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Abstract— An important aspect in jointly analysing networked
control systems and their communication is to model the net-
working in a sufficiently rich but at the same time mathematically
tractable way. As such, this paper improves on a recently pro-
posed scalable approach for analysing multi-agent systems with
stochastic packet loss by allowing for heterogeneous transmission
probabilities and temporal correlation in the communication
model. The key idea is to consider the transmission probabilities
as uncertain, which facilitates the use of tools from robust
control. Due to being formulated in terms of linear matrix
inequalities that grow linearly with the number of agents, the
result is applicable to very large multi-agent systems, which is
demonstrated by numerical simulations with up to 10000 agents.

I. INTRODUCTION

The problem of controlling large-scale dynamical systems
has attracted copious amounts of research activity in the
past decades. For almost all works on this subject, their
scalability is of utmost importance and as such distributed
and decentralized approaches offer distinctive advantages over
centralized ones [1]. In particular, this holds for multi-agent
systems (MASs), in which small-scale dynamical systems
– called agents and typically only coupled through their
mission – collectively solve a control task, such as distributed
estimation or source seeking [2].

In many MASs information is exchanged between agents
using a communication network. Such networks are, however,
inherently unreliable and transmitted packets are not guaran-
teed to be received. As described in [3], this random loss of
information can lead to a decrease in system performance and
even loss of stability, Nonetheless, communication effects are
neglected in most works concerning networked MASs.

A suitable framework for modelling systems with random
loss of information are Markov jump linear systems (MJLSs),
which are switched linear systems whose switching is
controlled by a Markov chain [4]. There is a rich literature
on analysing MJLSs, both in terms of stability and system
performance. A direct application of the general analysis con-
ditions does, however, lead to a combinatorial explosion for
MASs with more than a few tens of agents and even applying
simplifications as proposed in [5] does not allow to consider
truly large-scale MAS due to the remaining quadratic scaling
of the computational complexity in terms of the number of
agents. For that reason, existing approaches on MASs with
stochastic packet loss require additional assumptions on the
packet loss model and are mostly concerned with stability
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analysis rather than system performance: Many results rely on
having identical packet loss, that is, all links fail at the same
time [6], which is a very restrictive assumption and violated
in almost all real world scenarios. Approaches that consider
not identical loss but homogeneous loss probability are closer
to reality, amongst which are [2], [5], [7]–[9], all assuming
Bernoulli distributed packet loss, i.e., no correlation of the
packet loss across time steps. Heterogeneous loss probabilities
are considered in only few previous works, e.g. [10] with tree
graphs and uncertain probabilities and [6] for arbitrary graphs
and known probabilities. Similarly, packet loss described by
Markov chains, such that correlation in time can occur on
individual links, is rarely studied, see, e.g., [11] with identical
packet loss on all links and [12] for a non-scalable method
with arbitrary and uncertain communication failures.

Only recently, [9] proposed to merge MJLSs with the
decomposable systems framework [1]. Under the assumption
of Bernoulli distributed packet loss with homogeneous prob-
ability, this combination leads to linearly-scaling, sufficient
conditions for stability and performance that are applicable
to MASs with thousands of agents and can be used for dis-
tributed controller synthesis [13]. Building on these ideas, this
paper extends the results to packet loss with heterogeneous
transmission probabilities and limited correlation in time,
while preserving the scalability of the decomposable systems
approach. This is achieved by considering the transmission
probabilities as uncertain with uniform bounds and involving
tools from robust control. Different from [10], the proposed
approach is not restricted to tree graphs and can in a straight-
forward way be used for performance analysis.

After this introduction, the paper proceeds with detailing
the agent and network model under consideration in Section II.
Section III introduces two supporting lemmata on calculating
expected Laplacian matrices, which are used in Section IV to
derive the main robust analysis condition. Finally, Section V
demonstrates the scalability of the results on a large consensus
example before Section VI concludes the paper.

A. Contribution

The contribution of this paper is a linear matrix inequality
(LMI) based condition to verify mean-square stability and
bound the H2-norm from above. In contrast to existing
approaches, the condition is at the same time

i) applicable to systems with heterogeneous packet loss
probabilities,

ii) allows for correlation in time on individual links provided
the packet loss is symmetric, and

iii) scales linearly with the number of agents.
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The result can be found in Theorem 6.

B. Notation and Definitions

In this paper, we denote the n× n identity matrix as In,
dropping the index where it can be deduced from context.
The relation M ≻ (≺) 0 means that M is symmetric positive
(negative) definite and ∗ indicates matrix blocks required for
symmetry. The Kronecker product is written as M1 ⊗M2.
To denote the element wise expectation and variance of the
random matrix M , we use E[M ] and Var[M ], respectively.
Depending on z, ∥z∥ stands for both the Euclidean vector
norm and the 2-norm of stochastic signals defined by ∥z∥2 :=∑∞

k=0 E[z⊤k zk].
A mathematical graph G := (V, E) is composed of the

vertex set V = {1, 2, . . . , N} and the edge set E ⊂ V × V .
Defining eij := (i, j), the edge eij is read as pointing from
vertex j to vertex i and no self-loops exist, i.e., eii /∈ E . G is
called undirected if eij ∈ E ⇔ eji ∈ E . For each vertex i ∈ V ,
we define its in- and out-neighbourhood as N−

i := {j ∈ V |
eij ∈ E} and N+

i := {j ∈ V | eji ∈ E}, respectively. By
inverting the direction of every edge, we obtain the transposed
graph G⊤ = (V, E⊤), where E⊤ := {eij ∈ V × V | eji ∈ E}.

II. MULTI-AGENT SYSTEMS WITH PACKET LOSS

A. Stochastic Jump Linear Systems

The concern of this paper are networked linear MASs
which are subject to stochastic packet loss. Due to the losses,
their interconnection structure has to be considered switched
rather than time-invariant, implying the same for the dynamics.
A fitting modelling framework to describe such systems are
MJLSs. For these switched linear systems, a Markov chain
with state σk ∈ K := {1, 2, . . . ,m} determines which of the
m modes is active at any given time k. The dynamics of an
MAS with N agents are then described by

G :

{
xk+1 = Aσk

xk +Bσk
wk,

zk = Cσk
xk +Dσk

wk,
(1)

where xk ∈ RNnx is the dynamic state of the system and
wk ∈ RNnw and zk ∈ RNnz are the performance input and
output, respectively. On the other hand, the Markov chain
evolves in time according to the transition probabilities

P
(
σk+1 = j

∣∣ σk = i
)
= tij (2)

and the initial distribution is P(σ0 = i) = µi.
Because of the stochastic switching, considering asymptotic

stability of the MJLS G in the usual deterministic sense is
often more restrictive than desired or achievable. Instead, this
paper will focus on asymptotic mean-square stability.

Definition 1 (Mean-Square Stability [4]). The MJLS (1) is
mean-square stable if

lim
k→∞

E
[
∥x(k)∥

]
= 0 and lim

k→∞
E
[
∥x(k)x⊤(k)∥

]
= 0

for all initial conditions x0 and σ0.

Apart from mean-square stability, there exists a variety
of other stochastic stability definitions, e.g. stability in

probability and almost sure stability. A particularly attractive
property of mean-square stability is however the existence of
stability tests in the form of LMIs. Furthermore, mean-square
stability implies stability as in the other two definitions [4].

Theorem 1 (Stability Test [14]). The MJLS (1) is mean-
square stable if and only if there exist Xi ≻ 0 such that∑

j∈K
tijA

⊤
j XjAj −Xi ≺ 0 ∀ i ∈ K. (3)

The stability test in Theorem 1 can be evaluated efficiently
as a semidefinite program as long as the number of modes
m is sufficiently small. This will however not be the case
for the MASs considered in the following sections.

In addition to stability, we consider system performance
in terms of the MJLS H2-norm:

Definition 2 (MJLS H2-Norm [4]). The H2-norm of the
MJLS (1) is defined as

∥G∥2H2
:=

∑
i∈K

Nnw∑
s=1

µi

∥∥zs,i∥∥2,
where zs,i is the response of G to a discrete impulse applied
at the sth input with σ0 = i and x0 = 0.

Like for mean-square stability, there exist efficient means
to calculate the H2-norm in terms of LMIs for small m.
The following theorem is an equivalent reformulation of the
conditions that originally appeared in [15], which is more
suitable for the analysis in the remainder of this paper.

Theorem 2 (H2-Norm Calculation [16]). Given the stable
MJLS (1), ∥G∥H2

< γ if and only if there exist Xi ≻ 0 and
a symmetric Z with tr(Z) < γ2 such that∑

j∈K
tij

(
A⊤

j XjAj + C⊤
j Cj

)
−Xi ≺ 0, (4a)∑

j∈K
µj

(
B⊤

j XjBj +D⊤
j Dj

)
− Z ≺ 0, (4b)

for all i ∈ K.

B. Modelling Packet Loss using Stochastic Laplacians

In order to model the exchange of information in the
networked MAS we are using tools from graph theory. The
nominal interconnection structure, i.e., if no packet loss
occurs, is described by the graph G0 = (V, E0), where
there is a one-to-one correspondence between agents and
vertices. In the dynamic equations of the MAS, the graph
will appear through its Laplacian L(G) ∈ ZN×N , which is
defined element wise as L(G) := [lij(G)] with

lij(G) :=


−1 if i ̸= j and eij ∈ E ,
0 if i ̸= j and eij /∈ E ,
−
∑

l ̸=ilil(G) if i = j.
(5)

To capture the loss of packets, introduce stochastic pro-
cesses {θijk } for all eij ∈ E0. The processes take values in
{0, 1}, where θijk = 1 means that information is successfully
transmitted on eij at step k and θijk = 0 that information
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is lost. In this paper, we assume all {θijk } are described by
Markov chains, which are independent if the processes belong
to distinct pairs of agents.

Assumption 1. The processes {θijk } are described by Markov
chains such that, for all k ≥ 0 and eij ∈ E0, we have

P
(
θijk+1 = 1

∣∣ θijk = 1
)
= pij , (6a)

P
(
θijk+1 = 1

∣∣ θijk = 0
)
= qij , (6b)

P
(
θij0 = 1

)
= ηij . (6c)

Furthermore, θijk and θrsk′ are independent random variables
for all k, k′ ≥ 0 whenever eij ̸= ers ̸= eji.

Mapping between {θijk } and {σk} can be accomplished by
treating θijk as the digits of a binary representation of σk. This
shows that the number of modes is m = 2|E

0|. Additionally,
introduce Gi = (V, Ei), where Ei ⊆ E0 is the set of edges
that successfully transmit information with σk = i. The
Laplacian {L(Gσk

)} is then a stochastic process, describing
the exchange of information subject to packet loss. In the
following, we use the shorthand notations L0 := L(G0) and
Li := L(Gi) if the graph can be deduced from context.

C. Decomposable Markov Jump Linear Systems
Due to the growth in computational complexity for large

N in Theorems 1 and 2, analysing the MJLS (1) in its
full generality is only tractable for MASs with small to
moderate size. For MASs with homogeneous linear time-
invariant agents and ideal communication, the decomposable
systems framework proposed in [1] offers a flexible approach
to alleviate this issue. The approach relies on system matrices
that are structured as A = IN ⊗Ad +S⊗Ac, where Ad and
Ac are the decoupled and coupled components, respectively,
and S is called the pattern matrix. It is then possible to
selectively apply a similarity transformation to the pattern
matrix and, for diagonalizable S, decouple the MAS into N
subsystems with the size of a single agent.

Based on this idea, [9], [13] proposed to consider decom-
posable MJLSs with system matrix

Ai = IN ⊗Ad + Li ⊗Ac + L0 ⊗Ap, (7)

and analogously for Bi, Ci and Di. In these MJLS, a third
component intended for deterministic performance channels
is introduced in addition to the coupled and decoupled parts.
Decoupling the MAS directly as outlined above is impossible
because of the time-varying pattern matrix Lσk

. Nonetheless,
it was shown in [9] that – under certain assumptions on
the packet loss – the same transformation can be applied to
decouple LMI-based stability and performance tests. Utilizing
that approach with the packet loss model described in
Assumption 1 is, however, posed to fail. This paper will
thus develop an alternative strategy for decomposition based
on concepts from robust control.

III. EXPECTED LAPLACIANS WITH HETEROGENEOUS
PROBABILITIES

A key ingredient to the approach proposed in [9] is to
analytically calculate the expectation of the Laplacian Lσk

and the product L⊤
σk
Lσk

. Similar calculations were performed
before in [5] without exposing the inherent structure of the
result, which is required for decoupling. However, neither
result is applicable to stochastic Laplacians as resulting
from Assumption 1 because both require homogeneous loss
probabilities and independence in time, i.e., pij = qij = p
for all eij ∈ E0. We thus generalize the existing results to
heterogeneous probabilities in the following lemma:

Lemma 3. Given the graph G0 and packet loss satisfying
Assumption 1, the conditional expectation of the Laplacian
product is

E
[
L⊤
σk+1

Lσk+1

∣∣ σk

]
= E

[
Lσk+1

∣∣ σk

]⊤ E
[
Lσk+1

∣∣ σk

]
+Var

[
L(Gσk+1

)
∣∣ σk

]
+Var

[
L(G⊤

σk+1
)
∣∣ σk

]
. (8)

Proof. Omitted for brevity, see [17].

Lemma 3 shows that the expectation and variance of
the Laplacian can be evaluated element wise before cal-
culating the matrix product. However, the eigenvectors of
E[L⊤

σk+1
Lσk+1

|σk] will generally not be the same as those of
E[Lσk+1

| σk], thus they cannot be used for decomposing the
LMIs. For that reason, we introduce additional assumptions
that make an alternative factorization viable:

Assumption 2. The communication graph G0 is undirected
and the transition probabilities are symmetric, i.e. pij = pji,
qij = qji, and ηij = ηji for all eij ∈ E0. Furthermore, the
packet loss is either

i) symmetric, i.e. θijk = θjik for all k ≥ 0, eij ∈ E0, or
ii) independent in time, i.e. pij = qij for all eij ∈ E0.

In the following, let Φ ∈ {−1, 0, 1}N×|E0| denote the
incidence matrix [2] of the nominal graph, such that L0 =
ΦΦ⊤. The incidence matrix has one column for each eij ∈ E0,
where the ith entry of that column is 1, the jth is -1, and all
others are 0. Furthermore, we use Θk for the matrix obtained
by diagonal concatenation of θijk in matching order to the
columns of Φ. We obtain the following factorizations:

Lemma 4. Given the graph G0 and packet loss satisfying
Assumptions 1 and 2, the conditional expectation and variance
of the Laplacian are given by

E
[
Lσk+1

∣∣ σk

]
= ΦE

[
Θk+1

∣∣ σk

]
Φ⊤, (9)

Var
[
Lσk+1

∣∣ σk

]
= ΦVar

[
Θk+1

∣∣ σk

]
Φ⊤. (10)

Proof. The independence assumption of θijk in Assumption 1
ensures that the expectation and variance can be applied to
each θijk individually, hence both are weighted variants of L0,
where the weights are the respective stochastic moments of the
edges. Moreover, Assumption 2 guarantees that E[Lσk+1

|σk]
and Var[Lσk+1

| σk] are symmetric for all σk. Therefore, we
obtain (9) and (10) as factorizations of symmetric weighted
Laplacians [2].

The core feature of the factorizations in (9) and (10) is that
they separate the nominal communication structure of the
MAS – which is described by Φ – from the effects induced
by packet loss in Θk.
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IV. ANALYSIS WITH UNCERTAIN PROBABILITIES

A. Robust Stability

The analytic calculation of the expected Laplacians above
can now be used to obtain scalable sufficient conditions for
stability and H2-performance. As a first step, notice that (3)
is equivalent to

E
[
A⊤

σk+1
Xσk+1

Aσk+1

∣∣ σk

]
−Xσk

≺ 0 (11)

for all k ≥ 0. Inserting (7) and expanding the product, only
E[Xσk+1

| σk], E[Xσk+1
(Lσk+1

⊗ Inx
) | σk], and

E
[
(Lσk+1

⊗ Inx)
⊤Xσk+1

(Lσk+1
⊗ Inx)

∣∣ σk

]
have to be evaluated, because all other terms are constant and
can be pulled out of the expectation. Moreover, by enforcing
that all Xi are identical and block-diagonal with repeated
blocks, i.e., Xi = Xj = IN ⊗ Y for all i, j ∈ K, and
utilizing the commutation property (M1⊗I)(I⊗M2) = (I⊗
M2)(M1⊗I), we can pull out IN ⊗Y from the expectations,
such that Lemma 3 is applicable. Thus, the existence of
Y ≻ 0 such that

E
[
Aσk+1

∣∣ σk

]⊤
(IN ⊗ Y )E

[
Aσk+1

∣∣ σk

]
− IN ⊗ Y

+ 2Var
[
Lσk+1

∣∣ σk

]
⊗
(
Ac⊤Y Ac

)
≺ 0 (12)

holds, is a sufficient condition for (3). Finally, (12) can be
factorized as∗∗

∗

⊤ −IN ⊗ Y
IN ⊗ Y

2Im ⊗ Y


·

 IN ⊗ Inx

E
[
Aσk+1

∣∣ σk

](
Var

[
Θk+1

∣∣ σk

] 1
2Φ⊤)⊗Ac

 ≺ 0 (13)

by applying Lemma 4. Note that while the blocks of the
centre matrix are decoupled, the agents are coupled through
the Laplacian that appears in the outer factors.

Remark. Imposing that Xi = Xj for all i, j ∈ K is in
general a conservative choice required for applying Lemma 3.
However, in case Assumption 2 case ii holds, this restriction
can be imposed without loosing necessity, cf. [16]. In either
case, further conservatism is incurred from imposing that X
has block-repeated structure, i.e., X = IN ⊗ Y .

In [9], it is proposed to apply a diagonalizing transformation
to an equivalent of (13) to obtain a decoupled set of LMIs.
However, the transformation relies on the assumption of
packet loss that is independent in time with homogeneous
transmission probabilities and is therefore not applicable.
Instead, we propose to consider the transition probabilities of
each edge as uncertain with uniform upper and lower bounds:

Assumption 3. There exist constants 0 ≤ ρl ≤ ρu ≤ 1 such
that pij , qij , ηij ∈ [ρl, ρu] for all eij ∈ E0.

A powerful and flexible tool from robust control to handle
parametric uncertainties are linear fractional transformations
(LFTs) in combination with the full block S-procedure (FBSP)

[18]. In spite of a non-rational dependence on the uncertainty
in (13), it can be represented in LFT form by embedding
the uncertainty in a higher dimensional space. To this end,
introduce new variables aij , bij ≥ 0 with

a2ij := E
[
θijk+1

∣∣ θijk ]
and b2 := 1− a2.

Together, we obtain√
Var

[
θijk+1

∣∣ θijk ]
= aijbij ,

such that (13) depends polynomially on the uncertainty in
terms of aij and bij . The uncertainty set of the LFT for a
single link can then be described by the non-convex set

∆ :=


a 0
b 0
0 a

 ∣∣∣∣∣∣
a, b ≥ 0

a2 ∈ [ρl, ρu]

b2 = 1− a2

. (14)

Additionally, the FBSP requires the so-called multiplier set

Pα :=

{
P = P⊤

∣∣∣∣∣
[
∗
∗

]⊤
P

[
∆⊗ Iα
I2α

]
≻ 0 ∀∆ ∈ ∆

}
,

(15)
where α denotes the dimension of the information exchanged
amongst agents. At last, applying the FBSP to (13) leads to
the following robust stability test:

Theorem 5 (Robust Stability Test). Given a decomposable
MJLS, a communication graph G0, and packet loss satisfying
Assumptions 1 to 3, the MJLS is mean-square stable if there
exist Y ≻ 0 and P ∈ Pnx

such that

Ad⊤Y Ad − Y ≺ 0 (16a)

∗
∗
∗
∗
∗
∗



⊤
−Y

Y
2Y

P





I 0
Ad + λiA

p
√
λiB1

0 B2

0 I
0 B3√
λiA

c 0


≺ 0

(16b)

hold for all non-zero λi, where λi are the eigenvalues of L0

and Bj is the jth block-row of I3 ⊗ Inx

Proof. Omitted for brevity, see [17].

Remark. The inclusion P ∈ Pnx
is described by an infinite

set of LMIs and as such it is non-trivial to obtain a computa-
tionally tractable formulation. It is therefore customary to rely
on approximations of Pnx

for numerical evaluation. Amongst
the possible techniques are gridding-based methods, D- and
D/G-scalings, or sum-of-squares relaxations [19], [20].

Theorem 5 paves the way for testing mean-square stability
of large MAS with heterogeneous transmission probabilities
in a scalable way. The size of Y and P depends only on
the state dimension nx and importantly not on the number
of agents. The same holds true for the LMI constraint (16)
and the set Pnx

. It is, however, necessary to verify (16b)
for all non-zero eigenvalues of L0, such that the number of
constraints grows linearly with N .
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I 0

Ad + λiA
p √

λiB1Cd + λiC
p

0 B20


⊤

−Y
Y

I
2Y

2I




I 0
Ad + λiA

p √
λiB1Cd + λiC

p

0 B20

+


0 I
0 B30√
λiA

c 0√
λiC

c 0


⊤

P1


0 I
0 B30√
λiA

c 0√
λiC

c 0

 ≺ 0 (17c)


I 0

Bd + λiB
p √

λiB1Dd + λiD
p

0 B20


⊤

−Zi

Y
I

2Y
2I




I 0
Bd + λiB

p √
λiB1Dd + λiD

p

0 B20

+


0 I
0 B30√
λiB

c 0√
λiD

c 0


⊤

P2


0 I
0 B30√
λiB

c 0√
λiD

c 0

 ≺ 0 (17d)

B. Robust Performance
The ideas outlined in the previous subsection can be applied

in similar fashion to the H2 analysis conditions in Theorem 2.

Theorem 6 (H2-Norm Bound). Given a decomposable
MJLS G, a communication graph G0, and packet loss
satisfying Assumptions 1 to 3, the MJLS is mean-square
stable and ∥G∥H2

< γ if there exist Y ≻ 0, symmetric Zi

with
∑N

i=1 tr(Zi) < γ2 and P1, P2 ∈ Pnx+nz such that

Ad⊤Y Ad − Y + Cd⊤Cd ≺ 0 (17a)

Bd⊤Y Bd − Zi +Dd⊤Dd ≺ 0 (17b)

hold for all i such that λi = 0 and (17c), (17d) hold for all
non-zero λi, where λi are the eigenvalues of L0 and Bj is
the jth block-row of I3 ⊗ Inx+nz

Proof. Omitted for brevity, see [17].

Remark. The LMIs (16a) and (17a) are only feasible if Ad

is Schur, i.e., all eigenvalues of Ad are strictly inside the
unit circle. This condition is not satisfied for many relevant
MAS control problems, e.g., consensus or formation control
(cf. Section V). In those cases, it is instrumental to verify
the LMIs only for states in the subspace orthogonal to the
vector of all ones, which is achieved by neglecting the 0
eigenvalue of L0 [9], [21]. Thus, for MAS whose Ad matrix
has a single eigenvalue at 1, it is sufficient to verify (16b) for
λ2 to λN , ignoring only λ1 = 0, to guarantee mean-square
stability or similarly satisfy (17c) and (17d) on the same set
of eigenvalues for upper bounding the H2-norm.

V. APPLICATION EXAMPLE

This section demonstrates the applicability and scalability
of the proposed results on an example system. The resulting
LMI problems are solved in MATLAB using YALMIP [22]
and source code for generating the figures is available at [23].

The agent model under consideration is a mass with friction,
described in discrete-time as

xi
k+1 =

[
1 1
0 0.1

]
xi
k +

[
0
1

]
ui
k yik =

[
1 0

]
xi
k

where xi
k, ui

k, and yik are the state, input and output of agent i,
respectively. All agents implement the consensus protocol

ui
k = wi

k + κ
∑

j∈N−
i

θijk
(
yjk − yik

)
,

v1

v2

vN

(a) Circular graphs

v3

v1

v2

(b) Triangle-shaped graphs

Fig. 1. Graph structures that are used in the example section.

with gain κ > 0. Here, wi
k is an external input disturbance

acting on agent i. By stacking up the states as x⊤
k =

[x1⊤
k , . . . , xN⊤

l ], and similarly for the inputs and outputs,
the MAS can be brought into the form of a decomposable
MJLS, where we use zk = L0yk as performance output. Note
that zk is a deterministic performance channel because it is
calculated using the nominal Laplacian L0. This distinction
is central to obtain meaningful results because a performance
channel involving Lσk

will vanish if E
[
θijk

]
is small.

First, we demonstrate that the proposed analysis approach
results in reasonably conservative upper bounds. For circular
graphs as shown in Figure 1a, we fix ρu = 1 and let ρl vary
between 0 and 1. The resulting curves for four and six agents
are plotted in Figure 2. In addition, the figure contains an
estimate of the H2-norm obtained by evaluating Theorem 2
for all combinations such that pij = qij is either ρl or 1 with
the same X . Note that this estimate is exact for ρl = 1.

As to be expected, the H2-norm bound is monotonically
increasing for decreasing ρl because the uncertainty in the
transmission probabilities is growing. Furthermore, the gap
between the bound from Theorem 6 and the estimate from
Theorem 2 grows with increased agent count. This effect has
already been observed in [9] and is caused by imposing the
structure X = IN ⊗ Y for the matrix variables.

The second scenario studies how the approach fares with
increasing size of the MAS. Starting with N = 3, Theorem 6
is applied to MAS with triangle-shaped communication
structure as shown in Figure 1b and pij = qij ∈ [0.4, 0.6].
For comparison, we apply Theorem 7 of [9] with fixed and
homogeneous p = 0.5. The best obtainable upper bounds and
the required computation times are shown in Figure 3.
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Fig. 3. H2-Performance as obtained from Theorem 6 for different agent
counts with transition probabilities in [0.4, 0.6]. The second axis shows
the computation time required to solve the optimization problem, averaged
over ten runs. H2-Performance and computation time as obtained from
Theorem 7 in [9] for p = 0.5 are shown for reference.

The gap between the two H2-performance curves in the
figure stems from treating the transmission probabilities as
uncertain in Theorem 6 and is independent of network size on
the shown logarithmic scale. Importantly, the computational
cost of both approaches scales well with the number of agents,
such that even with 10,000 agents, calculating a robust upper
bound on the H2-norm takes only a few minutes.

VI. CONCLUSIONS

This paper presents a scalable approach to obtain a
sufficient mean-square stability condition and upper bounds on
the H2-norm for MAS with stochastic packet loss. Different
from previous results, the conditions remain valid if the packet
loss is correlated in time or has heterogeneous probabilities
across the MAS. An important feature of the approach is that
its complexity scales linearly with the number of agents and
therefore application to very large MASs is tractable.
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