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Abstract—This paper addresses the problem of determining
the minimum set of state variables in a network that need to be
blocked from direct measurements in order to protect functional
privacy with respect to any output matrices. More precisely, the
goal is to prevent adversarial observers or eavesdroppers from
inferring a linear functional of states, either vector-wise or entry-
wise. We relate the considered functional privacy to the concept
of functional observability. Building on a PBH-like criterion for
functional observability, we prove that both problems are NP-
hard. However, by assuming a reasonable constant bound on the
geometric multiplicities of the system’s eigenvalues, we present
an exact algorithm with polynomial time complexity for the
vector-wise functional privacy protection problem. Based on this
algorithm, we then provide a greedy algorithm for the entry-wise
privacy protection problem. Finally, we provide an example to
demonstrate the effectiveness of our proposed approach.

Index Terms—Observability blocking, network privacy preser-
vation, functional observability, algorithms

I. INTRODUCTION

In recent years, research on the privacy preservation of
control systems has gained increasing attention due to the
growing use of networked control systems, cyber-physical
systems and the increasing concerns over the privacy and
security of these systems [1–3].

One area of research has focused on developing privacy-
preserving control algorithms that can achieve the desired
control objectives while protecting sensitive information about
the system’s states and inputs [4, 5]. Another area of research
has explored the use of differential privacy techniques to
protect the privacy of data collected from control systems [1].
Recently, encryption techniques, including homomorphic and
nonhomomorphic encryptions, have also been adopted to pre-
serve data privacy in the process of network transmissions and
third-party computations [2, 3, 6]. Additionally, researchers
have also investigated the impact of cyber-attacks on privacy
and proposed secure and privacy-preserving communication
protocols to mitigate these attacks [7].

Apart from the above research perspectives, there has been a
natural relationship between the privacy preservation of control
systems and system observability [8–13]. Observability refers
to the ability to estimate the state of a system based on
its output. In the context of privacy preservation, the idea
is to make it difficult for an adversary to infer sensitive
information about the system by limiting their ability to
observe the system’s state. In this line, privacy preservation
through system design has attracted much interest. To name a
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few, [8] considered the problem of designing communication
networks so that the average consensus is achieved while
the observable subspace each individual agent can infer from
shared information of its neighbors is as small as possible. The
design of local state-feedback control systems in dynamical
networks to block observability at remote nodes was studied
in [9]. Leveraging the notion of non-strong observability, [10]
considered adding perturbations to system inputs and outputs
to protect partial entries of the initial states and inputs. The
problem of blocking a minimum set of state variables from
being measured by existing sensors to destroy observability
was considered in [13]. The basic idea in these works to
achieve privacy preservation is to design control systems with
reduced observability. This means that the system state cannot
be easily inferred from its output, making it more difficult
for an adversary to infer sensitive information. Notably, it has
been recently found that the system observability has a strong
connection with differential privacy [11, 12].

In this paper, we take a step further in the direction of
protecting network privacy by considering functional privacy,
i.e., linear functionals of states that need to be kept confidential
to adversarial observers. The goal is to identify the minimum
set of state variables (nodes) in a network that need to be
blocked from direct measurements to prevent the inference of
a given functional privacy with respect to any output matrices.
We consider two different privacy protection levels: vector-
wise protection and entry-wise protection, meaning that the
functional privacy in the vector form cannot be inferred as
a whole and that every component (entry) of it cannot be
inferred, respectively.

By relating functional privacy protection to the notion of
functional observability and leveraging a PBH-like criterion
for functional observability [14–17], we make the following
contributions. First, we prove that both functional privacy pro-
tection problems are NP-hard. Second, assuming a reasonable
constant bound on the geometric multiplicities of the system’s
eigenvalues, we provide an exact algorithm with polynomi-
al time complexity for the vector-wise problem. Third, we
provide a greedy algorithm for the entry-wise problem. Our
results reveal the role of node measurements in protecting the
functional privacy of linear dynamic networks and enable us
to identify which set of nodes can be protected at a lower cost
to preserve functional privacy more efficiently. These nodes
can be regarded as “critical nodes” that may leak confidential
information and require specific protection measures.

The rest is organized as follows. Section II presents the
problem formulation, and Section III provides preliminaries
on functional observability. The complexity of the considered
problems is given in the next section. Section V presents
algorithms for these problems, followed by an illustrative
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example in Section VI. The last section concludes this paper.
Notations: For a set, | · | denotes its cardinality. The symbol

[n] = {1, 2, ..., n}. A matrix L is also denoted by L = [lij ]
or L = [Lij ], which means lij or Lij is the entry in the ith
row and jth column of L. By eig(M) we denote the set of
eigenvalues of the square matrix M . Let diag{Xi|ni=1} be the
block diagonal matrix whose ith diagonal block is Xi, and
col{Xi|ni=1} be the matrix stacked by Xi|ni=1. In denotes the
n dimensional identify matrix, where the subscript n may be
omitted if it can be inferred from the context. By ei we denote
the ith column of In, and 1m×n the m×n matrix with entries
all being one. Given an m × n matrix M and a set S ⊆ [n],
MS denotes the sub-matrix of M formed by rows indexed by
S, and MS denotes the matrix obtained from M by preserving
its columns indexed with S and zeroing the rest. If M = I ,
MS and MS coincide.

II. PROBLEM FORMULATION

Consider a network of n nodes. The ith node evolves
according to the following dynamics

ẋi(t) = aiixi(t) +
∑

j∈[n]\{i}

aijxj(t) +

m∑
j=1

bijuj(t), (1)

where xi(t) ∈ R is the state variable of the ith node, uj(t) ∈
R is the jth input, aii ∈ R is the self-damping coefficient,
aij ∈ R is the coupling strength from node j to node i, and
bij ∈ R stands for the affection from the jth input to the
ith node. The topology of this network can be described by
a directed graph G = (V, E), where V = {1, ..., n} denotes
the node set and E = {(i, j) : aji ̸= 0} denotes the edge set.
Let x(t) = [x1(t), · · · , xn(t)]

ᵀ, u(t) = [u1(t), · · · , um(t)]ᵀ,
A = [aij ] and B = [bij ]. The lumped form of (1) can be
written as

ẋ(t) = Ax(t) +Bu(t). (2)

System (1) can describe the dynamics of a linear time-invariant
network system. A typical example is the multi-agent system
where each agent is a single integrator running the consensus
protocol [18]. In this case, aii = −

∑
j∈[n]\{i} aij , meaning

that −A is the weighted Laplacian matrix of G. Other examples
include interacted liquid tanks [19], synchronizing networks of
linear oscillators [20], opinion propagation in social networks
[21], etc.

The output of system (2) is given by

y(t) = Cx(t), (3)

with C ∈ Rp×n the output matrix. Let y(x, u, t) be the output
signal of system (2)-(2) at time t generated from the initial
state x by the input u. Each nonzero row of C corresponds
to a sensor. If there is only one nonzero entry in a row of C,
we call the sensor associated with this row a dedicated sensor,
meaning that this sensor measures only one state variable.

Suppose an adversarial observer or eavesdropper intends to
infer the information

z(t) = Fx(t), (4)

where F ∈ Rr×n. Write F as F = col{fi|ri=1}, fi ∈ R1×n.
As commonly assumed, the observer knows system parameters

(A,C, F ) and has access to the signals u(t) and y(t) for a
sufficiently long time horizon [4, 8, 10]. The vector z(t) can
be some private or confidential information that the network
wants to protect from being inferred by the observer, and is
called functional privacy since it is a linear combination of the
state x(t). Typical examples of z(t) include:

• the full state x(t) when F = In;
• the vector formed by a set of target states indexed by
S ⊆ [n] when F = col{eᵀi |i∈S};

• the average of all states when F = 1
n11×n;

• the vector consisting of averages of states of clusters
indexed by S1, ...,Sl ⊆ [n] when F = col{ 1

|Si|1
Si |li=1}.

We remark that designing observers to infer the average state
or average cluster states has been considered in [22].

There are typically several ways to protect the functional
privacy z(t), for example, adding noise to the output y(t) in the
spirit of differential privacy [23], or using certain encryption
techniques to encrypt y(t) [6]. In this paper, however, we
consider the structure requirement on the output matrix C,
under which adversarial observers cannot infer the functional
privacy z(t). The advantage of doing so is that by designing an
appropriate measurement structure we can preserve the func-
tional privacy without using any privacy-preserving techniques.

Definition 1 (Vector-wise functional privacy protection):
The functional privacy z(t) = Fx(t) is inferable, if for any
initial state x(0) and input u(t), there exists a finite time
tf such that the initial value of the function Fx(0) can be
uniquely determined from the observation y(t) and input u(t),
0 ≤ t ≤ tf . The functional privacy z(t) is said to be (vector-
wisely) protected if it is not inferable.

Definition 2 (Entry-wise functional privacy protection): The
functional privacy z(t) = Fx(t) is said to be entry-wisely
protected if every component of z(t), i.e., zi(t) = fix(t), is
protected for i = 1, ..., r.

Remark 1: The case that z(t) is not inferable does not imply
that every component of it is not inferable. There may exist
scenarios where z(t) is not inferable but its partial components
are. Therefore, the entry-wise protection is stricter than the
vector-wise protection. From Definition 1, with the knowledge
of (A,C, F ) and u(t), y(t), t ∈ [0, tf ], if an observer can infer
z(0), then it can infer z(t) for t ∈ [0, tf ].

In the network context, the structure of C can be dominantly
determined by the state variables (nodes) it directly measures.
We say a set of state variables indexed by S ⊆ [n] is blocked
from direct measurement with respect to the output matrix C
(blocked w.r.t. C for short) if the columns of C indexed by S
are turned to zeros (i.e., C is turned to C [n]\S ). To see how
many state variables should be blocked w.r.t. whatever output
matrices C to protect the functional privacy, we consider the
following two problems:

Problem 1: How can we select the minimum set of state
variables to be blocked w.r.t. any output matrix C such that
z(t) is protected?

Problem 2: How can we select the minimum set of state
variables to be blocked w.r.t. any output matrix C such that
every component of z(t) is protected?

A trivial solution to Problems 1 and 2 is the full state set,
under which y(t) cannot convey any information of z(t). This
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implies these two problems are well-defined. Problems 1 and
2 enable a better understanding of the role of nodal measure-
ments in the preservation of the given functional privacy z(t).
Note the problems do not depend on a specific output matrix
C, meaning that the solutions are properties of the network
system matrix A and the functional privacy characterized by
F . The solutions to these problems can somehow tell us the
set of nodes that we can protect with less cost to preserve
functional privacy more efficiently (since blocking more nodes
from direct measurement means that more energy or additional
effort is needed). System (2)-(4) may be represented by the pair
(A,F ) when Problems 1 and 2 are considered.

It is obvious that in Problems 1 and 2, it suffices to consider
the case with dedicated sensors, i.e., C = In. This is because,
for any output matrix C ∈ Rm×n and a given S ⊆ [n], even
m > n, upon defining S̄ = [n]\S, the new output matrix CS̄

after blocking state variables S means that at most n − |S|
state variables are measured so that we can extract no more
than n− |S| individual states indexed by S̄.

III. FUNCTIONAL OBSERVABILITY

In this section, we investigate Problems 1 and 2 in the
spirit of functional observability, resulting in reformulations
for them.

We shall denote the system described by (2)-(4) as the triple
(A,C, F ). Before introducing the definition of functional ob-
servability, we give an equivalent definition of being inferable
as follows.

Lemma 1: The functional privacy z(t) = Fx(t) is inferable
(by an adversarial observer), if and only if for any initial states
x1 and x2 and input u, y(x1, u, t) = y(x2, u, t) for all t ≥ 0
implies that Fx1 = Fx2.
Proof: The sufficiency is obvious since this condition im-
plies for any output y(t) and input u(t), there is a unique
initial function Fx(0) that obeys the system dynamics. For
the necessity, suppose there exist two initial states x1, x2 and
input u such that y(x1, u, t) = y(x2, u, t) for all t ≥ 0
but Fx1 ̸= Fx2. Then, the initial function Fx(0) cannot be
determined uniquely. �

Definition 3 (Observability): [24] System (2)-(3) is said to
be observable, if for any initial states x1, x2 and the zero input,
y(x1, 0, t) = y(x2, 0, t) for all t ≥ 0 implies that x1 = x2.

Definition 4 (Functional observability): [15, 16] System (2)-
(4) is said to be functionally observable, if for any initial states
x1, x2 and input u, y(x1, u, t) = y(x2, u, t) for all t ≥ 0
implies that Fx1 = Fx2.

In other words, functional observability is the ability to
infer linear functions of states Fx(t) from the knowledge of
external inputs u(t) and outputs y(t) of a system [14]. When
F = In, functional observability collapses to conventional
observability. Based on functional observability and Lemma
1, the functional privacy z(t) = Fx(t) is inferable for a
system (A,C, F ), if and only if (A,C, F ) is functionally
observable. In addition, Fx(t) is entry-wisely protected, if and
only if (A,C, fi) is not functionally observable for i = 1, ..., r,
recalling fi is the ith row of F . Therefore, Problems 1 and 2

can be equivalently formulated as

Problem 1 :
minS⊆[n] |S|
s.t. (A, I[n]\S , F ) not functionally observable.

Problem 2 :
minS⊆[n] |S|
s.t. (A, I[n]\S , fi) not functionally observable,
∀i ∈ [r].

The following lemma revises [15, Theo. 4] and [16, Theo.2],
which gives a necessary and sufficient condition for functional
observability under the diagonalization assumption on A.

Lemma 2: [17, Coro. 2] Suppose that A is diagonalizable.
The triple (A,C, F ) is functionally observable if and only if

rank

 A− λIn
C
F

 = rank

[
A− λIn

C

]
, ∀λ ∈ C. (5)

It can be seen that when F = In, the above condition
collapses to the PBH test for conventional observability. When
(A,C, F ) is functionally observable, one can find a matrix
F0 satisfying two additional conditions (see [14, Theo. 2]),
based on which a functional observer with arbitrary poles can
be constructed to estimate z(t) asymptotically; see [14] for
details.

IV. COMPLEXITY ANALYSIS

In this section, we prove that both Problems 1 and 2 are NP-
hard. When F is a row vector, Problem 1 reduces to Problem
2. This indicates to show the NP-hardness of Problem 1, it
suffices to show the NP-hardness of Problem 2 with scalar
functional privacy.

Definition 5 (Linear degeneracy problem, [25]): Given an
n× k (k < n) matrix W , the linear degeneracy problem is to
determine whether there exist k rows of W that are linearly
dependent, i.e., whether a set S ⊆ [n] with |S| = k exists such
that detWS = 0.

Theorem 1: Both Problems 1 and 2 are NP-hard.
Proof: We shall present a reduction from the linear degen-
eracy problem to Problem 2. For space limitation, please refer
to [26]. �

Remark 2: We remark that the NP-hardness of Problem 1
can also be obtained from [13, Theo. 1], which established
the NP-hardness of determining the minimum number of
sensors whose removal can destroy system observability with
dedicated sensors (i.e., C = In). This means Problem 1 is NP-
hard with F = In, under which circumstance the functional
observability collapses to the conventional observability. How-
ever, the technique in [13, Theo. 1] is not sufficient to prove
the NP-hardness of Problem 2.

V. ALGORITHMS

In this section, we give exact algorithms for Problem 1
under a reasonable assumption that the eigenvalue geometric
multiplicities of A are bounded by a constant. We also present
a greedy algorithm for Problem 2.

The following assumption on the computational availability
of eigenvalues and eigenvectors of A is adopted.
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Assumption 1: Suppose that the eigenvalues and eigenvec-
tors of A are computationally available. Moreover, suppose
there are q distinct eigenvalues in eig(A), the ith one denoted
by λi, and Xi ∈ Cn×ki consists of the maximum number of
linearly independent eigenvectors (i.e., Xi is the eigenbasis)
associated with λi.

Remark 3: It is worth mentioning that, while eigenvalues
and eigenvectors of a matrix can be computed to any pre-
scribed precision in theory, the practical limitations of numeri-
cal methods and the conditioning of the matrix may sometimes
make it difficult to achieve high precision in practice [27]. On
the other hand, the eigenvalues and eigenvectors of adjacency
or Laplacian matrices of large-scale sparse graphs have been
extensively studied [18], and there are specialized algorithm-
s for computing eigenvalues of sparse matrices more effi-
ciently and accurately than general-purpose algorithms [28].
This makes Assumption 1 reasonable for studying sparsely-
connected networks.

Assumption 2: The state matrix A is diagonalizable.
Remark 4: Equivalently, this assumption requires that∑q
i=1 ki = n. Diagonalizable matrices are quite common

in system modeling and control. For example, all symmetric
matrices, naturally arising in Laplacian matrices and adjacency
matrices of undirected graphs, are diagonalizable. Moreover,
the weighted Laplacian matrices of strongly connected directed
graphs and adjacency matrices of random networks are mostly
diagonalizable [18, 29].

Lemma 3: [30, Chap. 0.2.7] Let M = col{M1,M2} be a
composite matrix and M⊥

1 (if exists) consist of a set of linearly
independent column vectors spanning the null space of M1

(M⊥
1 is called a basis matrix). Then, M is of full column

rank, if and only if M2M
⊥
1 is of full column rank.

A. Algorithms for Problem 1
According to Lemma 2, under Assumption 2, a natural

idea to find a minimum set (i.e., a set with the minimum
cardinality) S ⊆ [n] such that (A, I [n]\S , F ) fails to be
functionally observable is to determine the minimum set Si
for each eigenvalue λi ∈ eig(A) such that

rank

 A− λiIn
I [n]\Si

F

 > rank

[
A− λiIn
I [n]\Si

]
, (6)

and then find the minimum |Si| over i ∈ [q]. In the following,
we characterize the minimum set Si that satisfies (6).

Proposition 1: Let S∗i be a set with the minimum cardinality
that satisfies (6). Then, it holds that

rank

 A− λiIn
I [n]\S

∗
i

F

 = n, (7)

rank

[
A− λiIn
I [n]\S

∗
i

]
= n− 1. (8)

Moreover, S∗i (if exists) must be a minimal set that satisfies
(8) (by ‘minimal set’ we mean S∗i satisfies (8), but any proper
subset S̄∗i ⊆ S∗i cannot satisfy (8)).
Proof: The proof can be found in [26]. �

By Proposition 1, to determine S∗i for each λi ∈ eig(A),
one can determine all minimal sets that satisfy (8), and then
find out those that satisfy (7). Then, S∗i is such a set with the
minimum cardinality. Note that S∗i may be empty for some
λi ∈ eig(A). But with Assumption 2, there is at least one
λi ∈ eig(A) such that S∗i is not empty. Indeed, the worst-case
solution to Problem 1 is the full state set [n]. After determining
S∗i for each λi ∈ eig(A), the optimal solution is the set S∗i
with the minimum cardinality over i ∈ [q].

1) Simple dynamic case: We first consider the case where
A has no repeated eigenvalues, i.e., the simple dynamic case.
In this situation, ki = 1 ∀i and q = n. If a set Si satisfies (8),
by Lemma 3, it holds that

[Xi][n]\Si
= 0.

Hence, the minimal set satisfying (8) is unique, which is the
support of Xi, given by

S̄∗i = suppXi
.
= {j ∈ [n] : [Xi]j ̸= 0}.

Let S∗i be such S̄∗i that satisfies (7). For ease of description,
if S̄∗i does not satisfy (7), we assign S∗i = [n]. As a result, the
optimal solution to Problem 1 (denoted by S∗P1

) is

S∗P1
= argi∈[n] min |S∗i |.

2) Bounded eigenvalue geometric multiplicity case: We
now generalize the simple dynamic case to systems with
bounded eigenvalue geometric multiplicities. More precisely,
we consider systems satisfying the following assumption:

Assumption 3: The geometric multiplicities of eigenvalues
of A are bounded by some fixed constant kc, i.e., ki ≤ kc
∀i ∈ [q] as n increases.

The above assumption can be satisfied by most practical sys-
tems. The simple dynamic case is one such with kc = 1. Be-
sides, when modeling networks of coupled oscillators, power
grids, diffusively couple networks, epidemiological networks
using graphs, a common setting is that each node has a self-
loop [18–21], under which these networks can be controllable
using some constant number of inputs regardless of the net-
work size [31]. This indicates the above assumption is satisfied
for these networks, since the minimum number of inputs
for achieving controllability equals the maximum eigenvalue
geometric multiplicities of system state matrices [32].

From the previous analysis, the key step for solving Problem
1 is to determine the collection Ωi of all minimal sets that
satisfy (8) for a given λi ∈ eig(A). We provide Algorithm 1 for
this purpose. In this algorithm, W ′

j is a maximal set satisfying
rank[Xi]W′

j
= ki− 1, meaning that adding additional rows to

[Xi]W′
j

will increase its rank. Therefore, by Lemma 3, [n]\W ′
j

is a minimal set satisfying (8). With Assumption 3, |Ωi| ≤(
n
ki

)
≤ nkc . After the determination of Ωi for i ∈ [q], the

rest is similar to the simple dynamic case. We collect the whole
procedure in Algorithm 2, and state the following result.

Theorem 2: Under Assumptions 1-3, Algorithm 2 is able to
find an optimal solution to Problem 1 in time O(nkc+2k3c ).
Proof: The reason why Algorithm 2 returns an optimal
solution has been explained in Proposition 1 and the main
contexts. Here we just need to justify the computational
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complexity. Step 1 incurs O(n3) time [27]. For each eigenbasis
Xi, checking whether its ki− 1 rows are linearly independent
can use the singular value decomposition (SVD), which takes
O(k3i ) time [27]. For eachWj in Algorithm 1, it takes O(nk3i )
time to get W ′

j via SVD. For each member Sij ∈ Ωi, it takes
O(k2i (n + r)) time to get S̄ij . Since |Ωi| ≤ nki , determining
S∗i incurs time O(nki+1k3i ). As q ≤ n and ki ≤ kc, the total
time complexity is at most O(nkc+2k3c ). �

Remark 5: Theorem 2 makes it clear that the computation
cost of Algorithm 2 scales exponentially with kc. This indi-
cates it is the eigenvalue geometric multiplicities of A that
cause the computational intractability of Problem 1.

Algorithm 1 : Enumerating all minimal sets satisfying (8)
Input: The eigenbasis Xi of λi ∈ eig(A)
Output: The collection Ωi of the minimal sets satisfying (8)

1: Determine all sets {Wj}N1
j=1 that contain ki − 1 linearly inde-

pendent rows of Xi (N1 is the number of such sets).
2: for j = 1 to N1 do
3: W ′

j =Wj ∪
{
k : rank[Xi]Wj∪{k} = ki − 1

}
4: Sij = [n]\W ′

j

5: end for
6: Return Ωi = {Sij}N1

j=1.

Algorithm 2 : Algorithm for Problem 1
Input: Parameters (A,F ) satisfying Assumption 1-3
Output: The optimal solution S∗

P1
to Problem 1

1: Calculate the eigenbases {Xi|qi=1} of A.
2: for i = 1 to q do
3: Determine the collection Ωi of the minimal sets satisfying (8)

using Algorithm 1.
4: For each member Sij ∈ Ωi, check whether it satisfies (7),

if yes, let S̄ij = Sij ; otherwise, let S̄ij = [n]. Find S∗
i =

argmin |S̄ij |.
5: end for
6: Return S∗

P1
= argi∈[q] min |S∗

i |.

B. Greedy algorithm for Problem 2

By the definition of functional observability, if we obtain the
optimal solution S∗P1i

to Problem 1 associated with (A, fi)
for each row fi of F , then

∪r
i=1 S∗P1i

is a feasible solution
to Problem 2. However, such a solution ignores the possible
overlaps among different f ′

is, which may be far from the
optimal one. In what follows, we provide a greedy algorithm
for Problem 2. This algorithm is based on the following result,
which generalizes Proposition 1.

Proposition 2: With Assumption 2, suppose for one λi ∈
eig(A), some Tk ⊆ [n], and the jth row fj of F , it holds

rank

 A− λiIn
ITk

fj

 = rank

[
A− λiIn

ITk

]
= nij ≤ n. (9)

If ∆∗
kj ⊆ Tk is a set with the minimum cardinality satisfying

rank

 A− λiIn
ITk\∆∗

kj

fj

 > rank

[
A− λiIn
ITk\∆∗

kj

]
, (10)

it must hold that

rank

 A− λiIn
ITk\∆∗

kj

fj

 = nij , rank

[
A− λiIn
ITk\∆∗

kj

]
= nij − 1,

(11)
and ∆∗

kj is a minimal set satisfying the second equality of
(11).
Proof: The proof is similar to that of Proposition 1, thus
omitted. �

It is clear that if Tk = [n], nij = n, then Proposition 2
collapses to Proposition 1. As a result, when (9) holds for
every λi ∈ eig(A), we can use a similar manner to Algorithm
2 to find a set ∆∗

kj with the minimum cardinality such that
(10) is true for some λi ∈ eig(A). Denote such a process
by ∆∗

kj ← Alg2[A, fj , Tk]. That is, Alg2[A, fj , Tk] finds the
minimum set ∆∗

kj from Tk such that (A, ITk\∆∗
kj , fj) becomes

functionally unobservable (∆∗
kj will be empty if (A, ITk , fj)

is already functionally unobservable). We formulate the greedy
algorithm for Problem 2 as Algorithm 3.

Algorithm 3 : Greedy Algorithm for Problem 2
Input: Parameters (A,F ) satisfying Assumption 1-3

1: Calculate the eigenbases {Xi|qi=1} of A.
2: Initialize T0 = [n],F = [r], k = 0
3: while |Tk| > 0 and |F| > 0 do
4: for j ∈ F do
5: ∆∗

kj ← Alg2[A, fj , Tk].
6: end for
7: ∆∗

kj∗ ← argminj∈F |∆∗
kj |

8: Update Tk+1 ← Tk\∆∗
kj∗ , F ← F\{j∗}, and k ← k + 1.

9: end while
10: Return a solution [n]\Tk

Compared to the naive method mentioned at the beginning
of this subsection, the advantage of Algorithm 3 lies in that,
it not only guarantees to protect one scalar functional privacy
fix(t) per step but also accounts for the relations between
different fi’s. The computation time of Algorithm 3 is dom-
inated by the subroutine Alg2[A, fj , Tk], which runs at most
r2 times. Therefore, the time complexity of Algorithm 3 is
O(r2nkc+2k3c ). When kc is large, this is a huge computational
burden.

Remark 6: Based on Proposition 2, both Algorithms 2 and
3 can be trivially extended to the case where the adversarial
observers or eavesdroppers have access only to a restricted set
of full states. In this case, we just need to change the full state
set [n] to the aforementioned restricted set (Tk alike).

VI. ILLUSTRATIVE EXAMPLE
Consider a network system with

A =


1 0 0 0 0 0
3 5 2 0 0 0
4 0 4 0 0 0
2 0 0 2 0 0
0 2 1 3 6 0
0 0 0 5 4 9

 ,

whose topology is given in Fig. 1. It follows that eig(A)
={1, 5, 4, 2, 6, 9}. The corresponding eigenvectors have sup-
ports respectively as S̄∗1 = {1, · · · , 6}, S̄∗2 = {2, 5, 6},
S̄∗3 = {2, 3, 5, 6}, S̄∗4 = {4, 5, 6}, S̄∗5 = {5, 6}, and S̄∗6 = {6}.
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Fig. 1. Network topology of the system in Section VI.

First, let us consider Problem 1 with F1 = I6. Algorithm 2
returns a solution {6}. This means blocking state x6 only is
enough to protect the full state vector-wisely. Now, let F2 =
[0, 1, 1, 1, 0, 0]/3, meaning that the functional privacy is the
average state of cluster {x2, x3, x4}. Two solutions, {2, 5, 6}
or {4, 5, 6}, are found via Algorithm 2. It can be validated that
both are optimal.

Next, consider F3 = col{eᵀ3 , e
ᵀ
4 , e

ᵀ
5} (n = 6), i.e., protecting

states {x3, x4, x5}. Using Algorithm 2, we get an optimal
solution with 2 states {5, 6}, implying that at least two states
need to be blocked. Comparing these solutions, it turns out
that although blocking state x6 is enough to protect the
full state vector-wisely, it cannot protect states {x3, x4, x5}.
Finally, suppose we are to protect state variables {x3, x4, x5}
entry-wisely. Implementing Algorithm 3 on (A,F3), we get
T1 = {1, 2, 3, 4} and F1 = {3, 4}, T2 = {1, 2, 3} and
F2 = {3}, and T3 = {1} and F3 = ∅, which means
the solution is {2, 3, 4, 5, 6}. By exhaustive search, it can be
validated that this solution is optimal.

This above example shows that the minimum set of states
needed to be blocked varies drastically with the functional
privacy to be protected; and even for the same functional
privacy, the vector-wise protection and entry-wise protection
can lead to drastically different solutions.

VII. CONCLUSION

This paper addressed and investigated the problem of
protecting functional privacy in a network by blocking the
minimum set of state variables from direct measurements. We
have related the considered functional privacy to the concept of
functional observability. By leveraging a PBH-like criterion for
functional observability, we have proven that both the vector-
wise and entry-wise functional privacy protection problems are
NP-hard, but presented an exact algorithm with polynomial
time complexity for the vector-wise problem by assuming a
reasonable constant bound on the system eigenvalue geometric
multiplicities. A greedy algorithm for the entry-wise problem
is further provided. The effectiveness of the proposed approach
is demonstrated through an example. In the future, we plan to
extend our study to a structured system model [17].
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