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Abstract— Model predictive path-following control (MPFC)
considers geometric reference paths in output spaces with-
out pre-assigned timing information. It combines trajectory
generation and tracking into one receding-horizon optimal
control problem. In this paper, we discuss MPFC without
terminal constraints from a geometric point of view. Specifically,
we consider implicitly parameterized paths and the recently
introduced notion of manifold turnpikes to propose sufficient
conditions for practical convergence of the system output
towards a neighborhood of the reference path. We draw upon a
simulation example to demonstrate the efficacy of the proposed
scheme.

I. INTRODUCTION

Most control tasks may be categorized into set-point
stabilization, trajectory tracking, or path following. While
set-point stabilization considers a single point reference,
trajectory tracking and path following consider a curve in
the output space. Unlike path following, trajectory track-
ing imposes a strict timing requirement on when to be
where on the reference curve. Moreover, path following
is shown to remove fundamental performance limitations
for non-minimum-phase systems introduced by trajectory
tracking [1]. Several schemes have been proposed to address
path following problems. Transverse feedback linearization,
first introduced in [2], is a geometric control scheme that
transforms the original system dynamics into transversal
and tangential subsystems which simplify tackling the prob-
lem [22], [23]. Despite their appeal, these schemes fall short
when it comes to handling system constraints. To this end,
the use of nonlinear model predictive control (NMPC) has
been proposed in the continuous-time setting [6] and labeled
model predictive path-following (MPFC), see also [3], [7],
[11], [20]. The discrete-time counterpart of MPFC is called
model predictive contouring control [16].

Many results on the successful implementation of MPFC
have been reported. In [25], MPFC is successfully applied to
a highly automated vehicle, while [28] combines continuous
re-planning to control a robot in dynamically changing
environments. In [17] an n-trailer vehicle is considered,
while [27] focuses on the geometric reformulation of robot
dynamics and experimental validation. In [24] optimization-
based path following is implemented for acoustic levitation,
while [3] applies MPFC to a laboratory tower crane, and
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[21] uses it for automated aerial videography. Moreover, [19]
combines MPFC with admittance control.

Many proposed MPFC variants admit closed-loop path
convergence guarantees via stabilizing terminal constraints,
see [6], [7]. Nevertheless, the design of such terminal regions
is often challenging. Moreover, explicit inclusion of such
constraints in the optimization increases the computational
burden. Existing results on MPFC without explicit terminal
region constraints, e.g., [11], [20], rely on cost-controllability
assumptions [14]. Moreover, [20] focuses on nonholonomic
mobile robots, and [11] is limited to differentially flat sys-
tems.

The present paper reports results from the thesis [15].
We propose a new route towards closed-loop guarantees for
MPFC schemes without any terminal constraints or terminal
penalties. Building upon ideas from [23], we reformulate
the output path-following problem as a constrained manifold
stabilization problem in the state space. Earlier works on
constrained manifold stabilization using NMPC are, e.g.,
[3], [4]. While [3] provides no formal stability guarantees,
[4] utilizes terminal constraints. In contrast, we draw upon
the concept of manifold turnpikes [8] to show that the
reformulated MPFC optimal control problem (OCP) exhibits
the turnpike phenomenon with respect to the path manifold.

The remainder of the paper is structured as follows: Sec-
tion II recalls constrained output path-following, manifold
stabilization, and transversal coordinates. Section III presents
the proposed MPFC scheme and the main result. In Section
IV, we draw upon a nonholonomic wheeled mobile robot
example to illustrate the efficacy of the scheme. Finally, the
paper ends with conclusions in Section V.

Notation: The set of k-times continuously differentiable
functions is denoted C k. The set of measurable locally
Lebesgue integrable functions from R≥0 to Rnu is denoted
L ∞(R≥0,Rnu). The distance between a point y ∈ Rny and
a closed set A ⊂ Rny is denoted ||y||A := inf

w∈A
||y − w||,

where ||·|| denotes the 2-norm. The Jacobian of a real-valued
function λ ′(x) is denoted ∂λ ′

∂x := ( ∂λ ′
∂x1

, . . . , ∂λ ′
∂xnx

).

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Constrained output path-following

We consider nonlinear control-affine systems of the form

ẋ(t) = f (x(t))+
nu

∑
i=1

gi(x(t))ui(t), x(t0) = x0 (1a)

y(t) = [h1(x), . . . , hny(x)]
⊤, (1b)
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where the state x is restricted to the closed connected set
X ⊆ Rnx , the input u is constrained to the compact set
U ⊂ Rnu , and the output is y ∈ Rny . The initial condition
x0 belongs to a compact set X0 ⊆ X. The vector fields f ,
gi ∀ i ∈ {1, . . . ,nu}, and the functions hi ∀ i ∈ {1, . . . ,ny}
are assumed to be C ∞ functions. We use the shorthands
g := [g1, . . . ,gnu ]

⊤ and h := [h1, . . . ,hny ]
⊤. Additionally, for

any admissible input u(·) such that u(t)∈U, ∀t ≥ t0 and any
initial condition x0 ∈ X0, (1a) is assumed to admit a unique
absolutely continuous solution denoted x(·;x0,u(·)).

The reference path P is defined implicitly via P = {y ∈
Rny : σ(y) = 0}, where σ : Rny → R is a C ∞ function.

Problem 1 (Constrained output path-following). Given the
system (1) and a path P , design a controller such that:

i) The output of the closed-loop system converges asymp-
totically to the path P , i.e., lim

t→∞
||y(t)||P = 0.

ii) The input and state constraints are satisfied for all
times, i.e., x(t) ∈ X, u(t) ∈ U, ∀t ≥ t0.

iii) Additionally, it might be required to follow the path with
a desired speed and direction. □

B. Manifold stabilization

Manifold stabilization can be considered a generalization
of the ubiquitous set-point stabilization problem. While the
latter concerns stabilizing a single point in the state space,
the former actually considers a manifold in the state space as
reference. Similar to [22], [23], we are interested in the case
where the path manifold is a closed (embedded) manifold of
the state space Rnx . To this end, consider the set Γ := {x ∈
Rnx : y = h(x) ∈ P} which consists of all points in the state
space whose image under the output map lie exactly on the
path P .

Definition 1 (Path manifold [22], [23]). The path manifold
Γ⋆ is the largest closed controlled-invariant (i.e., for all x ∈
Γ⋆ there exists a feasible smooth input ũ :R≥0 →U rendering
it an invariant set) n⋆-dimensional submanifold of Γ. □

Assumption 1 (Basic feasibility). The path manifold Γ⋆ is
a non-empty set and Γ⋆ ⊂ X. □

The above assumption allows viewing Problem 1 as a
constrained manifold stabilization problem.

Problem 2 (Constrained manifold stabilization). Given the
system (1) and a path manifold Γ⋆, design a controller such
that:

i) The state of the closed-loop system asymptotically con-
verges to Γ⋆, i.e., lim

t→∞
||x(t)||Γ⋆ = 0.

ii) The input and state constraints are satisfied for all
times, i.e., x(t) ∈ X, u(t) ∈ U, ∀t ≥ t0.

iii) A desired tangential motion on Γ⋆ is achieved. □

Notice that the additional speed and direction requirements
of Problem 1 translate to the desired tangential motion in
Problem 2.

C. Suitable Local Coordinates

It is well-known that suitable coordinate representations
simplify the analysis of path-following problems [7], [22],
[23]. Specifically, one usually transforms the original system
dynamics (1) with respect to the path manifold Γ⋆ into
two interconnected subsystems composed of transversal and
tangential coordinates. The transversal directions denoted by
ξ describe the dynamics moving the system transversely
towards (or away from) the path manifold Γ⋆. On the other
hand, the tangential directions η describe the system dynam-
ics on the path manifold Γ⋆ (i.e., when ξ = 0). The existence
of suitable coordinates can be guaranteed via the notion of a
well-defined vector relative degree of the considered output.

Definition 2 (Vector relative degree). System (1) has a well-
defined vector relative degree {r1, . . . ,rny} locally at x0 ∈ X
if the following two conditions hold:

i) For all j ∈ {1, . . . ,nu}, i ∈ {1, . . . ,ny}, k ∈ {0, . . . ,ri −
2}, and for all x in an open neighborhood of
x0: Lg j L

k
f hi(x) = 0.

ii) The ny ×nu matrix

A(x) =


Lg1Lr1−1

f h1(x) . . . Lgnu Lr1−1
f h1(x)

Lg1Lr2−1
f h2(x) . . . Lgnu Lr2−1

f h2(x)
. . . . . . . . .

Lg1L
rny−1
f hny(x) . . . Lgnu L

rny−1
f hny(x)


is full-rank at x0. □

The following assumption guarantees the existence of a
local coordinate transformation such that on some neighbor-
hood N ⊇ Γ⋆ Problem 2 can be described in transversal and
tangential coordinates [22], [23].

Assumption 2 (Existence of transversal coordinates). Given
the nonlinear control system (1) and an n⋆-dimensional path
manifold Γ⋆ ⊆ X, there exists an output function λ : N →
Rρ , defined on some neighborhood N ⊇ Γ⋆ where ρ is a
positive integer such that the following hold:

i) Γ⋆ ⊆ {x ∈ Rnx : λi(x) = 0, i = 1, . . . ,ρ},
ii) The system (1a) with output y′ =(λ1(x), . . . ,λρ(x))⊤ has

a well-defined vector relative degree {r1, . . . ,rρ} on Γ⋆

such that r1 + . . .+ rρ = nx −n⋆. □

Assumption 2 allows transforming the original system
state into transverse and tangential coordinates. Thus, the
path manifold Γ⋆ can be represented as follows

∆(Γ⋆) = {(ξ ,η) ∈ Rn⋆ ×Rnx−n⋆ : ξ = 0}, (2)

where ∆ : N →Rn⋆ ×Rnx−n⋆ ,∆(x) = (ξ⊤,η⊤)⊤ is a suitable
diffeomorphic coordinate transformation defined on some
neighborhood of Γ⋆. The transverse coordinates ξ are

ξ =
[
λ (x), L f λ (x), . . . , Lnx−n⋆−1

f λ (x)
]⊤

, (3)

where Li
f λ (x) := L f (Li−1

f λ (x)) denotes the i-th iterated Lie
derivative of λ in the direction of f .
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III. MAIN RESULTS

A. NMPC setup

We adopt a sampled-data NMPC formulation, see, e.g.,
[12], [13]. In other words, we assume a constant inter-
sampling time δ := tk+1 − tk > 0,∀k ∈ N∪ {0}. The con-
strained OCP that is solved at each sampling instant reads

min
u(·|tk)∈L ∞([tk,tk+T ],Rnu )

J(x(tk),u(·|tk))

s.t. ẋ(τ|tk) = f (x(τ|tk))+g(x(τ|tk),u(τ|tk)) (4a)
x(tk|tk) = x(tk) (4b)
u(τ|tk) ∈ U, x(τ|tk) ∈ X (4c)

where the system dynamics (4a) and the input and state
constraints (4c) must hold for all τ ∈ [tk, tk + T ] for some
finite time horizon T ∈R>0. The measured state comes in at
every sampling instant through (4b). Note that, the predicted
state and input trajectories starting at time instant tk are
denoted x(·|tk) and u(·|tk) respectively. The cost functional
J to be minimized reads

J(x(tk),u(·|tk)) :=
∫ tk+T

tk
ℓ(x(τ|tk),u(τ|tk))dτ, (5)

where ℓ : X×U→ R is the stage cost. We detail the choice
of the stage cost ℓ after introducing the notion of manifold
turnpikes below.

B. The manifold turnpike property

In optimal control, the (state) turnpike property with
respect to an equilibrium point xe describes the phenomenon
when optimal (state) trajectories stay close to that equilib-
rium point “most of the time” and for increasing horizons and
for different initial conditions, see, e.g., [9]. In the present
paper, we are not interested in stabilizing an equilibrium
point, but rather the path manifold Γ⋆.

Definition 3 (Measure manifold turnpike [8]). The optimal
state trajectories x⋆(·;x0,u⋆(·)) of OCP (4) are said to have
a measure manifold turnpike property with respect to Γ⋆ ⊆X
if there exists a function ν̂ : (0,∞)→ [0,∞) such that for all
initial conditions x0 ∈ X0, and for all time horizons T > 0
we have

µ[Θ̂ε,T ]< ν̂(ε) ∀ ε > 0, (6)

where µ is the Lebesgue measure on the real line and

Θ̂ε,T = {t ∈ [0,T ] : ||x⋆(t)||Γ⋆ > ε}. □

It is well-known that the turnpike property is closely
related to strict dissipativity, see, e.g., [9]. With respect to an
equilibrium point, an OCP is said to be strictly dissipative
if there exists a storage function S : X → R≥0 that is non-
negative and bounded, such that for all x0 ∈ X0 a strict
dissipation inequality holds. A natural generalization of this
property to the case of manifolds is as follows (cf. [26]):

Definition 4 (Manifold strict dissipativity [8]).
The OCP (4) is said to be strictly dissipative with respect to
the manifold Γ⋆ ⊆ X if there exists a non-negative bounded

storage function S : X → R≥0, such that along all optimal
pairs z⋆(·;x0) := (x⋆(·;x0,u⋆(·)),u⋆(·)) and for all x0 ∈ X0
the inequality

S(x⋆(T ))−S(x(0))≤
∫ T

0
ℓ(x⋆(t),u⋆(t))−α(||x⋆(t)||Γ⋆)dt,

(7)
holds with x⋆(T ) = x(T ;x0,u⋆(·)), x(0) = x0, α ∈ K . □

Note that the previous definition implicitly assumes that
the stage cost ℓ on the manifold is zero, i.e., ∀x ∈ Γ⋆ ∃u ∈
U such that ℓ(x,u) = 0.

It is well-known that strict dissipativity combined with
finite-time reachability of the optimal steady state implies
the turnpike property (see, e.g., [9]). The extension of this
result to the case of manifolds is straightforward.

Lemma 1. If the OCP (4) is strictly dissipative with respect
to the manifold Γ⋆ ⊆X, and if for all x0 ∈X0 there exists an
admissible control u(·) such that the manifold Γ⋆ is reachable
in finite time, then the OCP admits a measure state turnpike
with respect to Γ⋆. □

Proof: The proof follows similarly to [10, Theorem
1] or [8, Theorem 1]. The finite-time-reachability assump-
tion implies that the integral

∫ T
0 ℓ(x⋆(t),u⋆(t))dt is bounded

from above, and by definition, the storage function is also
bounded. Thus, there exists a finite upper bound K̂ such that

S(x(0))−S(x(T ))+
∫ T

0
ℓ(x⋆(t),u⋆(t))dt ≤ K̂.

Moreover, it follows directly from strict dissipativity that
A :=

∫ T
0 α(||x⋆(t)||Γ⋆)dt ≤ K̂. Now, since for all t ∈

Θ̂ε,T , α(||x⋆(t)||Γ⋆) > α(ε), taking the integral over Θ̂ε,T
yields B :=

∫
Θ̂ε,T

α(||x⋆(t)||Γ⋆)dt > µ(Θ̂ε,T )α(ε). Since α ∈
K , we have A ≥ B and hence we arrive at µ(Θ̂ε,T ) <
K̂/α(ε) := ν̂(ε). ■

C. Proposed control scheme

Next, we propose an MPFC scheme without terminal
constraints or a terminal penalty. The key idea is to exploit
the manifold turnpike property to prove the convergence of
the scheme. Unlike geometric control schemes, our approach
accommodates system constraints explicitly by using NMPC.
To this end, and in contrast to [4], we use the original
system dynamics (1) and not the transformed coordinates
as our NMPC model. What we take from Section II-C is
the representation of the path manifold Γ⋆ in N as given in
(2). We exploit the transverse coordinates defined in (3) to
design the stage cost ℓ for the MPFC scheme.

Assumption 3. For all (x,u) ∈ N × U, the stage cost
satisfies

ℓ(x,u) = ℓ(∆−1(ξ ,η),u)≥ β (||ξ ||), β ∈ K ,

where ∆−1(ξ ,η) = x. □

This stage cost choice renders the OCP (4) strictly dissipa-
tive with respect to the path manifold Γ⋆ in a neighborhood
of Γ⋆. In fact, observe that, in N , for any constant storage
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function the strict dissipativity inequality with respect to
Γ⋆ (7) reduces to the inequality given in Assumption 3. In
addition, we know from Lemma 1 that strict dissipativity,
combined with a finite-time-reachability of the path manifold
Γ⋆, implies the turnpike property with respect to the path
manifold. This fact will be combined with a local controlla-
bility assumption with respect to the path manifold to prove
the convergence of the NMPC to a closed neighborhood of
the path manifold Γ⋆. The open ε-neighborhood of a closed
set A ⊆ X denoted Nε(A ) is defined as follows

Nε(A ) := {x ∈ X : ||x||A < ε},

see [12]. The closed ε-neighborhood of A is denoted by
¯Nε(A ).
The notion of small-time local controllability with respect

to some point x⋄ ∈ intX implies that there exists ε < γ such
that for all γ, T̂ > 0 [18]

RNγ (x⋄)(x⋄,≤ T̂ ) = Nε(x⋄)⊂ Nγ(x⋄),

where RNγ (x⋄)(x⋄,≤ T̂ ) denotes the set of states reachable
from x⋄ in at most T̂ units of time, whose trajectories
remains inside the open neighborhood Nγ(x⋄) := {x ∈ X :
||x− x⋄|| < γ}. This notion was utilized together with the
turnpike property in [5] to prove practical convergence to
a closed neighborhood of an equilibrium point. In order to
generalize this result with respect to the path manifold, we
require the following technical assumption.

Assumption 4 (Manifold local controllability). For some
δ > 0,γ > ε > 0, and any x̃ ∈Nε(Γ

⋆), there exist admissible
controls uε1(·),uε2(·) such that

x(δ/2; x̃,uε1(·)) = x̂ ∈ Γ⋆

x(t; x̃,uε1(·)) ∈ Nγ(Γ
⋆)⊆ X; 0 ≤ t ≤ δ/2

x(δ ; x̂,uε2(·)) = x̃
x(t; x̂,uε2(·)) ∈ Nγ(Γ

⋆)⊆ X; δ/2 ≤ t ≤ δ

.

□

This assumption requires the control uε1(·),uε2(·) to sat-
isfy all input constraints and leads to constraint-consistent
state trajectories such that a feasible periodic orbit is con-
structed when the state x is ε-close to the path manifold Γ⋆.

Theorem 1 (Closed-loop path convergence). Given the non-
linear control system (1), a path P , and let Assumptions
1-4 hold. Suppose that, for all x0 ∈ N , the path-following
manifold Γ⋆ is reachable in finite time. Then, there exists a
finite time horizon T such that, for all x0 ∈ N , the NMPC
scheme has the following properties:

i) If the initial OCP is feasible, then the NMPC scheme
is recursively feasible.

ii) The closed-loop system state under the NMPC feedback
asymptotically converges to a closed ρ̂-neighborhood of
the path manifold Γ⋆, i.e.,

lim
t→∞

||x(t)|| ¯Nρ̂ (Γ
⋆) = 0.

Moreover, the region of attraction for the scheme con-
tains all x0 ∈ N for which the initial OCP is feasi-
ble. □

Proof: The proof is similar to the main result in [5].
The main difference is that we consider a closed manifold in
the state space and not an equilibrium point. We comment
on the differences. The choice of the stage cost according
to Assumption 3 ensures that for all x ∈ N , manifold strict
dissipativity of the OCPs holds. This fact, combined with
the finite-time-reachability of Γ⋆ for all x0 ∈N , implies the
existence of an initial manifold turnpike with respect to Γ⋆.
Then, one can prove the existence of manifold turnpikes in
the sequence of OCPs of the NMPC scheme (see [5, Lemma
2]). Recursive feasibility at tk+1 can be proved by construct-
ing sub-optimal inputs using the optimal control obtained at
the previous time instant u⋆(·,x(tk)) and uε1 and uε2 from
Assumption 4. More precisely, assuming the initial OCP is
feasible, and since it exhibits the manifold turnpike property,
we split u⋆(·,x(t0)) at some ε-close point to the manifold
and insert uε1 and uε2. The final part is proving practical
convergence. This can be proven similar to Proposition 2
of [5]. The main difference is that the closed-ball is taken
with respect to ξ = 0 and not an equilibrium point, which
corresponds to convergence to a closed neighborhood of the
path manifold, ¯Nρ̂(Γ

⋆). ■
Though the notion of practical convergence might seem

somehow weak, we illustrate in the next example a core
advantage of the manifold turnpike approach to the path-
following problem. Namely, and in contrast to [7], [11], it
is not necessary to design a control law to stay in the path
manifold, which simplifies the control design at the price of
losing a bit of path-following accuracy.

IV. MOBILE ROBOT EXAMPLE

We consider the kinematic model for a nonholonomic
wheeled mobile robotẋ1

ẋ2
ẋ3

=

cosx3
sinx3

0

v+

0
0
1

u, x(t0) = x0

with output y= [x1,x2]
⊤, where the state x= [x1,x2,x3]

⊤ ∈R3

represents respectively the horizontal and vertical positions
(in meters) in the plane, and the orientation of the robot with
respect to the positive horizontal axis. The input u refers to
the angular velocity of the robot in rad/s and v is the speed
of the robot in m/s.

The considered path following problem entails forcing
the system output y to approach and follow the unit circle
centered at the origin in the output space with a desired
speed in a desired direction. The path P is implicitly given
as P = {y ∈ R2 : y2

1 + y2
2 −1 = 0}. In contrast to [22], [23],

where transverse feedback linearization is utilized to solve a
similar problem, in our example, we use NMPC which allows
us to explicitly consider the following input constraints:
u ∈U := [−1,1], v ∈V := [−10,10]. Additionally, we do not
assume a constant speed v of the robot, however, the desired
path-following speed vre f will be ensured by the addition
of an appropriate term to the cost functional. This allows
the controller to freely manipulate the robot’s speed before
following the path with the desired speed.
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Fig. 1: Visualization of Γ and the path manifold Γ⋆.

The set of all states corresponding to the path P , Γ, forms
a cylinder in the state space (Fig. 1) Γ = {x ∈R3 : x2

1 +x2
2 −

1 = 0}. To find the largest controlled-invariant submanifold
of Γ, we constrain the velocity vector [ẋ1, ẋ2]

⊤ to be always
tangential to the path P , i.e., [x1,x2] · [ẋ1, ẋ2]

⊤ = 0. Thus, the
path manifold Γ⋆ ⊂ Γ is defined for all v ̸= 0 as follows

Γ
⋆ =

{
x ∈ R3 :

[
x2

1 + x2
2 −1 = 0

x1 cosx3 + x2 sinx3 = 0

]}
.

The path manifold Γ⋆ defines a 1-dimensional closed mani-
fold in R3 consisting of two disconnected helices as shown
in Fig. 1. One is generally interested in stabilizing one of
the helices depending on the desired path-following direc-
tion (i.e., clockwise or counter-clockwise). In the geometric
analysis of the problem, we only consider the control u. The
reasons for this are twofold: first, this simplifies the analysis;
second, it is clear that regardless of the velocity of the robot,
one mainly need to control the steering through the angular
velocity u to approach and follow the path. The desired
behavior of the speed v is straightforward (starting high
and eventually converging to vre f ). Thus, here, we assume
f (x, t) = [cosx3 sinx3 0]⊤v(t), i.e., we consider the speed
contribution to the dynamics as a time-varying drift. Then,
we can easily satisfy the conditions of Assumption 2. More
precisely, for σ(x) := x2

1 + x2
2 −1, since Lgσ(x) = 0 and

LgL f σ(x) = 2v(t)(x2 cosx3 − x1 sinx3) ̸= 0

for all x ∈ N := {x ∈ R3 : x2 cosx3 ̸= x1 sinx3} and v ̸=
0. Thus, σ yields a well-defined relative degree r = 2 =
nx − n⋆ in a neighborhood N ⊃ Γ⋆. Thus, on N , the
path manifold Γ⋆ can be represented via (2). According to
(3), the transverse coordinates are ξ = [σ(x), L f σ(x)]⊤ =
[x2

1+x2
2−1,2v(t)(x1 cosx3+x2 sinx3)]

⊤. Then, we design the
stage cost ℓ as follows

ℓ(x,u) = ξ
⊤Qξ ξ +Rv(v− vre f )

2 +Ruu2,

where Qξ = Q⊤
ξ
≻ 0, Ru,Rv > 0. The interpretation of this

choice is as follows: the first term ensures the satisfaction of
the manifold strict dissipativity (7), the second term ensures
the desired speed is eventually reached, and the third term

(a) Manifold turnpike (b) Optimal trajectory

Fig. 2: The turnpike phenomenon.

Fig. 3: MPFC with no enforced direction.

is a regularization term that sets a compromise between the
control effort of u and the “exactness” of path following.
For this example, we choose Qξ = diag(100,10), Rv = 1,
and Ru = 10−5. Notice that, when the robot follows the path
very closely with the desired speed, the cost ℓ(x,u) is almost
negligible. The manifold turnpike property (in ξ -coordinates)
is depicted in Fig. 2a for x0 = [3,3,0]⊤, T = 7 s, and vre f = 1.
The corresponding optimal trajectory is shown in Fig. 2b. As
expected and verified by our simulations, the larger T is, the
longer the optimal trajectory spends near the path manifold.
Note that the aforementioned choice of the prediction horizon
T is arbitrary, nevertheless, it is of interest, albeit outside the
scope of this paper, to find the minimum stabilizing T . The
corresponding MPFC simulation is shown for different initial
conditions in Fig. 3. Although stabilizing, it is clear that the
path-following direction depends on the initial condition. En-
forcing a desired path-following direction may be achieved
by introducing the following virtual constraint

sgn([x1(k),x2(k)]⊤ · [x1(k+1),x2(k+1)]⊤)≥ 0,

where sgn is the sign function. The simulation results of
the MPFC scheme with enforced counter-clockwise path-
following direction are shown in Fig. 4. The corresponding
state and input time-evolutions for the initial condition x0 =
[3,3,0]⊤ are shown in Fig. 5.
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Fig. 4: MPFC with counter-clockwise enforced direction.

Fig. 5: State and input trajectories of the NMPC scheme

V. CONCLUSIONS

This paper proposed and analyzed a turnpike approach to-
wards the analysis of model predictive path-following control
without terminal constraints. Leveraging a turnpike property
with respect to the path manifold, which is implied by a
suitable stage cost design, we have shown practical closed-
loop convergence to the path manifold. It is of practical
interest to extend this result by considering smooth regular
parametrized paths, e.g., generated by spline-based path or
motion planning.
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