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Abstract— The distributed optimization algorithm proposed
by J. Wang and N. Elia in 2010 has been shown to achieve lin-
ear convergence for multi-agent systems with single-integrator
dynamics. This paper extends their result, including the linear
convergence rate, to a more complex scenario where the agents
have heterogeneous multi-input multi-output linear dynamics
and are subject to external disturbances and parametric un-
certainties. Disturbances are dealt with via an internal-model-
based control design, and the interaction among the tracking
error dynamics, average dynamics, and dispersion dynamics
is analyzed through a composite Lyapunov function and the
cyclic small-gain theorem. The key is to ensure a small enough
stepsize for the convergence of the proposed algorithm, which
is similar to the condition for time-scale separation in singular
perturbation theory.

I. INTRODUCTION

Large-scale networked systems make a direct application
of centralized control and optimization impractical due to
limited communication and computational resources. In such
cases, distributed control and optimization methods become
attractive as each agent uses only local information in real-
time decision making. Distributed optimization, where agents
cooperate to minimize a global cost function made of a sum
of local cost functions, is an important topic in this context
[1].

Subgradient methods have been proposed to solve the
distributed optimization problem, where each agent mini-
mizes its local cost function and exchanges information with
neighboring agents [2], and these methods usually employ
a vanishing stepsize, which is inevitably associated with a
degraded convergence rate. To overcome such limitation,
Wang and Elia [3] introduced a proportional-integral control
strategy with a fixed stepsize that not only accelerates
convergence, but also exhibits robustness to additive noise.
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Recently, the robustness of the algorithm in the sense of
input-to-state stability was established in [4] based on the
time-scale separation property of the algorithm. Alterna-
tively, gradient tracking has been introduced in distributed
optimization to track the gradient of the global cost function
and achieve faster convergence [5], [6].

The above-mentioned methods can be viewed as optimal
coordination algorithms for multi-agent systems modeled as
single integrators [1]. In practice, the agent dynamics can be
more complex such as heterogeneous or/and uncertain sys-
tems, and the gradient information may be measured based
only on the agent’s current output [7]. This is the case, for
instance, of optimal steady-state control problems [8], where
a set of possibly heterogeneous systems has to be driven
to a steady state optimizing a given performance metric.
Most studies in this direction assume that the multi-agent
systems are described by continuous-time models, e.g., [9]–
[11]. Only a few papers considering complex agent dynamics
were devoted to discrete-time multi-agent systems, which
center around first-order and second-order systems [12] [13].
Discrete-time models are closely related to many practical
sampled-data systems, and the results in continuous-time
systems cannot be directly applied to discrete-time systems,
e.g., the averaging algorithm calls for additional conditions
on the stepsize for discrete-time models [14].

This paper deals with distributed optimization of multi-
agent systems characterized by discrete-time linear uncer-
tain dynamics. The paper delivers two main contributions.
Firstly, a novel output regulation framework is proposed for
heterogeneous discrete-time multi-agent systems, extending
the class of systems considered in [11] and generalizing the
convergence result of the Wang-Elia algorithm in [4] to more
general systems. Secondly, the proposed strategy utilizes
only partial information of the gradient of the objective
function, gathered from the available measurements, since
the analytic form of gradient functions usually cannot be
obtained in the feedback-based optimization process [15].
This relaxation leads to the interaction between the reference
generators and controlled agents, which is investigated by
a composite Lyapunov function and the cyclic small-gain
theorem [16]. As a consequence, the linear convergence to
the global minimizer is established.

Notations. Throughout the paper, λmax(·) and λmin(·)
denote the maximum and minimum eigenvalues of a real
symmetric matrix, respectively. σ(·) denotes the spectrum
of a square matrix. A matrix is Schur if its eigenvalues lie
inside the open unit disk. X = blockdiag[X1, X2, · · · , Xn]
denotes the block diagonal concatenation of the matrices
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X1, X2, · · · , Xn. vec(A) = [a⊤1 , a
⊤
2 , · · · , a⊤n ]⊤ where ai

stands for the i th column of matrix A. ⊗ stands for the
Kronecker product. In denotes the identity matrix with size
n, and sometimes n is omitted when there is no confusion.
|·| refers to the absolute value of a scalar, the Euclidean
norm of a vector, and the induced 2-norm of a matrix.
1N ∈ RN denotes the N -dimensional vector [1, · · · , 1]⊤.
For any discrete-time signal s : N → Rn, + denotes the time
shift operator, i.e. s+(·) = s(·+1). f−1 denotes the inverse
function of f .

II. PROBLEM FORMULATION

In this section, we describe the class of multi-agent sys-
tems under concern and formulate the considered distributed
optimization problem. Consider a group of N agents with
agent i modeled by

x+i = Awixi +Bwiui + Ewidi (1)
yi = Cwixi +Dwiui + Fwidi (2)

for i = {1, · · · , N}, where xi ∈ Rni , yi ∈ Rp, and ui ∈ Rmi

are the state, output, and input of agent i, respectively, and
di ∈ Rli is the exogenous disturbance. Awi ∈ Rni×ni ,
Bwi ∈ Rni×mi , Ewi ∈ Rni×li , Cwi ∈ Rp×ni , Dwi ∈
Rp×mi , and Fwi ∈ Rp×li are uncertain matrices defined as
Awi = Ai + ∆Ai, Bwi = Bi + ∆Bi, Ewi = Ci + ∆Ei,
Cwi = Ci + ∆Ci, Dwi = Di + ∆Di, Fwi = Fi + ∆Fi

where Ai, Bi, Ei, Ci, Di, Fi are known matrices and ∆Ai,
∆Bi, ∆Ei, ∆Ci, ∆Di, ∆Fi are unknown perturbations. Let

wi = vec
([

∆Ai ∆Bi ∆Ei

∆Ci ∆Di ∆Fi

])
and w = [w⊤

1 , w
⊤
2 , · · · , w⊤

N ]⊤ represent the uncertainties of
all agents. For each agent i, we suppose that the disturbance
di satisfies the following autonomous equation

d+i = Sidi (3)

where Si ∈ Rli×li has no eigenvalues with modulus smaller
than one. Moreover, we define a regulation error as

ei = yi − ri (4)

where ri ∈ Rp is the reference signal. Let d =
[d⊤1 , · · · , d⊤N ]⊤, e = [e⊤1 , · · · , e⊤N ]⊤, r = [r⊤1 , · · · , r⊤N ]⊤, and
y = [y⊤1 , · · · , y⊤N ]⊤.

The information exchange topology among the agents is
described by a directed graph G = (N , E ,A) including a
finite set of nodes N = {1, · · · , N} corresponding to the
agents, a finite set of edges E ⊆ N × N , and a weighted
adjacency matrix A = [aij ]N×N . Moreover, (i, j) denotes
the edge from i to j and aij denotes the weight of the edge
(j, i), which satisfies aij > 0 when (j, i) ∈ E and aij = 0
when (j, i) /∈ E . We say that G is connected if there exists
a path between any two nodes, A is doubly-stochastic if
A1N = 1N and 1⊤

NA = 1⊤
N , and G is undirected if A =

A⊤. We make the following assumption on the graph.
Assumption 1: The digraph G is connected and A is

doubly-stochastic.

Each agent i is associated with a local cost function fi :
Rp → R that is unknown to the other agents. The objective
is to design distributed controllers such that

lim
k→∞

yi(k) = y∗ (5)

for all i ∈ N , where y∗ ∈ Rp minimizes the sum of local cost
functions f =

∑
i∈N

fi. We make the following assumption on

the local objective functions.
Assumption 2: For each i ∈ N , fi is continuously differ-

entiable and there exists l > 0 such that

|∇fi(a)−∇fi(b)| ≤ l|a− b| (6)

for all a, b ∈ Rp. Moreover, there exists µ > 0 such that the
global cost function f satisfies

(a− b)⊤(∇f(a)−∇f(b)) ≥ µ|a− b|2 (7)

for all a, b ∈ Rp.
A continuously differentiable function satisfying (7) is said
to be strongly convex, and thanks to (7), there exists a unique
minimizer of f [17]. The considered problem is summarized
as follows.

Problem 1: The distributed robust optimal output agree-
ment problem is to find a distributed control system yielding
a reference signal ri and a control action ui for each agent
i ∈ N , such that, for the multi-agent system (1), (2), and (3)
with the network topology G:

1) the closed-loop system is asymptotically stable at the
origin when w = 0, r = 0, and d = 0;

2) there exists an open neighborhood W of w = 0 such
that, for every w ∈W , and every initial state xi(0), (5)
is satisfied for all i ∈ N .

III. REFERENCE AND CONTROL DESIGN

In this section, we present the design of distributed refer-
ence signals and robust tracking control for the multi-agent
systems.

A. Wang-Elia Algorithm

The Wang-Elia algorithm was proposed in [3] for the
distributed optimization problem with single-integrator dy-
namics. We employ this algorithm with a small modification
to generate the reference signals. For each agent i ∈ N ,
define the system

r+i = ri − β
∑
j∈Ni

aij(ri − rj + qi − qj)− βα∇fi(yi)

q+i = qi + β
∑
j∈Ni

aij(ri − rj)
(8)

where α > 0 is the stepsize and β > 0 is a consensus
parameter, both of which will be designed in the next
section; Ni = {j ∈ N|(j, i) ∈ E} denotes the set of
all neighbors of agent i. Compared to the original Wang-
Elia algorithm, the gradient is computed at yi instead of ri,
since in many practical cases, only the real-time measure-
ment of the gradient ∇fi(yi) is available [7]. Let Φ(y) =
[∇f⊤1 (y1), · · · ,∇f⊤N (yN )]⊤, L = I − A, and L̄ = L ⊗ Ip.
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Let q = [q⊤1 , · · · , q⊤N ]⊤ and recall that r = [r⊤1 , · · · , r⊤N ]⊤

denotes the composite reference signals, then, the state
equations for all agents are:

r+ = (I − βL̄)r − βL̄q − αβΦ(y)

q+ = q + βL̄r.
(9)

As y = e + r by (4), the convergence of the Wang-Elia
algorithm can be adversely affected by the tracking error e.
In the following section, a robust tracking controller based
on output regulation theory is introduced to deal with the
tracking error e.

B. Robust Tracking Control

A design procedure of integral control based on the
internal model principle is presented here assuming r is a
constant. Specifically, the proposed design solution is based
on the construction of [18]. For each agent i ∈ N , let
λκi + α1λ

(κi−1) + · · · + ακi−1λ + ακi be the minimal
polynomial of Ai0 = blockdiag[Ip, Si], which contains the
factor λ− 1, and let

Λi =

[
0 Iκi−1

−ακi [−α(κi−1), · · · ,−α1]

]
and ρi = [0, 0, · · · , 0, 1]⊤ ∈ Rκi . Then, let Gi1 =
blockdiag[Λi1,Λi2, · · · ,Λip], with Λi1 = Λi2 = · · · =
Λip = Λi, and Gi2 = blockdiag[ρi1, ρi2, · · · , ρip] with
ρi1 = ρi2 = · · · = ρip = ρi. For each agent i ∈ N , the
dynamic state feedback controller takes on the form:

ui = Ki1xi +Ki2zi

z+i = Gi1zi +Gi2ei
(10)

where zi ∈ Rpκi and Ki1 ∈ Rmi×ni , Ki2 ∈ Rmi×pκi are
chosen such that

Aic =

[
Ai 0

Gi2Ci Gi1

]
+

[
Bi

Gi2Di

] [
Ki1 Ki2

]
is Schur. To guarantee the existence of (Ki1,Ki2), the
following assumption is introduced.

Assumption 3: For each agent i ∈ N , Si has no eigen-
values with modulus smaller than one, the pair (Ai, Bi) is
stabilizable, and

rank
[
Ai − λI Bi

Ci Di

]
= ni + p

for all λ ∈ σ(Si) ∪ {1}.
Lemma 1 ( [19] Lemma 1.37): Under Assumption 3, for

each agent i ∈ N , the pair([
Ai 0
Gi2C Gi1

]
,

[
B

Gi2D

])
is stabilizable.

Remark 1: The problem of designing a robust tracking
controller when the reference is produced by (9) is out
of reach of canonical output regulation theory [18]–[20].
Indeed, (9) is not autonomous as it depends on the agents’
outputs y. To overcome this issue, we proceed as follows. We
first consider the ideal case in which a coordinator provides

the optimal minimizer y∗ as the reference signal. By the
internal model principle [21], it is necessary to embed an
integrator in the control loop to achieve asymptotic tracking
as previously done. Next, we observe that [18] shows that
integral control is robust for slow variations of the set-
point. Finally, we notice that the Wang-Elia algorithm is
characterized by a time-scale separation property when the
stepsize α is sufficiently small [4] and that, as a result,
the reference r can be assumed to be slowly time-varying.
Therefore, the robustness result of [18] can be used, with
the due adaptation, to study the stability of the composite
system as shown in Section IV.

IV. MAIN RESULTS

In this section, we analyze the stability properties of the
closed-loop systems under reference (8) and controller (10).
First, the reference-tracking capability of (10) is character-
ized via a Lyapunov formulation considering the drift of
r. Then, robustness of the distributed optimization process
(8) is investigated. Finally, the two results are combined to
establish the stability of the overall system.

A. Reference-Tracking Capability

For each agent i ∈ N , as Aic is Schur by the selection
of Ki1 and Ki2, there exists an open neighborhood W of
w = 0 such that

Aicw =

[
Awi +BwiKi1 BwiKi2

Gi2(Cwi +DwiKi1) Gi1 +Gi2DwiKi2

]
is Schur. Define Âi = Awi +BwiKi1, B̂i = BwiKi2, Ĉi =
Cwi + DwiKi1, D̂i = DwiKi2, Êi = [0, Ewi], and F̂i =
[−Ip, Fwi].

Lemma 2: Under Assumption 3, for each agent i ∈ N ,
let Xi and Zi be the solution of

XiAi0 = ÂiXi + B̂iZi + Êi

ZiAi0 = Gi1Zi +Gi2(ĈiXi + D̂iZi + F̂i)
(11)

and define [X⊤
i , Z

⊤
i ]⊤ = [Xir, Xid] with Xir ∈

R(ni+pκi)×p, vi = [r⊤i , d
⊤
i ]

⊤, x̃i = xi−Xivi, z̃i = zi−Zivi,
and ηi = [x̃⊤i , z̃

⊤
i ]⊤. Then,

η+i = Aicwηi +Xir(ri − r+i ) (12)

ei = [Ĉi, D̂i]ηi. (13)
Proof: The result is a direct application of Lemma 1.38

in [19].
Define Ācw = blockdiag[A1cw, A2cw, · · · , ANcw],

B̄cw = blockdiag[X1r, X2r, · · · , XNr],

C̄cw = blockdiag[[Ĉ1, D̂1], [Ĉ2, D̂2], · · · , [ĈN , D̂N ]],

and η = [η⊤1 , η
⊤
2 , · · · , η⊤N ]⊤. The tracking-error systems of

all agents can be aggregated as

η+ = Ācwη + B̄cw(r − r+) (14)
e = C̄cwη. (15)

The following proposition formalizes the tracking perfor-
mance of the controller (10).
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Proposition 1 ( [22]): Under Assumption 3, consider the
multi-agent systems with dynamics (14). Then, there exist a
real symmetric and positive definite matrix P1 and positive
constants δ and θ such that the function V1(η) = η⊤P1η
satisfies

V1(η
+)− V1(η) ≤ −δ|η|2 + θ|r − r+|2 (16)

for all η ∈ R
∑N

i=1(ni+pκi).

B. Robustness of Wang-Elia Algorithm

It was proved in [4] that the Wang-Elia algorithm is
robust to bounded disturbance. Here, we restate the result
considering y∗ as a vector, imposing additional conditions
on β, and regarding Φ̃(r)− Φ̃(y) as the perturbation.

1) Coordinate Transformation: Inspired by [4] and [10],
choose U ∈ RN×(N−1) such that P = [1N/

√
N,U ] is an

orthogonal matrix, and define P̄ = P ⊗ Ip, which is an
orthogonal matrix as P̄−1 = P−1 ⊗ Ip = P⊤ ⊗ Ip = P̄⊤.
Let P̄ = [P̄m, P̄⊥] where P̄m = (1N/

√
N)⊗ Ip and P̄⊥ =

U⊗Ip, by which r = P̄mξm+P̄⊥ξ⊥ and q = P̄mϕm+P̄⊥ϕ⊥,
where (ξm, ϕm) and (ξ⊥, ϕ⊥) correspond to the average and
dispersion parts of (r, q), respectively [4]. Conversely, one
can get ξm = P̄⊤

mr, ϕm = P̄⊤
mq, ξ⊥ = P̄⊤

⊥ r, and ϕ⊥ = P̄⊤
⊥ q.

From (9), we obtain

ξ+m = ξm − αβP̄⊤
mΦ(y) (17)[

ξ+⊥
ϕ+⊥

]
= A⊥

[
ξ⊥
ϕ⊥

]
−
[
αβP̄⊤

⊥
0

]
Φ(y) (18)

ϕ+m = ϕm (19)

where

A⊥ =

[
I − βR −βR
βR I

]
with R = (U⊤LU) ⊗ Ip. As y = e + r = e + P̄mξm +
P̄⊥ξ⊥, ϕm is independent of the other states and can be
ignored without affecting the analysis of the other states. The
equilibrium of the overall system is described as follows.

Lemma 3: Under Assumptions 1, 2, and 3, the system of
(14), (17), and (18) admits a unique equilibrium, i.e., η∗ = 0,
ξ∗m =

√
Ny∗, ξ∗⊥ = 0, and ϕ∗⊥ = −αR−1P̄⊤

⊥Φ(1N ⊗ y∗).
Proof: Let r∗ = P̄mξ

∗
m + P̄⊥ξ

∗
⊥. As ξ∗m and ξ∗⊥ are

fixed points, it follows from (14) that (I − Ācw)η
∗ = 0 and

η∗ = 0 since Ācw is Schur by Assumption 3. Hence, e = 0
from (15) and y = r∗. From the dynamics of ϕ⊥ in (18),
Rξ∗⊥ = 0. By Assumption 1, LP = P blockdiag[0, U⊤LU ].
Thus, σ(U⊤LU) contains all the eigenvalues of L except one
eigenvalue 0. Since the digraph G is connected, by Perron-
Frobenius Theorem [14], 0 is a simple eigenvalue of L.
Hence, eigenvalues of U⊤LU are non-zero and R is non-
singular, which implies that ξ∗⊥ = 0. Hence y = r∗ = P̄mξ

∗
m.

From (17),
√
NP̄⊤

mΦ(r∗) =
∑
i∈N

∇fi(ξ∗m/
√
N) = 0. By

Assumption 2, there exists a unique minimizer y∗ such
that

∑
i∈N

∇fi(y∗) = 0, which implies that ξ∗m =
√
Ny∗.

Therefore, y =
√
NP̄my

∗ = 1N ⊗ y∗. Finally, ϕ∗⊥ =
−αR−1P̄⊤

⊥Φ(1N ⊗ y∗) can be obtained by (18).

Remark 2: It can be seen that, at the equilibrium, y =
P̄mξ

∗
m = 1N⊗y∗. Hence, if the equilibrium is asymptotically

stable, the objective in (5) is achieved.
Define ξ̃m = ξm− ξ∗m and ϕ̃⊥ = ϕ⊥−ϕ∗⊥. The dynamics

of (14), (17), and (18) can be rewritten as

η+ = Ācwη + B̄cw(r − r+) (20)

ξ̃+m = ξ̃m − αβP̄⊤
mΦ̃(y) (21)[

ξ+⊥
ϕ̃+⊥

]
= A⊥

[
ξ⊥
ϕ̃⊥

]
−

[
αβP̄⊤

⊥
0

]
Φ̃(y) (22)

where r − r+ = P̄m(ξ̃m − ξ̃+m) + P̄⊥(ξ⊥ − ξ+⊥), Φ̃(y) =
Φ(y)−Φ(1N⊗y∗), and y = P̄mξ̃m+P̄⊥ξ⊥+P̄mξ

∗
m+C̄cwη.

2) Robustness Result: The following result establishes
that, under some conditions, it is possible to choose β such
that A⊥ is Schur.

Lemma 4: Under Assumption 1, when all eigenvalues of
A are real, A⊥ is Schur if and only if 0 < β < 1

2 .
Proof: For any λ ∈ σ(A) with −1 ≤ λ < 1,

then, following the proof of Lemma 3, the corresponding
eigenvalue of βR is β(1 − λ). Since A⊥ = I − Ac ⊗ βR
with

Ac =

[
1 1
−1 0

]
and σ(Ac) = { 1+

√
3j

2 , 1−
√
3j

2 } where j denotes the
unit imaginary number, the corresponding eigenvalue z

of A⊥ satisfies z = 1 − β(1 − λ) 1±
√
3j

2 , and |z| =√
β(1− λ)(β(1− λ)− 1) + 1. As −1 ≤ λ < 1, |z| < 1

is equivalent to 0 < β < 1/(1 − λ), for each −1 ≤ λ < 1.
Therefore, 0 < β < 1

2 guarantees |z| < 1. Conversely,
assuming β ≥ 1

2 , there exists a digraph with two nodes
without self loops, such that one eigenvalue λ = −1, which
implies that A⊥ is not Schur as β ≥ 1/(1− λ).

Remark 3: When G is undirected, A is symmetric and
has only real eigenvalues [23], so Lemma 4 can be used
and the condition is the same as the one in [4] to render
A⊥ Schur, but its necessity was not pointed out. One may
wonder if similar conditions can be derived when only
Assumption 1 holds; however, this is impossible as there
exists a cycle digraph with 6 nodes, where one eigenvalue of
its adjacency matrix is λ = 1−

√
3j

2 [14] and, correspondingly,
one eigenvalue z of A⊥ satisfies |z| > 1 for any β > 0,
which implies that A⊥ is not Schur. We do not restrict the
graph to be undirected, but given a digraph G satisfying
Assumption 1, β should be chosen such that A⊥ is Schur.

System (21) and (22) can be regarded as a perturbed
system with χ = Φ̃(r)−Φ̃(y) as the perturbation. The robust-
ness of the Wang-Elia algorithm to any bounded perturbation
has been investigated in [4] for p = 1 when A⊥ is Schur. For
completeness of the paper, we restate the robustness result
about χ for p ∈ N+, and the proof is similar to that of [4],
hence omitted. Let ψ = [ξ⊤⊥ , ϕ̃

⊤
⊥]

⊤.
Proposition 2: Under Assumptions 1 and 2, suppose there

exists β > 0 such that A⊥ is Schur. Then, there exist a
positive constant ᾱ and a real symmetric positive definite
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matrix P2 such that, for each α ∈ (0, ᾱ], there exist
c0, c1(α), c2(α), c3(α) > 0, such that

∆Vm ≤ −3

2
αc0|ξ̃m|2 + c1(α)|ψ|2 + c2(α)|χ|2 (23)

∆V⊥ ≤ −|ψ|2 + αc0|ξ̃m|2 + c3(α)|χ|2 (24)

where ∆Vm = Vm(ξ̃+m) − Vm(ξ̃m) with Vm(ξ̃m) = ξ̃⊤mξ̃m
and ∆V⊥ = V⊥(ψ

+)− V⊥(ψ) with V⊥(ψ) = ψ⊤P2ψ.

C. Stability of the Overall System

We are ready to state the stability result on the overall
system in closed-loop with the tracking controller and the
distributed reference generator. Let ζ = [η⊤, ξ̃⊤m, ψ

⊤]⊤ and
let ζk denote the state ζ at time step k.

Theorem 1: Under Assumptions 1, 2, and 3, suppose there
exists β > 0 such that A⊥ is Schur. Then, there exist positive
constants c and α∗, and for each α ∈ (0, α∗], there exists
ρ ∈ [0, 1), such that the state ζ of system (20), (21), and
(22) satisfies

|ζk| ≤ cρk|ζ0| (25)

for all k ∈ N.
Proof: First we quantify ∆V1 = V1(η

+)−V1(η). It can
be seen that |r − r+| = |P̄m(ξ̃m − ξ̃+m) + P̄⊥(ξ⊥ − ξ+⊥)| ≤
|ξ̃m − ξ̃+m| + |ψ − ψ+| as |P̄m| = |P̄⊥| = 1. Besides, from
(21) and (22), |ξ̃m − ξ̃+m| ≤ αβ|Φ̃(y)|, |ψ − ψ+| ≤ σ0|ψ|+
αβ|Φ̃(y)| with σ0 = |I −A⊥|, and |Φ̃(y)| ≤ l(|ξ̃m|+ |ψ|+
|C̄cw||η|). Then, |r − r+| ≤ 2αβl(|ξ̃m| + |ψ| + |C̄cw||η|) +
σ0|ψ|. By (16), ∆V1 ≤ (−δ + 12θα2β2|C̄cw|2)|η|2 +
12θα2β2l2|ξ̃m|2+6θ(σ2

0+4α2β2l2)|ψ|2. Since θ > 0, when

α ≤ α5 with α5 =
√
δ/

√
24θβ2|C̄cw|

2,

∆V1 ≤− δ

2
|η|2 + 12θα2β2l2|ξ̃m|2

+ 6θ(σ2
0 + 4α2β2l2)|ψ|2.

(26)

Considering the composite Lyapunov function V (ζ) =
σ1V1(η) + Vm(ξ̃m) + V⊥(ψ) with 0 < σ1 ≤ 1/(24θσ2

0),
by (23), (24), (26), and |χ| ≤ l|C̄cw||η|,

V (ζ+)− V (ζ) ≤ −σ1δ
4

|η|2 − αc0
4

|ξ̃m| − 1

8
|ψ|2 (27)

when α ≤ min{α6, α7, α8, α9} where α6 = c−1
1 ( 12 ),

α7 = c0/(48σ1θβ
2l2), α8 = 1/(

√
192σ1θβ2l2) and

α9 = (c2 + c3)
−1(σ1δ/4l

2|C̄cw|2). Define ν =
min{αc0

4 , 18 ,
σ1δ
4 }, γ1 = min{1, λmin(P2), σ1λmin(P1)}, and

γ2 = max{1, λmax(P2), σ1λmax(P1)}. Then, γ1|ζ|2 ≤
V (ζ) ≤ γ2|ζ|2 and V (ζ+) ≤ (1− v/γ2)V (ζ). If follows
that (25) holds by letting c =

√
γ2/γ1, ρ =

√
1− v/γ2 and

α∗ = min{ᾱ, α5, α6, α7, α8, α9}.
Remark 4: As y − 1N ⊗ y∗ = C̄cwη + P̄mξ̃m + P̄⊥ξ⊥,

by (25), the output converges to the global minimizer with a
linear convergence rate [17]. In addition, the condition on the
stepsize α is a reminiscence of the condition for time-scale
separation in singular perturbation [24].

Besides, apart from constructing the composite Lyapunov
function, the asymptotic stability of the origin can also be
proved by the cyclic small-gain theorem [25] [16], and

V⊥

1m
1m

m ⊥

m⊥

1 ⊥1 ⊥

1V

mV

Fig. 1. Gain digraph of subsystems η, ξ̃m, and ψ.

similar condition on stepsize α can be derived by enforcing
the small-gain conditions, i.e., γ1mγm1 < 1, γ1⊥γ⊥1 < 1,
γm⊥γ⊥m < 1, γ1mγm⊥γ⊥1 < 1, and γ1⊥γ⊥mγm1 <
1 with the asymptotic gains (γm⊥, γm1), (γ⊥m, γ⊥1), and
(γ1m, γ1⊥) from (23), (24), and (26), respectively, as shown
in Fig. 1. By Remark 2, Problem 1 can be solved by Theorem
1 as follows.

Corollary 1: Under Assumptions 1, 2, and 3, let β be
chosen such that A⊥ is Schur and α ∈ (0, α∗]. Then,
Problem 1 is solved by (8) and (10) for each agent i ∈ N .

V. SIMULATION RESULTS

In this section, we illustrate our proposed method for a
distributed robust optimal output agreement problem. The
experiment is carried out using Matlab R2020a in a laptop
with Windows 10 operating system and AMD Ryzen 7
5800H processor.

We consider a linear multi-agent system with N = 30
agents modeled by (1) and (2), and the related matrices
Ai, Bi are sampled from a double integrator with the sam-
pling time drawn from a uniform distribution U [0.1, 1];
Ci = [1, 0], Di = 0, and Fi = 0 for i ∈ {1, 2, · · · , 30}.
Besides, let E1 = 0.1I2, E11 = 0.2I2, E21 = 0.15I2, and
for exosystem (3),

S1 =

√
2

2

[
1 −1
1 1

]
, S11 =

[
0.5 −0.866

0.866 0.5

]
,

and
S21 =

[
0.866 −0.5
0.5 0.866

]
.

All eigenvalues of E1, E11, and E21 are with modulus one
and d1, d11, and d21 are sinusoidal signals. The correspond-
ing internal models are obtained with

Gi1 =

 0 1 0
0 0 1
1 −(1 + 2 cos τi) 1 + 2 cos τi


where τ1 = π/4, τ11 = π/3, and τ21 = π/6 and the
minimum polynomial of Gi1 contains the factor λ−1, for i ∈
{1, 11, 21}. For the other agents, Ei = E1, Si = S1, Gi1 =
G11 if i ≤ 10, Ei = E11, Si = S11, Gi1 = G11,1 if 10 < i ≤
20, and Ei = E21, Si = S21, Gi1 = G21,1 if 20 < i ≤ 30.
Ki1 and Ki2 are decided by placing the eigenvalues of Aic at
[0.25+0.25j, 0.25−0.25j,−0.2+0.5j,−0.2−0.5j, 0.25] for
i ∈ {1, 2, · · · , 30}. The agents communicate with each other
via a two-dimensional undirected grid graph with 5×6 nodes
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Fig. 2. (a) Plot of |y − 1N ⊗ y∗| when agent dynamics is without
uncertainties; (b) Plot of |y − 1N ⊗ y∗| when partial agent dynamics is
with parametric uncertainties.

and the corresponding adjacency matrix satisfies A⊤ = A
and A130 = 130, from which Assumption 1 holds. The cost
functions are chosen to be quadratic, i.e., fi(y) = (y − i)2,
for i ∈ {1, 2, · · · , 30}. The unique minimizer of the global
cost function is 31/2. The stepsize α is chosen to be 0.025
and the consensus parameter β is 0.4 by Lemma 4. The initial
states of xi, ri and qi are zeros, and the initial di is drawn
from a uniform distribution U [−1, 1], for i ∈ {1, 2, · · · , 30}.
Without parametric uncertainties, Wang-Elia algorithm can
be applied by transforming the state equations into single-
integrator forms via appropriate feedback linearization tech-
niques [24]. The comparison between our proposed method
and Wang-Elia algorithm, with the same parameter settings,
is shown in Fig. 2 (a). It can be seen that both methods
can make the output of each agent converge to the global
minimizer with similar convergence rates.

However, when there are unknown perturbations with

∆Ai =

[
0 0.05

0.01 0

]
,∆Bi =

[
0
0.1

]
for i ∈ {2, 12, 14, 16, 18, 21, 22, 25, 26, 30}, as shown in
Fig. 2 (b), Wang-Elia algorithm cannot achieve the same
convergence result due to the unknown uncertainties in agent
dynamics, but our proposed method overcomes the obstacles
and still guarantees the convergence in the presence of the
uncertainties.

VI. CONCLUSIONS

In this paper, the distributed optimization problem for
multi-agent systems described by general discrete-time, lin-
ear, and uncertain models has been studied. An internal-
model-based controller and a reference generator derived
by the Wang-Elia algorithm are developed for each agent
to achieve robust optimal output agreement with guaranteed
linear convergence. Simulation results show that, compared
with the Wang-Elia algorithm, the proposed method can

achieve the optimal agreement for the complex multi-agent
systems, even in the presence of parametric uncertainties.
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