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Abstract— We provide new necessary and sufficient condi-
tions (with low computational complexity) for the input-output
decoupling problem of Boolean control networks. Instrumental
in our approach, the introduction of a new concept relying
on the construction of some input-output-decoupling matrices
that have to satisfy some conditions to ascertain whether a
given Boolean control network is input-output decoupled. A
numerical example is provided to illustrate our theoretical
developments.

I. INTRODUCTION

Boolean networks, which have been first introduced by
Kauffman in [1], are known to be of great importance in
the description and simulation of the behaviour of a variety
of biological systems and physiological processes, such
as genetic regulatory networks [2], cell growth, apoptosis
and differentiation [3]. The success in the development of
Boolean Networks (BNs) and Boolean Control Networks
(BCNs) is mainly attributed to the powerful algebraic frame-
work developed by Cheng and co-authors [4], that allows
to represent these logical networks as linear state space
representations with canonical state vectors. This allowed to
recast most of the common systems and control problems
into the BCN world (see, for instance, [5]–[18]).

The Input-output (IO)-decoupling problem, also known as
Morgan’s problem [19], is no exception, and is among the
problems that have been dealt with from the BCN point
of view. The first definition of BCN IO-decoupling was
introduced by Valcher in [20], where some algebraic criteria
for the characterization of IO-decoupling were proposed.
However, the computational complexity of these criteria is
quite high, and as such, it is difficult to apply them to BCNs
with a large number of nodes. As an alternative, a graph
theory based approach was presented in [21]. Unfortunately,
this approach relies on a large observability matrix to de-
termine the proper vertex partition, and does not provide a
constructive procedure for the verification of the conditions
required for IO-decoupling. Although the work in [22], [23]
deals with IO-decoupling via state feedback, it does not
provide a procedure that allows to check whether a given
open-loop BCN system is IO-decoupled.
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The objective of the present paper is to provide verifiable
necessary and sufficient conditions (with low time and space
complexities) allowing to check whether an open-loop BCN
system is IO-decoupled or not. These conditions rely on the
construction of an appropriate matrix (from the the system’s
information) with space complexity less than or equal to
O(22n+1), where n is the number of state nodes. Note
that the space complexity of our approach is lower than
that of the observability matrix obtained in [21], which is
O(22

n+n). The time complexity of the verification condition
proposed in [20] is O(m22

n

), while that of our proposed
algorithm is O(m23n), where m is the number of input
nodes. Interestingly, our proposed approach can be applied,
after minor modifications, to handle other problems such as
disturbance decoupling.

The remainder of this paper is organized as follows.
Section II presents the notations used throughout the paper,
as well as some preliminaries on semi-tensor product (STP)
of matrices and algebraic forms of BCNs. Section III presents
our main results. In Section IV, a numerical example is given
to illustrate the effectiveness of the proposed approach. Some
concluding remarks are provided in Section V.

II. PRELIMINARIES

A. Notations

The set of nonnegative integers is denoted by N. The set
of all m × n real matrices is denoted by Mm×n. The i-
th column (row) of a matrix M is denoted by Coli(M)
(Rowi(M)). The cardinality of a set Ω is denoted by
|Ω|. The set of all m × n Boolean matrices is denoted
by Bm×n := {B ∈ Mm×n|Bij ∈ D}, where D =
{0, 1}. The set of all m × n logical matrices is denoted
by Lm×n := {L ∈ Bm×n|Coli(L) ∈ ∆m, i = 1, . . . , n},
where ∆m = {δim|δim = Coli(Im), i = 1, . . . ,m} and
Im = diag{1, . . . , 1},m ≥ 2. We will denote ∆2 by ∆,
and the logical matrix [δi1m · · · δinm ] by δm[i1 · · · in]. We
define the scalar-valued function sgn(a) as a function that
returns 0 if a = 0 and 1 if a ̸= 0. For a given matrix
M = (Mij)p×q , we define sgn(M) = (sgn(Mij))p×q .
We define V (Ω) := δi1n + δi2n + · · · + δimn , where Ω =
{δi1n , δi2n , . . . , δimn }. The kronecker product is denoted by
⊗, and the swap matrix with indices n and m is defined
as W[n,m] = [Im ⊗ δ1n · · · Im ⊗ δnn ]. We denote the n-

dimensional vectors of ones and zeros by 1n :=
n∑

i=1

δin and

0n := [0 · · · 0]⊤, respectively.
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B. STP basics

Given two matrices P ∈ Mm×n and Q ∈ Mp×q , the STP
of P and Q is defined as

P ⋉Q := (P ⊗ It/n)(Q⊗ It/p),

where t is the least common multiple of n and p. In this
paper, the default matrix product is STP and the symbol ⋉
is omitted. Define the one-to-one mapping φ from D to ∆,
such that φ(1) = δ12 and φ(0) = δ22 . For any logical variable
Xi ∈ D, i = 1, . . . , n and any n-ary Boolean function
f(X1, . . . , Xn), one has the following vector forms

φ(Xi) =

[
Xi

1−Xi

]
and

φ(f(X1, . . . , Xn)) =

[
f(X1, . . . , Xn)

1− f(X1, . . . , Xn)

]
,

where i = 1, . . . , n. The following lemma shows that for
any Boolean function, there is a structure matrix such that
its vector form can be depicted via a linear form.

Lemma 1: [24] For an n−ary Boolean function
f(X1, . . . , Xn), there exists a unique structure matrix Lf ∈
L2×2n such that the vector form of f(X1, . . . , Xn) is ex-
pressed as

φ(f(X1, . . . , Xn)) = Lf ⋉n
i=1 xi,

where xi = φ(Xi), i = 1, . . . , n.
In addition, the following lemma is useful for the intro-

duction of BCN algebraic forms.
Lemma 2: [24] Assume{

y = My ⋉n
i=1 xi,

z = Mz ⋉n
i=1 xi,

where xi, y, z ∈ ∆, i = 1, 2, . . . , n,My,Mz ∈ L2×2n . Then

yz = (My ∗Mz)⋉n
i=1 xi,

where My∗Mz = [Col1(My)⊗Col1(Mz) · · · Col2n(My)⊗
Col2n(Mz)].

C. Algebraic forms of BCNs

Consider the following BCN:{
Xi(t+ 1) = fi(X(t), U(t)),
Yj(t) = gj(X(t)),

(1)

where X(t) = (X1(t), . . . , Xn(t)), U(t) = (U1(t), . . . ,
Um(t)) and Y (t) = (Y1(t), . . . , Ym(t)) are the state, input
and output of the system, respectively, fi and gj are Boolean
functions.

Let xi = φ(Xi), ui = φ(Ui) and yi = φ(Yi). From
Lemma 1 and Lemma 2, BCN (1) is transformed into the
following algebraic form:{

x(t+ 1) = Lu(t)x(t),
yi(t) = Hix(t),

(2)

where x(t) = ⋉n
i=1xi(t) ∈ ∆2n and u(t) = ⋉m

i=1ui(t) ∈
∆2m are vector forms of X(t) and U(t), respectively, yi(t) ∈
∆, L ∈ L2n×2m+n and Hi ∈ L2×2n , i = 1, . . . ,m.

III. MAIN RESULTS

The IO-decoupling of BCN is defined in the following
definition provided in [20].

Definition 1: BCN (2) is said to be IO-decoupled if for
every index i ∈ {1, . . . ,m} and every initial state x(0) ∈
∆2n , if {u(t)}+∞

t=0 and {û(t)}+∞
t=0 are two input sequences

characterized by the fact that their i-th entries coincide at
every time instant, i.e.,

ui(t) = ûi(t),∀t ∈ N,

then the output sequences {y(t)}+∞
t=0 and {ŷ(t)}+∞

t=0 , gen-
erated by BCN (2) corresponding to x(0), {u(t)}+∞

t=0 and
{û(t)}+∞

t=0 , respectively, satisfy

yi(t) = ŷi(t),∀t ∈ N.
In the sequel, we will include all inputs with ui = δj2

into the set Ωij = {u|u = δk1

2i−1 ⋉ δj2 ⋉ δk2

2m−i , k1 ∈
{1, . . . , 2i−1}, k2 ∈ {1, . . . , 2m−i}}, where i ∈ {1, . . . ,m}
and j = 1, 2.

According to Definition 1, an IO-decoupled BCN requires
that for each index i ∈ {1, . . . ,m} and each initial state
x(0) ∈ ∆2n , {yi(t)}+∞

t=1 remains unchanged for any input
sequence {u(t)}+∞

t=0 satisfying u(t) ∈ Ωijt , t ∈ N, jt = 1, 2.
It follows that, for each index i ∈ {1, . . . ,m} and each initial
state x(0) ∈ ∆2n , yi(1) remains unchanged for any u(0) ∈
Ωij0 , j0 = 1, 2. Therefore, one has HiLV (Ωij0)x(0) ∈
{2m−1δ12 , 2

m−1δ22}, where j0 = 1, 2, and consequently
sgn(HiLV (Ωij0)x(0)) ∈ ∆, j0 = 1, 2. Based on the above
analysis, a necessary condition is provided for the IO-
decoupling of BCNs.

Proposition 1: If BCN (2) is IO-decoupled, then for each
index i ∈ {1, . . . ,m}, one has

sgn(HiL[V (Ωi1) V (Ωi2)]) ∈ L2×2n+1 . (3)
Proof: If there exists an index i ∈ {1, . . . ,m} such

that sgn(HiL[V (Ωi1) V (Ωi2)]) ̸∈ L2×2n+1 , then there exists
a state x ∈ ∆ such that sgn(HiLV (Ωi1)x) = 12 or
sgn(HiLV (Ωi2)x) = 12. Without loss of generality, let
us assume sgn(HiLV (Ωi1)x) = 12. Consequently, there
exist u, û ∈ Ωi1 such that HiLux ̸= HiLûx, which
is a contradiction. Hence, any IO-decoupled BCN should
satisfy sgn(HiL[V (Ωi1) V (Ωi2)]) ∈ L2×2n+1 , where i ∈
{1, . . . ,m}.

Condition (3), which implies that, for each index i ∈
{1, . . . ,m} and each initial state x(0) ∈ ∆2n , yi(1) remains
unchanged for any u(0) ∈ Ωij0 , j0 = 1, 2, is not enough
to ascertain whether a given BCN is IO-decoupled or not.
More conditions are required to verify whether yi(t), t > 1
remains unchanged for any u(t) ∈ Ωijt , jt = 1, 2. I what
follows, we propose a procedure, based on the construc-
tion of m input-output-decoupling (IOD) matrices, namely
F1, . . . , Fm, to verify whether a given BCN is IO-decoupled
or not. The procedural construction of these IOD matrices,
that reflect the output information, is shown in Algorithm 1.
The procedure starts by finding the state subset associated
to a given output. That is, for each index i ∈ {1, . . . ,m}
and j = 1, 2, the initial state subset is given by Γij =
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{x|Hix = δj2}, in which all states satisfy yi = δj2. For
each index i ∈ {1, . . . ,m}, the initial IOD matrix is given
by Fi = sgn(HiL[V (Ωi1) V (Ωi2)]). If there exists one
initial IOD matrix Fi ̸∈ L2×2n+1 , then the given BCN
is not IO-decoupled as per Proposition 1, in which case
Algorithm 1 ends the while loop. Otherwise, for each index
i ∈ {1, . . . ,m} and each state x(t) ∈ ∆2n , yi(t+1) remains
unchanged for all u(t) ∈ Ωijt , jt = 1, 2. In this case, we
check whether yi(t + 1) generated by different states in
Γij remains unchanged, and partition the state subset Γij

accordingly. Specifically, for each index i ∈ {1, . . . ,m} and
any two states x(t), x̂(t) ∈ Γij , j = 1, 2, if FiW[2n,2]x(t) =
FiW[2n,2]x̂(t), then the corresponding yi(t+1) and ŷi(t+1),
generated by x(t) and x̂(t) respectively, are the same for
all inputs u(t) with the same ui(t), in which case we put
x(t) and x̂(t) into the same state subset. Otherwise, there
are some inputs u(t) with the same ui(t) such that the
corresponding yi(t + 1) and ŷi(t + 1), generated by x(t)
and x̂(t) respectively, are different, in which case we put x(t)
and x̂(t) into different state subsets. Executing this procedure
for each state subset Γij , a set of state subsets are obtained
and denoted as Γi1, . . . ,Γiµi

, i ∈ {1, . . . ,m}. Using the
updated state subsets Γi1, . . . ,Γiµi

, Fi is recomputed via
Rowj(Fi) = sgn(

∑
δα
2n

∈Γij

Rowα(L[V (Ωi1) V (Ωi2)])), where

i ∈ {1, . . . ,m}.
Next, we check whether the updated IOD matrices

F1, . . . , Fm are logical matrices, and Algorithm 1 ends the
while loop when one of the following cases occurs.

1) Not all constructed IOD matrices F1, . . . , Fm are log-
ical matrices: If there is an index i ∈ {1, . . . ,m}
such that Fi is not a logical matrix, then there is a
state x ∈ ∆2n , which evolves to two different state
subsets Γij1 and Γij2 under different inputs u, û ∈ ∆2m

with the same ui. As a result, there are two input
sequences {u(t)}+∞

t=0 and {û(t)}+∞
t=0 satisfying ui(t) =

ûi(t),∀t ∈ N such that the corresponding {yi(t)}+∞
t=0

and {ŷi(t)}+∞
t=0 are different. This contradicts with the

definition of IO-decoupling.
2) The constructed IOD matrices F1, . . . , Fm are no

longer updated: If each updated matrix Fi is the same
as the previous matrix, i.e., all state subsets are not
partitioned further, then all states in the same Γij

have the same {yi(t)}+∞
t=0 under any input sequence

{u(t)}+∞
t=0 with the same {ui(t)}+∞

t=0 . This means that
the given BCN is IO-decoupled.

If the updated IOD matrices F1, . . . , Fm are logical ma-
trices and different from the previous IOD matrices, then
the while loop continues, i.e., repeat the above procedure to
partition the state subset Γij further.

Remark 1: For each index i ∈ {1, . . . ,m}, the compu-
tational complexity of the construction of the matrices Fi

is O(µiν
3
i ), where νi = max{|Γi1|, . . . , |Γiµi

|}. Since the
worst case is νi = 2n or µi = 2n, the computational
complexity of Algorithm 1 is O(m23n).

Based on the analysis above, the necessary and sufficient
condition for IO-decoupling can be formulated depending on

Algorithm 1 The construction of F1, . . . , Fm

Input: L, Hi, Ωij ,Γij , i ∈ {1, . . . ,m}, j = 1, 2.
Output: Fi and Γi1, . . . ,Γiµi , i ∈ {1, . . . ,m}.

1: for i = 1 to m, do
2: compute Fi = sgn(HiL[V (Ωi1) V (Ωi2)]);
3: Mi = 02×2n+1 ;
4: µi = 2;
5: while Mi ̸= Fi and Fi ∈ Lµi×2n+1 , do
6: let Mi = Fi;
7: let Γ′

α = {δα2n}, α ∈ {1, . . . , 2n};
8: for j = 1 to µi, do
9: for k = 1 to |Γij | − 1, do

10: if Γ′
γk
ij

̸= ∅, then
11: for l = k + 1 to |Γij |, do
12: if MiW[2n,2]δ

γk
ij

2n = MiW[2n,2]δ
γl
ij

2n ,
then

13: let Γ′
γk
ij

= Γ′
γk
ij
∪ {δγ

l
ij

2n };

14: let Γ′
γl
ij

= ∅;
15: end if
16: end for
17: end if
18: end for
19: end for
20: let µi be the number of all nonemptyset subsets Γ′

γk
ij

;

21: rearrange these nonemptyset subsets Γ′
γk
ij

, denoted by
Γi1, . . . ,Γiµi ;

22: recompute Fi according to Rowj(Fi) =
sgn(

∑
δα
2n

∈Γij

Rowα(L[V (Ωi1) V (Ωi2)]));

23: end while
24: output Fi and Γi1, . . . ,Γiµi .
25: end for

the nature of the IOD matrices F1, . . . , Fm.
Theorem 1: Consider BCN (2) and let the IOD matrices

F1, . . . , Fm be obtained from Algorithm 1. Then, the follow-
ing statements are equivalent.

1) BCN (2) is IO-decoupled.
2) Fi ∈ Lµi×2n+1 , i ∈ {1, . . . ,m}.
3) F i ∈ Lµi×2µi

, where Colj(F iδ
k
2 ) =

sgn(
∑

δα
2n

∈Γij

Colα(Fiδ
k
2 )) and i ∈ {1, . . . ,m}, k = 1, 2.

Proof: (1 ⇒ 2) If there is an Fi satisfying Fi ̸∈
Lµi×2n+1 , then there is a state x and input ui such
that 1⊤

µi
(Fiuix) ̸= 1. Without loss of generality, assume

Rowk1
(Fiuix) = Rowk2

(Fiuix) = 1. Since {yi(t)}+∞
t=0

generated by the states in Γik1
are different from those

generated by the states in Γik2
, there are input sequences

{u(t)}+∞
t=0 and {û(t)}+∞

t=0 with the same {ui(t)}+∞
t=0 such

that {yi(t)}+∞
t=0 and {ŷi(t)}+∞

t=0 generated by the state x
are different. This is a contradiction. Thus, for each index
i ∈ {1, . . . ,m}, Fi obtained from Algorithm 1 is a logical
matrix if the given BCN is IO-decoupled.

(2 ⇒ 3) If there is an F i satisfying F i ̸∈ Lµi×2µi
,

then there is a state subset Γij and ui such that
1⊤
µi
Colj(F iui) ̸= 1. Without loss of generality, assume

(F iui)l1j = (F iui)l2j = 1. Then states in Γij can evolve to
states in Γil1 and Γil2 under some inputs u with the same
ui. According to Algorithm 1, {yi(t)}+∞

t=0 generated by the
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states in Γil1 are different from those generated by states in
Γil2 . Thus, states in Γij generate different output sequences
{yi(t)}+∞

t=0 , in which case Algorithm 1 ends the while loop
due to the fact that Fi is not a logical matrix. This is a
contradiction. Hence, it follows from Fi ∈ Lµi×2µi

that
F i ∈ Lµi×2µi

holds, where i ∈ {1, . . . ,m}.
(3 ⇒ 1) For each index i ∈ {1, . . . ,m}, F i ∈ Lµi×2µi

means that states in Γij evolve to states in the same Γik

for all inputs u ∈ ∆2m with the same ui. For each index
i ∈ {1, . . . ,m} and a given initial state x(0) = δα2n ∈ ∆2n , a
state subset Γij0 satisfying x(0) = δα2n ∈ Γij0 can be found.
Due to the fact that F i ∈ Lµi×2µi

, there is only one Γij1 such
that x(0) evolves to states in Γij1 for all u(0) ∈ ∆2m with
the same ui(0) ∈ ∆. As a result, the corresponding yi(1) is
the same for all u(0) ∈ ∆2m with the same ui(0). Assume
that the given initial state x(0) evolves to a state x(1) ∈ Γij1 .
Due to the fact that F i ∈ Lµi×2µi

, there is only one Γij2

such that x(1) evolves to states in Γij2 for all u(1) ∈ ∆2m

with the same ui(1) ∈ ∆. Thus, the corresponding output
sequence {yi(t)}2t=0 is the same for all {u(t)}1t=0 with the
same {ui(t)}1t=0. Repeating this process, one sees that for a
given initial state x(0) = δα2n , the corresponding {yi(t)}+∞

t=0

is the same for all {u(t)}+∞
t=0 with the same {ui(t)}+∞

t=0 . Due
to the arbitrariness of i and x(0), one can conclude that the
given BCN is IO-decoupled.

Remark 2: Note that F i is computed according to
Colj(F iδ

k
2 ) = sgn(

∑
δα
2n

∈Γij

Colα(Fiδ
k
2 )), where i ∈ {1, . . . ,

m}, k = 1, 2. For each state subset Γij , i ∈ {1, . . . ,m}, j ∈
{1, . . . , µi}, since all states in Γij generate the same output
sequence {yi(t)}+∞

t=0 , one has Colα1
(Fiδ

k
2 ) = Colα2

(Fiδ
k
2 )

if δα1
2n , δ

α2
2n ∈ Γij . Consequently, if Fi ∈ Lµi×2n+1 , one has

1⊤
µi
Colj(F iδ

k
2 ) = 1⊤

µi
sgn(

∑
δα
2n

∈Γij

Colα(Fiδ
k
2 )) = 1. Due to

the arbitrariness of j, k, we confirm that F i ∈ Lµi×2µi
.

Remark 3: For the sake of simplicity, in the present work,
we consider that a given BCN is IO-decoupled if the i-
th output yi is affected only by the i-th input ui, where
i ∈ {1, . . . ,m}. In the general case, where the i-th output
yi is affected by the ji-th input uji , our approach is still
applicable. In fact, for each output yi, i ∈ {1, . . . ,m}, we
use Algorithm 1 to construct a set of IOD matrices, i.e.,
Fi1, . . . , Fim, and then we check, via an exhaustive process
shown in Algorithm 2, whether there are m distinct indexes
j1, . . . , jm such that F1j1 , . . . , Fmjm are logical matrices.
If such IOD matrices exist, then the given BCN is IO-
decoupled. In Algorithm 2, the constructed matrix A ∈
Mm×m! satisfies

1) Aij ∈ {1, . . . ,m}, where i ∈ {1, . . . ,m}, j ∈ {1, . . . ,
m!};

2) for i ∈ {1, . . . ,m!}, A1i, . . . , Ami are distinct;
3) any two columns of A are distinct.

For instance, if m = 3, then one has

A =

 1 1 2 2 3 3
2 3 1 3 1 2
3 2 3 1 2 1



For a given BCN with m = 3, if F1j1 , . . . , Fmjm are logical
matrices when ji = Ai4, then we obtain uj1

uj2

uj3

 =

 0 1 0
0 0 1
1 0 0

 u1

u2

u3


i.e., uj1 = u2, uj2 = u3, uj3 = u1.

Algorithm 2 The solvability algorithm

Input: L, Hi, Ωij ,Γij , i ∈ {1, . . . ,m}, j = 1, 2.
Output: “R”, if the given BCN is IO-decoupled; and “None”,

otherwise.
1: for i = 1 to m, do
2: for j = 1 to m, do
3: compute Fij = sgn(HiL[V (Ωj1) V (Ωj2)]);
4: let Fi = Fij , and execute Steps 3-24 of Algorithm 1;
5: denote Fij = Fi;
6: end for
7: end for
8: construct a matrix A ∈ Mm×m! such that (i) Aij ∈

{1, . . . ,m}, where i ∈ {1, . . . ,m}, j ∈ {1, . . . ,m!}, (ii)
for i ∈ {1, . . . ,m!}, A1i, . . . , Ami are distinct, (iii) any two
columns of A are distinct;

9: r = 0 and k = 1;
10: while r = 0 and k ≤ m!, do
11: denote ji = Aik, i ∈ {1, . . . ,m};
12: if F1j1 , . . . , Fmjm are logical matrices; then
13: r = 1;
14: the mapping between uj1 , . . . , ujm and u1, . . . , um is

as follows: 
uj1

uj2

...
ujm

 =


(δ

A1k
m )⊤

(δ
A2k
m )⊤

...
(δ

Amk
m )⊤




u1

u2

...
um


15: end if
16: k = k + 1;
17: end while
18: if r = 1 then
19: output R = [δ

A1k
m δ

A2k
m · · · δ

Amk
m ]⊤;

20: else
21: output “None”.
22: end if

In the following, we provide a comparative discussion with
the existing results in the literature.

• In light of the results provided in [20], a given
BCN is IO-decoupled if and only if for each index
i ∈ {1, . . . ,m} and each k ∈ N, k ≥ 1, the ma-
trix sgn(Hi(LV (Ωibk)) · · · (LV (Ωib2))(LV (Ωib1))) is
a logical matrix, where bj = 1, 2, j ∈ {1, . . . , k}.
Hence, m22

n+1 matrices need to be checked, which
means that the time complexity of the method is
O(m22

n

). In contrast to the results in [20], the
time complexity of Theorem 1 is much lower (i.e.,
O(m23n)).

• The necessary and sufficient condition of in [21] for IO-
decoupling, states that for each index i ∈ {1, . . . ,m},
the state transition graphs Gi1 and Gi2 must have a
common concolorous and perfect vertex partition, where
Gij is derived from sgn(LV (Ωij)), j = 1, 2. However,
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reference [21] does not provide a constructive procedure
to verify the partitioning conditions mentioned above.

• Although an observability matrix method has been
provided in [21] to obtain a proper vertex partition,
the space complexity of the observability matrix is
O(22

n+n) which is higher than the space complexity
of Fi in our approach, which is O(µi2

n+1).
• Reference [21] does not provide a procedure to test

whether a vertex partition is concolorous and perfect.
In our approach, the BCN is IO-decoupled if and only
if F i is a logical matrix. The computational complexity
of the algorithm dealing with the construction of F i is
O(µ2

i ν
4
i ).

• The work in [22], [23] focused on the IO-decoupling
via state feedback. The obtained results can be used to
verify whether a given BCN is IO-decoupled. However,
only some sufficient conditions are provided since the
IO-decoupling considered in [22], [23] is a special case
of the present paper, which has been proven in [21].

Despite the fact that the role of Algorithm 1 consists
in determining whether a given BCN is IO-decoupled, the
idea might also be leveraged to handle other problems. For
instance, consider the disturbance decoupling problem of the
following BN with disturbances{

x(t+ 1) = Fξ(t)x(t),
y(t) = Hx(t),

(4)

where x(t) ∈ ∆2n , ξ(t) ∈ ∆2q , y(t) ∈ ∆2p are the
state, disturbance and output of the system respectively,
F ∈ L2n×2n+q and H ∈ L2p×2n . BN (4) is disturbance
decoupled if for each initial state x(0) ∈ ∆2n , the output
sequence {y(t)}+∞

t=0 is the same for any disturbance sequence
{ξ(t)}+∞

t=0 with ξ(t) ∈ ∆2q . It is clear that Algorithm 1 can
be used to classify all states into several subsets according
to the output information. In fact, Algorithm 1 can be
employed to construct a matrix Ĥ , each column of which
reflects whether the output sequence of the corresponding
state x ∈ ∆2n is affected by the disturbance sequence.
Meanwhile, some state subsets are obtained, and all states in
the same state subset have the same output sequence under
any disturbance sequence. Based on the constructed matrix
Ĥ and the obtained state subsets, the disturbance decoupling
of BN (4) can be studied.

IV. A NUMERICAL EXAMPLE

This section provides a numerical example to show the
effectiveness of the proposed approach.

Example 1: Consider a reduced sub-network of signal
transduction networks [25], that regulate fundamental bio-
logical processes, which can be modelled as the following
BCN:  X1(t+ 1) = U1(t) ∧ ¬X3(t) ∧ U2(t),

X2(t+ 1) = U2(t),
X3(t+ 1) = ¬(X2(t) ∨ U1(t)) ∧ U2(t),

(5)

where X1, X2, X3 ∈ D are the state nodes expressing genes
Atrboh, Ros and ABL1, respectively, and U1, U2 ∈ D are the

input nodes. The output equations, as given in [21], are as
follows:

Y1(t) = (X1(t) ∧ (X2(t) → X3(t)))
∨(¬X1(t) ∧ ¬X2(t) ∧X3(t)),

Y2(t) = (X1(t) ∧ (X2(t) → X3(t)))
∨(¬X1(t) ∧ ¬X2(t)),

(6)

where Y1, Y2 ∈ D.
Let ui = φ(Ui), xj = φ(Xj) and yk = φ(Yk), where

i, k ∈ {1, 2}, j ∈ {1, 2, 3}. Let u = u1⋉u2 and x = ⋉3
i=1xi.

Using Lemma 1 and Lemma 2, the algebraic forms of (5)
and (6) are obtained as follows: x(t+ 1) = Lu(t)x(t),

y1(t) = H1x(t),
y2(t) = H2x(t),

(7)

where

L = δ8[6 2 6 2 6 2 6 2
8 8 8 8 8 8 8 8
6 6 5 5 6 6 5 5
8 8 8 8 8 8 8 8],

H1 = δ2[1 2 1 1 2 2 1 2],
H2 = δ2[1 2 1 1 2 2 1 1].

To begin with, we use Algorithm 1 to construct matrices
F1 and F2. The initial matrices are

F1 = δ2[2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2],

F2 = δ2[2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1].

The initial state subsets are Γ11 = {δ18 , δ38 , δ48 , δ78}, Γ12 =
{δ28 , δ58 , δ68 , δ88},Γ21 = {δ18 , δ38 , δ48 , δ78 , δ88} and Γ22 = {δ28 , δ58 ,
δ68}. For any two states δα1

8 , δα2
8 ∈ ∆8, α1 ̸= α2, one has

F1W[8,2]δ
α1
8 = F1W[8,2]δ

α2
8 = δ2[2 2],

F2W[8,2]δ
α1
8 = F2W[8,2]δ

α2
8 = δ2[2 1].

Thus, all state subsets Γ11,Γ12,Γ21,Γ22 are not partitioned
after the first while loop. As a result, the matrices F1, F2

obtained after the completion of Algorithm 1 are the initial
matrices. Due to Fi ∈ L2×16, i = 1, 2, BCN (7) is IO-
decoupled as per Theorem 1.

V. CONCLUSION

Two necessary and sufficient conditions have been pro-
posed to determine whether a given BCN is IO-decoupled.
These conditions rely on the nature of some IOD matrices
constructed (via Algorithm 1) from the system’s output
information. The time and space complexities of the pro-
posed approach are lower than the those of the existing
methods (that we are aware of) in the literature. Moreover,
the proposed approach can be used to solve other problems
such the disturbance decoupling. It is worth pointing out
that the authors in [22], [23] dealt with the IO-decoupling
problem via state feedback, relying on the existence of the
IO decomposed form. However, the authors in [21] proved
that an IO-decoupled BCN may not necessarily have an IO-
decomposed form. Therefore, the IO-decoupling problem via
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state feedback for BCNs needs to be investigated further.
This will be part of our future research investigations. It
is undeniable that the computational complexity of the pro-
posed approach is still large, limiting the potential application
of the present work to large-scale BCNs. References [16]–
[18] provided some excellent work related to large-scale
BCNs, which might be helpful for our future research work
on IO-decoupling of large-scale BCNs.
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