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Abstract— In this work, we investigate the data-driven safe
control synthesis problem for unknown dynamic systems. We
first formulate the safety synthesis problem as a robust convex
program (RCP) based on notion of control barrier function.
To resolve the issue of unknown system dynamic, we follow
the existing approach by converting the RCP to a scenario
convex program (SCP) by randomly collecting finite samples of
system trajectory. However, to improve the sample efficiency to
achieve a desired confidence bound, we provide a new posteriori
method with validation tests. Specifically, after collecting a
set of data for the SCP, we further collect another set of
independent validate data as posterior information to test the
obtained solution. We derive a new overall confidence bound
for the safety of the controller that connects the original sample
data, the support constraints, and the validation data. The
efficiency of the proposed approach is illustrated by a case
study of room temperature control. We show that, compared
with existing methods, the proposed approach can significantly
reduce the required number of sample data to achieve a desired
confidence bound.

I. INTRODUCTION

With the increasing complexity of engineering cyber-
physical systems, ensuring safety has become a top pri-
ority in their design. This is particularly important as the
consequences of failures or errors in these systems can be
severe, ranging from property damage to loss of life. In order
to ensure that these systems operate safely and correctly,
engineers and developers often turn to formal methods.
These methods provide a rigorous framework for analyzing
and verifying system behavior, and can provide provable
guarantees of correctness and safety [1].

In the field of formal synthesis of safe controllers, there
has been a significant amount of research conducted in
recent years, resulting in the development of various ap-
proaches. These approaches can broadly be categorized
as either abstraction-based or abstraction-free. Abstraction-
based methods involve constructing a finite abstraction of
the original system, typically achieved by discretizing the
state space [2]–[4]. Symbolic algorithms can then be applied
to this abstraction to synthesize a controller, which can
subsequently be refined to the original system. However,
a significant drawback of this approach is the curse of
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dimensionality, which limits its suitability for large-scale
systems. On the other hand, abstraction-free approaches for
safe control synthesis are becoming increasingly popular,
with one widely-used method being control barrier functions
(CBF) [5]–[8]. This approach offers advantages in terms
of scalability, making it more feasible for high-dimensional
systems.

The aforementioned techniques for safe control synthesis
rely on having knowledge of the system model, which can be
costly or even impossible for complex systems. To address
this issue, recent research has advocated for the use of
data-driven approaches. For instance, several techniques have
been developed to construct formal abstractions directly from
data with confidence guarantees, as described in [9], [10].
Additionally, there are works that combine control barrier
functions with collected data to synthesize controllers when
the system model is partially or fully unknown; see, e.g.,
[11], [12].

Recently, there has been a surge of interest in data-driven
verification and synthesis for safety, driven in part by the
development of the theory scenario convex programming
[13], [14]. This approach provides a sound method for
safety verification or synthesis by connecting the number
of sample data to the confidence bound. For instance, for
deterministic systems, the safety verification problem has
been addressed in [15] for both discrete and continuous-time
cases. Additionally, in [16], safety verification for stochastic
systems has been investigated, and the results have been
extended to the synthesis problem in [17]. Furthermore, the
wait-and-judge approach [18] and the repetitive approach
[19] have also been used to improve the sample efficiency
of the safety verification problem.

In this work, we focus on studying the data-driven control
synthesis of unknown discrete-time deterministic systems for
safety specifications. Our method also builds upon the tools
of control barrier functions and scenario theory. Specifically,
we follow the approach in [17] by converting the safety
control problem into a robust convex program (RCP) that
searches for a control barrier function, ultimately solved by a
scenario convex program. However, motivated by the recent
results in [20], we introduce a new mechanism called the
validation test for the control synthesis problem. Specifically,
our approach requires to collect two different data sets:

• We first collect N data to formulate the scenario convex
program in order to obtain a solution;

• Then, we collect N0 independent validation data as
posterior information to test the obtained solution such
that the confidence bound can be further improved.
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In contrast to [18] and [19] for the verification problem,
where the information of support constraints number and
the information of violation frequency in validation data are
used independently, here we not only consider the synthesis
problem, but also use these two posterior information jointly.
Therefore, our main result is an overall performance bound
that connects all three information: the original sample data,
support constraints, and validation data, in a uniform manner.
We show that, compared with existing methods, the proposed
approach can significantly reduce the required number of
sample data to achieve a desired confidence bound.

II. PRELIMINARY AND PROBLEM STATEMENT

A. Notations

We denote by R, R+
0 N := {1, 2, 3, . . . } and N0 :=

{0, 1, 2, . . . } the set of real numbers, non-negative real num-
bers, positive integers and non-negative integers, respectively.
The indicator function is denoted by 1A(X) : X → {0, 1}
where 1A(x) = 1 if and only if x ∈ A. Given N vectors
xi ∈ Rni , ni ∈ N and i ∈ {1, . . . , N}, we denote by
[x1; . . . ;xn] and [x1, . . . , xn] the corresponding column and
row vectors, respectively. We denote by ∥x∥ and ∥x∥∞ the
Euclidean norm and infinity norm of x ∈ Rn, respectively.
The induced norm of matrix A ∈ Rm×n is defined by
∥A∥ = sup∥x∥=1 ∥Ax∥.

We consider a probability space with the tuple (∆,F ,P)
where ∆ is the sample space, F is a σ-algebra on ∆ and
P is a probability measure defined over F . Given N ∈ N,
N0 ∋ m ≤ n, and t ∈ (0, 1), the Beta cumulative probability
function is defined as BN (t;m) :=

∑m
i=0

(
N
i

)
ti(1− t)N−i.

B. System Model

We consider a discrete-time dynamical system (dt-DS)

S = (X,U, f),

where X ⊆ Rn is a Borel space representing state space of
system, U ⊆ Rm is a set of control inputs and f : X ×
U → X is an unknown function describing the dynamic of
the system. A (static state-feedback) controller is a mapping
C : X → U that determines the control input based on the
current state. Given a controller C and initial state x(0) ∈ X ,
the trajectory of the system is defined by

ζ(x(0)) = x(0)x(1) . . . x(n) . . . ,

where x(t+ 1) = f(x(t), C(x(t))) for all t = 0, 1, . . . . For
any T ∈ N, we denote by ζT (x(0)) = x(0)x(1) · · ·x(T ) the
finite prefix of trajectory ζ(x(0)) of length T +1. We denote
by SC the closed-loop system under control. We assume that
the control input set is described as a polytope, i.e.,

U = {u ∈ Rm | Au ≤ B} (1)

where A ∈ Rr×m, B ∈ Rr and r ∈ N.
Although the dynamic function f is unknown, we assume

that we can simulate the system by selecting initializing the
system at state x ∈ X , applying input u ∈ U and observing
the next state state x′ ∈ X of the system. Such a tuple

(x, u, x′) is referred to as a data. Suppose that we assign a
distribution P, where ∆ = X × U , to sample N i.i.d. pair
(xi, ui). Then the collected dataset D is

D := {(xi, ui, f(xi, ui)) | i = 1, . . . , N} ⊆ X×U×X. (2)

C. Problem Statement

Given a dt-DS S = (X,U, f) and a 3-tuple property

φ = (X0, Xu, T ),

where X0 ⊆ X denotes the initial region, Xu ⊆ X denotes
the unsafe region, and T denotes the horizon of the property.
We assume that X0 ∩ Xu = ∅. We say a trajectory is safe
if it does not contain an unsafe state in Xu, and we denote
the set of safety trajectories w.r.t. φ by

Ξφ = {x0 . . . xT ∈ XT | ∀i ∈ 0, . . . , T s.t xi ̸∈ Xu}.

Given controller C, we say that the closed-loop system
SC satisfies property φ, denoted by SC |= φ if

∀x(0) ∈ X0 : ζT (x(0)) ∈ Ξφ.

The problem that we solve in this work is stated as follows.
Problem 1: Consider an unknown dt-DS S = (X,U, f)

and a safety property φ = (X0, Xu, T ). Using data in the
form of (2) to find a controller C : X → U such that SC |= φ
with a confidence of (1− β) ∈ [0, 1], i.e.,

PN (SC |= φ) ≥ 1− β,

where PN is the N -cartesian product of distribution P.

III. SCENARIO APPROACH USING BARRIER
CERTIFICATES

The problem described in Problem 1 has already been
addressed in the literature by [17]. The basic idea is to
use control barrier functions (CBF) as a sufficient condition
for ensuring safety properties, and then to solve a convex
program to identify candidate CBFs through a scenario
approach. We will briefly describe the existing method since
our new approach builds upon it.

Definition 1 (control barrier functions): Given a dt-DS
S = (X,U, f) and property φ = (X0, Xu, T ), a function B :
X → R is said to be a control barrier function (CBF) for S
and φ if there exist constants λ, γ ∈ R, c ≥ 0, and functions
Fı(x) : X → R, ı = 1, . . . ,m with [F1(x); . . . ;Fm(x)] ∈ U
such that

B(x) < γ, ∀x ∈ X0, (3)
B(x) ≥ λ, ∀x ∈ Xu, (4)

B(f(x, u)) +
m∑
ı=1

(uı − Fı(x)) ≤ B(x) + c, (5)

∀x ∈ X,∀(u1, . . . , um) ∈ U,

λ− γ ≥ cT, (6)

As shown in [17], for any dt-DS, if we can find a CBF
and its associated parameters, then controller C : X → U
defined by

C(x) = [F1(x); . . . ;Fm(x)],∀x ∈ X. (7)
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ensures the satisfication of SC |= φ.
To identify a suitable CBF, a commonly adopted approach

is to search among candidate polynomial functions. Specif-
ically, a polynomial CBF B(q, x) with degree k ∈ N is of
form

B(q, x) =
k∑

a1=0

. . .

k∑
an=0

qa1,...,an
(xa1

1 xa2
2 . . . xan

n ), (8)

where q is is the vector for all coefficients and for
∑n

i=1 ai >
k, we have qa1,...,an = 0. Similarly, for each ı ∈ {1, . . . ,m},
a polynomial function Fı(pı, x) with degree kı is of form

Fı(pı, x) =

kı∑
a1=0

. . .

kı∑
am=0

pıa1,...,am
(xa1

1 xa2
2 . . . xam

m ), (9)

where pı is the vector for all coefficients and for
∑n

i=m ai >
kı, we have pıa1,...,am

= 0. We define p = (p1, . . . , pm) as
the overall coefficient vector.

Then by restricting to candidate polynomial functions,
one can synthesize a CBF-based controller by solving the
following Robust Convex Program (RCP):

RCP:



min
d

K

s.t. max
z∈{1,2,3,4}

gz(x, u, d) ≤ 0,∀x ∈ X,u ∈ U,

d = (K,λ, γ, c, q, p),

K ∈ R, c ≥ 0, λ− γ ≥ cT
(10)

where

g1(x, d) = (B(q, x)− γ)1X0
(x), (11)

g2(x, d) = (−B(q, x) + λ)1Xu
(x), (12)

g3(x, u, d) = B(q, f(x, u))− B(q, x) (13)

+

m∑
ı=1

(uı − Fı(p
ı, x))− c−K, (14)

g4(x, d) = max
i∈{1,...,r}

(A[F1(p1, x); . . . ;Fm(pm, x)]−B)i.

(15)

Intuitively, if the optimal value for the above RCP,
denoted by K∗, satisfies K∗ < 0, then we know that
B(q, x) is a valid CBF with associated control functions
F (p, x) = [F (p1, x); . . . ;F (pm, x)]. Specifically, g1(·)-g3(·)
ensure that B(q, x) satisfies definition of CBF and g4(·)
enforces that the selected control inputs are within the
polytope defined in (1). For technical purpose, we further
assume that all constraints are Lipschitz continuous with
respect to x and u, and we denote by L > 0 the Lipschitz
constant for all gz, z = 1, 2, 3, 4.

However, the above RCP-based approach can only be used
when the dynamic function f is known. When f is unknown,
one can make use of the collected dataset D in (2) to solve
the RCP using the scenario approach. Specifically, one needs
to replace constraint g3(x, u, d) that should hold for all x ∈
X and u ∈ U by a set of N constraints based on the sampled

data. This leads to the following Scenario Convex Program
(SCP)

SCPN :



min
d

K

s.t. max
z∈{1,2,4}

{gz(x, d), g3(xi, ui, d)} ≤ 0,

∀x ∈ X,∀i ∈ {1, . . . , N}
d = (K,λ, γ, c, q, p),

K ∈ R, c ≥ 0, λ− γ ≥ cT

(16)

For the above SCPN , we assume that the optimal solution
exists and is unique for any possible number N of samples,
which is a standard assumption in the literature; see, e.g.,
[21] for more discussion on this assumption.

Note that the decision variables are same in RCP and
SCPN . In the rest of paper, given a solution d̂, we denote
by d̂ |= O if d̂ is a feasible solution of O where O is a
optimization problem.

The following result established in [17] shows how to
solve Problem 1 based on SCPN .

Theorem 1 ([17]): Given dt-DS S = (X,U, f) with
unknown f and safety property φ = (X0, Xu, T ). Let
d∗N = (K∗

N , λ∗, γ∗, c∗, q∗, p∗) the optimal solution to SCPN

and C(x) = [F1(p
∗
1, x); . . . ;Fm(p∗m, x)] be the associated

controller. Then we have SC |= φ with a confidence of at
least 1− β if, for some ϵ ∈ [0, 1], we have

N ≥ N(ϵ, β) and K∗
N + LU−1(ϵ) ≤ 0, (17)

where

N(ϵ, β) := min

{
N ∈ N

∣∣∣∣∣
Q+P+3∑

i=0

(
N

i

)
(ϵ)i(1− ϵ)N−i ≤ β

}
with Q and P the number of coefficients in the CBF and the
total number of coefficients in control functions, respectively,
and U(r) : R+

0 → [0, 1] is a function related to geometry of
X × U and sampling distribution P.

Remark 1: The reader is referred to [14] for the general
relationship among function U(·), distribution P(·) and space
X × U . Particularly, if the the sampling distribution P is
uniform over X × U and X × U is n-dimensional hyper-
rectangular, then function U is given by [15]

U(r) = π
n
2 rn

2nΓ(n2 + 1)Vol(X × U)

where Γ(n2 +1) = (n2 +1)! when n is even and Γ(n2 +1) =
n
2 × (n2 − 1) × · · · × 1

2 otherwise, and Vol(·) denotes the
volume of a set.

IV. MAIN RESULTS USING POSTERIOR INFORMATION

In the previous section, we reviewed existing methods that
provide a sound data-driven solution to Problem 1. However,
as noted in Remark 1, the number of sample data required to
achieve a desired confidence bound is generally exponential
with respect to the dimension of the system. Therefore, the
question naturally arises: How can we improve the sampling
efficiency of the synthesis procedure? To address this issue,
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we present a more efficient method that leverages additional
information.

In the context of SCP, there are two additional posteriori
information that are closely related to the performance bound
of the program:

• one is the support constraint whose removal can im-
prove the optimal value of the SCP;

• the other is the violation frequency of a new set of
validation data.

As shown in [20], these two posteriori information can be
leveraged together to improve the sample efficiency in order
to achieve a desired performance bound. In this section, we
show how these information can be used in the context of
data-driven control synthesis.

First, we review the definition of support constraint.
Definition 2 (Support Constraint, [22]): For a scenario

convex program SCPN and i ∈ {1, . . . , N}, constraint
g3(xi, ui, d) ≤ 0 is said to be a support constraint if the
removal of the constraint improves optimal value of SCPN .

Intuitively, the number of support constraints characterizes
the complexity of SCPN . As shown in [23], if the number
of support constraints is much smaller than the number of
decision variables, the complexity of SCPN is much lower
than we guess in a prior. It means that we can provide the
same guarantee by less samples.

The concept of violate frequency arises in the valida-
tion test procedure. Specifically, suppose that we form an
SCPN from a set D of N sample data and let d∗N be the
optimal solution to SCPN . The validation test requires a
new set D′ of N0 independent samples of state-input pair
{(x′

1, u
′
k), . . . , (x

′
N0

, u′
N0

)}. Then the violation frequency is
defined as follows.

Definition 3 (Violation Frequencies, [24]): Let d∗N be the
optimal solution to SCPN formed by data set D with N
samples. Let D′ be a set of N0 independent new samples.
Then the violation frequency with respect to N0 and d∗N is
defined by

RN0 =

N0∑
k=1

v(k), (18)

where v(k) is the the violation indicator of d∗N for the k-th
sample defined by

v(k) =

{
0 g3(x

′
k, u

′
k, d

∗
N ) ≤ 0

1 otherwise . (19)

Before we provide our main result, we make the following
assumption regarding SCPN .

Assumption 1: (Non-degeneracy [25]) The solution to
SCPN coincides with probability 1 with the solution to the
program only defined by support constraints.

The above assumption is a very mild one for convex pro-
grams. It effectively rules out situations where the solution
of the program with only support constraints lies on the
boundaries of other constraints with a non-zero probability.

Now, let d∗N be the optimal solution of SCPN with N∗

the number of support constraints. The following main result
of this paper establishes the connection between the safety

of a controlled system and the optimal solution of SCPN , its
number of support constraints and the violation frequency of
a new set of data.

Theorem 2: Given dt-DS S = (X,U, f) with unknown
f and safety property φ = (X0, Xu, T ). Let d∗N =
(K∗

N , λ∗, γ∗, c∗, q∗, p∗) the optimal solution to SCPN formed
by a set D of N data and N∗ be the number of support
constraints. Let D′ be a collection of N0 new independent
data and RN0

be the violation frequency w.r.t. N0 and
d∗N . Let C(x) = [F1(p

∗
1, x); . . . ;Fm(p∗m, x)] be controller

associated with d∗N . Then we have SC |= φ with a confidence
of at least 1− β if

K∗
N + LU−1(1− κ∗) ≤ 0, (20)

where κ∗ is the unique solution of

β

N + 1

N∑
i=N∗

(
i

N∗

)
κi−N −

(
N

N∗

)
BN0

(1− κ;RN0
) = 0.

(21)
Remark 2: Before we proceed further, let us discuss some

computational considerations regarding the derived perfor-
mance bound. First, we can obtain an upper bound of the
Lipschitz constant L in Theorem 2 by using the result in
Lemma 2 of [17]. Second, in cases where the number of
constraints is large, it may be challenging to accurately
count the number of support constraints. However, for convex
optimization problems, the support constraint is also an
active constraint [26]. Therefore, we can use the number of
active constraints in SCPN as an upper bound for the number
of support constraints. Finally, we note that the solution
of Equation (21) may not have an analytic expression.
Nevertheless, we can use bisection to numerically search for
the solution using the procedure in Algorithm 1 of [20].

Algorithm 1: Data-driven system Safe Control Syn-
thesis for Unknown dt-DS

Input: S = (X,U, f), φ = (X0, Xu, T ), β ∈ [0, 1],
L ∈ R, degree k, k′ ∈ N in (8) and (9).

1 Select a probability distribution P over X × U
2 Choose number of samples N and N0

3 Collect N samples
D1 = {(xi, ui, x

′
i) ∈ X × U ×X | x′

i = f(xi, ui)}
4 Collect N0 additional samples

D2 = {(xi, ui, x
′
i) ∈ X × U ×X | x′

i = f(xi, ui)}
5 Solve SCPN by D1 and obtain

d∗ = (K∗, λ∗, c∗, q∗, p∗)
6 Compute the number of support constraints N∗

7 Compute violation frequency RN0 by D2

8 Compute κ∗ according to Equation (21)
Output: Controller C defined by Equation (7) has

guarantee that SC |= φ with confidence
1− β if K∗

N + LU−1(1− κ∗) ≤ 0

Now we discuss how to properly select sample numbers
N and N0 to achieve confidence β. For each N , we can
solve SCPN repetitively to estimate optimal objective value
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K̂∗
N and support constraints number N̂∗ in expectation.

According to analysis in [20], the expectation of RN0/N0

is lower than N∗/N with high confidence. Therefore, we
adopt R̂N0

= N0 × N̂∗/N as estimated violation frequency.
Since U(·) is an increasing function, to guarantee Equa-

tion (20), we have

κ∗ ≥ 1− U

(
−K̂∗

N

L

)
. (22)

We denote by gβN,N0
(κ,N∗, RN0) the LHS of Equation (21).

From [20] we know that function gβN,N0
(·) is decreasing w.r.t.

κ. Therefore, we can pick N and N0 such that

gβN,N0

(
1− U

(
−K̂∗

N

L

)
, N̂∗, R̂N0

)
≥ 0. (23)

In summary, given a desired confidence bound β, we can
determine the N and N0 by following steps:

1) Pick N and N0 arbitrary;
2) Calculate K̂∗

N , N̂∗, R̂N0
as discussion above;

3) If Equation (23) holds, then choose the current N and
N0; otherwise increase N and N0 and return to step 2).

It is important to note that while following the steps
outlined above to select values for N and N0, it is possible
that condition (20) may not be satisfied. In such cases, we
must independently sample a new set of N + N0 data and
solve a new instance of SCPN . In order to reduce the time
required, we can over-approximate K∗

N and N∗ to obtain a
more conservative bound. The overall steps involved in this
process are summarized in Algorithm 1.

V. CASE STUDY OF ROOM TEMPERATURE CONTROL

To illustrate the efficiency of the proposed approach, we
adopt the room temperature control problem from [17].
Specifically, we control room with a heater whose dynamic
function is given by

S : x(t+1) = x(t)+τs(αe(Te−x(t))+αh(Th−x(t))u(t)),

where Te = 15, Th = 45, αe = 8× 10−3, αh = 3.6× 10−3

and τs = 5. We define X0 = [24, 25], Xu = [22.5, 23] ∪
[26, 26.5], X = [22.5, 26.5], U = [0, 1] and T = 5. We
assume that the dynamic of system is unknown and the
objective is to synthesize a controller under which the room
temporal x(t) in a comfortable region between 23◦ and 26◦

within time horizon T = 5 with confidence of 95%.
For both CBF and controller function, we consider can-

didate polynomial functions with degree k = k1 = 4. Then
the CBF and controller function are in the form of

B(q, x) = xQx⊤ and C(p,T) = xPx⊤,

where x = [1, x, x2] is a row vector and

Q =

q0 q1
2

q2
3

q1
2

q2
3

q3
2

q2
3

q3
2 q4

 ,P =

p0 p1

2
p2

3
p1

2
p2

3
p3

2
p2

3
p3

2 p4

 (24)

are two coefficient matrices. By enforcing ∥Q∥ ≤ 0.1 and
∥P∥ ≤ 0.05, the Lipschitz constant L can be upper bounded

Fig. 1: Computed B(x) of SCPN . The green and red dashed
line represents solution γ∗ and λ∗, respectively.

by 11.63. We choose uniform distribution to sample state-
input pairs. Since the state-input space is a 2-dimensional
rectangular, function U(r) is computed by U(r) = π

16r
2.

Results by Existing Method: First, we use the results
of [17] as stated in Theorem 1 to solve the data-driven
control synthesis problem. Let β = 0.05. By choosing
ϵ = 7.492 × 10−6, we have LU−1(ϵ) = 0.07. Therefore,
the minimum number of samples needed for the scenario
convex program to ensure the confidence bound is N =
2733296. We then solve the SCPN with acquired samples
and obtain the optimal objective value K∗

N = −0.1486. Since
K∗

N + LU−1(ϵ) = −0.0786 ≤ 0, we know that SC |= φ is
ensured with a confidence of at least 1− β = 95%.

Results by Our Method: Now we consider the posteriori
method proposed in this paper. We also select β = 0.05. Note
that there is no need to fix ϵ in a priori. Here, we choose
N = 140000 to form the SCP and choose N0 = 70000 for
the validation test. Then we solve SCPN and obtain K∗

N =
−0.149, λ∗ = −68.14, γ∗ = −69.64 and c∗ = 0.2998. We
use number of active constraints, which is 1, to upper bound
the number of support constraints. In the validation test, the
violation frequency is 0, which essentially means that the
solution to the SCP is already good enough to deserve higher
confidence bound. The solution of Equation (21) is κ∗ =
0.9999723. Since K∗

N + LU−1(1 − κ∗) = −0.011 ≤ 0, we
know that SC |= φ is ensured with a confidence of at least
1− β = 95%. The CBF computed from SCPN is

B(x) =1.948× 10−3x+ 0.2395x2

− 3.841× 10−2x3 + 9.740× 10−4x4

and the obtained controller is

C(x) =1.208× 10−5 + 9.768× 10−2x− 3.438× 10−3x2

+ 2.418× 10−5x3 + 4.594× 10−7x4.

The constructed B(x) is shown in Figure 1. From Figure 1
we know that conditions (3) and (4) are satisfied. Since we
know the underlying dynamic of system S, we also draw
constraint g3(·) in Figure 2, which shows that condition (5) is
also satisfied. Therefore, B(x) is indeed a CBF and SC |= φ,
i.e., controlled system is safe.

In the above example, we get zero violation frequency for
the experiment. To further show the average performance,
we run Algorithm 1 for 100 times with N = 140000 and
N0 = 70000. The number of active constraint is always
1. We record RN0

in the 100 runs in Table I. As Table I,
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Fig. 2: Satisfaction of condition 5 of computed B(x) and
C(x).

RN0 = 0 has the highest occurrence frequency. It has been
shown in [27] that we have high confidence that RN0

/N0

can not be much higher than N∗/N , where N∗ is number of
support constraints. Since N∗ ≤ 1 mostly in SCPN , we know
that RN0

cannot much higher than 0.5 with high confidence.
Therefore, the outcome of Table I is consistent with the
result in [27]. Moreover, the expected number of samples Ne

needed for our method is Ne = (N +N0)/0.42 = 500000.

TABLE I: Record of RN0 for 100 runs of Algorithm 1
RN0

0 1 2 3 6
frequency 42 34 17 5 2

According to the above experiments, our approach uses a
significantly smaller sample size compared to the method
proposed in [17]. This is mainly because the number of
support constraints is much lower than the number of de-
cision variables. This observation suggests that the com-
plexity of the SCP is considerably lower than we initially
assumed. Moreover, the frequency of violations is low in
most cases, indicating that our solution provides the desired
level of confidence. Collectively, these findings highlight the
effectiveness of our approach in addressing the SCP with
a reduced sample size while ensuring the same level of
confidence.

VI. CONCLUSION

In this work, we presented a new approach for synthesizing
safety controllers for unknown dynamic systems using data.
Our method involves solving a scenario convex program
formed by the data, followed by a validity test to improve
confidence. To achieve this, we derived a new overall perfor-
mance bound that combines the information from the original
sample data, support constraints, and violation frequency.
Our experiments demonstrated that our approach is more
sample-efficient than existing methods. In this work, we only
consider deterministic dynamic systems. In the future, we
plan to extend our results to the stochastic case.
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