacle p from a given position x in

the free space Xfree (which is assumed to have a smooth
boundary)

d(x) := inf
p∈∂Xfree

||x− p||2 (6)

where the gradient of d satisfies the Eikonal equation

|∇d| = 1 (7)

as well as the boundary constraints d(x) = 0 and ∂d(x)
∂n = 1

on x ∈ ∂Xfree. Here, ∂d(x)
∂n is the gradient of d(x) along n,

the normal of the boundary. This allows defining the safe set
and barrier function as follows

C := {x ∈ Xfree ⊂ Rn : hd(x) ≥ 0}, (8)
hd(x) = d(x)− γ (9)

where γ > 0 is the safety margin, i.e. the minimal distance
to maintain from all obstacles.

In a navigation scenario, we assume the controller k(x)
in (2) is designed such that the robot is following a path
plan using a nominal, potentially unsafe control input uref(x),
which is assumed to be locally Lipschitz. As proposed
in [22], we define a set of safe inputs Khd

(x) as in (5),
but based on hd(x). This enables filtering the output of
the nominal controller using optimization, to select a u that
deviates minimally from the reference, while ensuring the
control signal remains in the set of safe inputs

u∗ = argmin
u∈Rm

1

2
||u− uref(x)||22 (CBF OP)

s.t. u ∈ Khd
(x).

B. Robust Control Barrier Functions for Localization Un-
certainty

In Section II, we showed that when the robot navigates
based on state estimates x̂ from localization, the localization
error is not negligible, and needs to be taken into account in
the controller to guarantee safety. We also defined a model
for the relationship between localization estimates and true
positions of the robot, and stated that the design of the safety
filter has to take into account how this uncertainty affects the
system model, and the barrier function we use to keep the
system safe.

If we assume to know an upper bound ϵ on the error,
i.e. ||e||2 = ||x̂ − x||2 ≤ ϵ, the effects of controlling based
on x̂ instead of x can be investigated. For example, the
state influences the control signal through the CBF and its
gradient. In Fig. 4, the gradient of hd is visualized as arrows,
and an example of possible x̂ and x is shown in blue and
black respectively, given ϵ = 0.5. From Fig. 4, it is clear that
this uncertainty could mean the true state x is 0.5m closer
to an obstacle than the estimate x̂. Even more importantly,
it is also shown that an uncertainty in x could mean the
gradients differ, meaning ∂hd

∂x (x) ̸= ∂hd

∂x (x̂), which needs to
be considered when choosing safe inputs.

We now propose the optimization problem for the robust
safety filter before proceeding to derive the condition used
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Fig. 4: Illustrates impact of localization uncertainty on the
gradient of an EDF. A 2D obstacle map is shown, with
arrows representing the direction of the gradient and obstacle
measurements represented as circles.

in the optimization problem to guarantee safety

usafe(x̂) = argmin
u∈Rm

1

2
||u− uref(x̂)||22 (RCBF OP)

subject to u ∈ Khd,robust(x̂)

where

Khd,robust(x̂) =

{u ∈ Rm :
∂hd

∂x
(x̂)u− ϵLα − 2.0||u||2 > −α(hd(x̂))}.

In the remainder of this section, we derive the safety condi-
tion in (RCBF OP), and show that choosing u ∈ Khd,robust(x̂)
will ensure the pair (x, u) satisfies the original CBF condition
(4). This safety condition follows as a natural extension to
the condition in the optimization based controller (MR-OP)
from [16], but certain adaptations have been made for the
safe navigation problem and the specific CBF we consider
in this work.

Showing that the optimization-based controller guarantees
safe navigation is relatively straight-forward. We first define
a function c(x, u) = ∂hd

∂x (x)f(x)+ ∂hd

∂x (x)g(x)u+α(hd(x)).
To show that u ∈ Khd,robust(x̂) ensures safety of system (1)
is equivalent to showing c(x, u) ≥ 0. Using the relation
x̂ = x+ e with ||x̂−x||2 ≤ ϵ, we can lower-bound c(x, u)
for all x in the set {x ∈ C : ||x̂− x||2 ≤ ϵ}

inf
||x̂−x||2≤ϵ

c(x, u) = inf
||e||2≤ϵ

c(x̂− e, u)

= c(x̂, u) + inf
||e||2≤ϵ

c(x̂− e, u)− c(x̂, u)

≥ c(x̂, u)− sup
||e||2≤ϵ

|c(x̂− e, u)− c(x̂, u)|.

We then assume that α(hd(x)) is Lipschitz continuous on C
with coefficient Lα. We also assume that the velocities are
inputs for a single integrator system model, i.e. f(x) = 0 and

g(x) = I. Combining these assumptions with the properties
of hd(x) enables bounding |c(x̂− e, u)− c(x̂, u)|:

|c(x̂− e, u)− c(x̂, u)| =

=

∣∣∣∣∂hd

∂x
(x̂− e)u+ α(hd(x̂− e))−

(
∂hd

∂x
(x̂)u+ α(hd(x̂))

)∣∣∣∣
≤

∣∣∣∣∣∣∣∣∂hd

∂x
(x̂− e)− ∂hd

∂x
(x̂)

∣∣∣∣∣∣∣∣
2

||u||2 + Lα◦hd ||(x̂− e)− x̂||2

≤ 2.0 ||u||2 + ϵLα

where in the last step, ||∂hd

∂x (x̂ − e) − ∂hd

∂x (x̂)||2 was
bounded by 2.0 since the gradient of hd(x) satisfies
the Eikonal equation (Eq. 7). Also, for the same reason
Lα◦hd

= LαLhd
= Lα, since Lhd

= 1. Finally, this
means that

inf
||x̂−x||2≤ϵ

c(x, u) ≥ c(x̂, u)− 2.0 ||u||2 − ϵLα,

and since we enforce c(x̂, u) − 2.0||u||2 − ϵLα ≥ 0 in
(RCBF OP), inf

||x̂−x||2≤ϵ
c(x, u) ≥ 0, and the true system

remains safe.
The two major differences to previous work concern

the bound ||∂hd

∂x (x̂ − e) − ∂hd

∂x (x̂)||2 and the assumption
that the control inputs are velocities for a single integrator
system model. The bound is necessary for CBFs with a
discontinuous gradient, which will be present if it represents
a map with more than one obstacle. The bound reduces
to a very simple form when assuming a single integrator
model, and while the assumption is limiting, the method can
be extended to guarantee safe navigation for more complex
system models. This was demonstrated in [23] for non-robust
CBFs, where a reference control input for another model was
translated into single integrator inputs for safety filtering, and
then transformed back. However, the bound might still be
overly conservative in most cases, which is discussed more
in the following remark.

Remark 1: While the same Lipschitz argument as in pre-
vious work was used to bound the term involving α(hd(x)),
this argument is not valid for ||∂hd

∂x (x̂−e)− ∂hd

∂x (x̂)||2 in our
case, since the barrier function hd(x), despite being smooth,
has a discontinuous gradient. This is illustrated in Fig. 4,
where the gradient switches when moving between areas
closer to obstacles along different walls. Instead, we find
a global robustness bound based on the maximum change of
direction of the gradient ∂hd

∂x in the safe set, which yields an
upper bound for all x ∈ {x ∈ C : ||x̂− x||2 ≤ ϵ}, namely∣∣∣∣∂hd

∂x
(x̂)u− ∂hd

∂x
(x)u

∣∣∣∣ ≤ 2.0||u||2.

Note that there is no explicit relation to the uncertainty,
but if ϵ = 0, we would have ∂hd

∂x (x̂) = ∂hd

∂x (x). The same
would be true if the robot is moving alongside a flat wall,
since the gradient would remain constant despite localization
uncertainty. In most cases, this bound will be overly conser-
vative, and inspired by the motivation in [24], where a trade-
off between safety and performance was investigated for
robust control barrier functions, we will consider replacing
the factor 2.0 with a coefficient β ∈ [0.0, 2.0]. Therefore, in
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Fig. 5: Results from numerical navigation experiment, dashed red lines indicating the safety margin. (Left) Trajectories with
β set to zero or the worst-case value 2.0. (Right) Zoomed in plot showing the opening where the robot either got stuck due
to conservatism (β = 2.0) or violated the safety constraint (β = 0.0), indicated with a black and red arrow respectively.

the next section we will first perform numerical experiments
to find a suitable value for β, and then implement the safety
filter with this coefficient β on the real robot.

IV. EXPERIMENTS

In this section, the robust CBF is implemented and used
for safe navigation. Safety is achieved by filtering reference
tracking velocities on the robot, based on an EDF generated
from already mapped obstacles in the environment, as well
as obstacles detected by external sensors. We first analyze
the conservatism of the robust safety filter in numerical
experiments, and then compare the robust safety filter with a
nominal safety filter in navigation experiments on the mobile
robot.

A. Numerical Experiments

To analyze the conservatism of the robust safety filter, the
robot is simulated as a single integrator in a 2D environment
with fixed obstacles, and a path was planned so that following
the plan perfectly will violate safety conditions. The simula-
tions as well as the safety filter runs at 100Hz. We implement
a relaxed version of the (RCBF OP), adding slack with a
large penalty to ensure feasibility as was done in [16]. The
robustness term is chosen as ϵ = 0.25m, and hd(x) defined
as in (9), using a safety margin γ = 0.29m. This makes safe
navigation to the goal difficult, but not impossible, since the
most narrow openings along the path are 1.1m wide. To
simulate localization uncertainty, we subtract ϵ from the x2-
coordinate in the robot’s state estimates that are used for path
following.

In the left of Fig. 5, results are shown from a navigation
experiment with a safety filter using either a worst-case
robustness term (β = 2.0) or no compensation (β = 0.0)

for uncertainty in gradient. Both robots moved towards the
top of the opening due to the localization uncertainty in x2.
A zoomed-in view of this opening is shown in the right of
Fig. 5. While β = 2.0 formally guarantees safety with respect
to the worst-case change in gradient direction, this value is
too conservative and the robot gets stuck, as indicated by the
black arrow. On the other hand, β = 0.0 results in a safety
violation in the point indicated by the red arrow, after which
the experiment was aborted. This indicates that a β > 0 is
necessary for safety.

Intuitively, if the reference velocities from the path follow-
ing module brings the robot close to the boundary of the safe
set, at some point the terms not related to u in the CBF condi-
tion in (RCBF OP) will cancel, i.e. −α(hd(x̂)) + ϵLα → 0,
requiring ∂hd

∂x (x̂)u − β||u||2 > 0. If β ≥ 1, there will be
no theoretically feasible u, since the gradient is normalized,
resulting in

∣∣∣∣∂hd

∂x (x̂)u
∣∣∣∣
2
− β||u||2 ≤ 0. However, for any

β < 2.0, the theoretical safety guarantees no longer hold
- by changing β we make a trade-off between safety and
performance.

To ensure this trade-off prioritizes safety while still achiev-
ing acceptable performance, we repeat the experiment for
some different values of β around and below 1.0, and again
interrupt experiments when safety is violated. Results are
shown in the left of Fig. 6, zooming in on the same narrow
opening as before. As expected, the trajectories associated
with both β = 1.05 and β = 1.0 got stuck close to the
safety margin showed in dashed red. On the other hand, lower
values of β resulted in safety violations. As shown in the
right of Fig. 6, only the trajectory generated with β = 0.95
passed the opening safely (and reached the goal), so for this
reason, the safety filter with β = 0.95 will be implemented
and evaluated in the experiment with the real robot.
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Fig. 6: Conservatism analysis of safety filters with varying values of the robustness coefficient. The dashed red line indicates
the safety margin. (Left) Zoomed in plot of resulting trajectories with varying values of β in the same opening as in Fig. 5.
Black arrows indicate the ends of trajectories from experiments where a robot got stuck due to overly conservative parameter
choice, and red arrows indicate where an experiment was interrupted due to a safety violation. (Right) Shows the trajectory
with β = 0.95 for which the robot successfully reached the goal without any safety violations.

B. Mobile Robot Experiments

In the following, the safety filter is implemented in the
navigation stack of an ABB Mobile YuMi® Research Plat-
form robot according to the architecture shown previously
in Fig. 3. The robot is running path following at 10Hz on
its onboard computer. We implement our safety filter taking
into account the uncertainty identified before by setting
ϵ = 0.25m, and use a robustness term β = 0.95. In the
experiment, we compare our method with a safety filter based
on the nominal CBF optimization problem (CBF OP) using
x̂ as input. For both of these, we choose γ = 0.5m in the
CBF hd(x), since the robot is 33 cm wide and 30 cm long.

The safety filter is then evaluated in a navigation scenario
as illustrated in Fig. 1. The robot is given coordinates in
its map representing the boundary of the forbidden zone,
which it needs to avoid in addition to the obstacles already
in the map. The results for both methods are shown in
Fig. 7. While no safety violations occurred using our method,
using a safety filter not taking the uncertainty into account
resulted in violations, both near the forbidden zone and near
an obstacle in the map. Furthermore, even if the nominal
safety filter is supposed to keep at least x̂ safe, it still failed
to ensure x̂ ∈ C. This was likely due to model inaccuracies,
i.e. the mobile robot having inertia which was not considered
by guaranteeing safety of the single integrator model.

Another probable explanation is that this is an artifact
of using safety guarantees designed for continuous systems
with a path following algorithm running at 10Hz, which
also resulted in jerky movement close to the safety margin.
The main reason for this choice of frequency was the EDF
implementation being computationally cumbersome, thus

limiting the rate at which the safety filter receives distance
information.

It would be interesting to investigate how the computa-
tional efficiency could be improved. For example, if structure
in the environment could be used to make the distance field
representation more efficient, this could also be exploited to
design separate CBFs for obstacles with smooth or constant
distance field gradients, which could also reduce the need
for conservatism as discussed in the previous section. This
could also be a good middle ground between representing
each obstacle as one CBF and representing all obstacles with
one CBF.

V. CONCLUSIONS

In this paper, we showed the importance of taking into
account localization uncertainty when controlling mobile
robots to maintain a safe distance with respect to unsafe
regions, such as physical obstacles and forbidden areas. We
proposed a navigation system architecture, and quantified the
localization uncertainty for this system. We then derived a
robust safety filter to compensate for the identified uncer-
tainty, analyzed its robustness properties in simulation, and
finally demonstrated its performance on a real mobile robot.

Aside from looking into a more efficient EDF implementa-
tion, future work could consider discrete-time control barrier
functions to remedy the issue with the safety filter’s low
update frequency. We would also like to extend the problem
formulation to time-varying and non-symmetric localization
uncertainties, and investigate how localization uncertainty
and safe navigation is affected by other aspects, for instance
bandwidth availability, when localization is offloaded.
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Fig. 7: Results from experiments in WARA Robotics. (Left) True and estimated trajectory from navigation experiment with
robust safety filter. (Right) True and estimated trajectory from navigation experiment with nominal safety filter.
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