
Off-policy Reinforcement Learning for a Robust Optimal Control
Problem with Real Parametric Uncertainty

Athira Mullachery and Shaikshavali Chitraganti

Abstract— This paper addresses an off-policy Reinforcement
learning algorithm for robust linear quadratic regulator (R-
LQR) problem of continuous-time linear dynamical systems
with parametric uncertainties based on policy iteration frame-
work. A modified algebraic Riccati equation is presented for
the R-LQR problem and is further transformed into standard
linear quadratic regulator problem. The proposed model-
free off-policy R-LQR algorithm learns the control policy
using generated data samples that obviate the requirement of
system dynamics. Numerical simulation examples of spring-
mass system with uncertain stiffness are provided to illustrate
effectiveness of the approach.

I. INTRODUCTION

The aim of optimal control problem is to minimize a
objective functional subject to system dynamics under con-
sideration [1], [2] and it finds many important applications
such as power systems, missile control, underwater vehicle
control etc. Solution of optimal control problem is usually
obtained via variational approach or dynamic programming,
where it is assumed that the system model is available.
For complex systems such as underwater robotics systems
and quadrotors in uncertain environment, it is extremely
difficult to model precisely due to complex hydrodynamic
and aerodynamic forces acting on them during the passage.

Systems to be controlled often contain inherent uncertain-
ties arising from modeling errors or imprecise parameter
quantification, categorized into unstructured and structured
uncertainty [3]. A new class of controller called as robust
linear quadratic regulator (R-LQR) was proposed for systems
with parametric uncertainty, which generally falls under
structured uncertainty [4]. The approach assumes that the
system dynamics is completely known to solve the R-LQR
problem, which may not be possible in every scenario.

Reinforcement learning (RL), which is an key branch of
machine learning, became prominent in addressing optimal
control problems, where the environment is uncertain and
cannot be fully represented as a mathematical model [5].
This approach was termed as adaptive dynamic programming
(ADP), which offers algorithms that generally fall under the
categories of value iteration (VI) and policy iteration (PI) [6],
[7]. ADP finds considerable applications in handling optimal
state regulation problem [8], [9], tracking problem [10]–[12],
output regulation problem [13], game theory [14]–[16] and

This work was supported in part by IIT Palakkad Technology IHub
Foundation Technology Development Grant IPTIF/TD/IP/001

The authors are with the Department of Electrical
Engineering, Indian Institute of Technology Palakkad,
678623, India 122204001@smail.iitpkd.ac.in,
shaik@iitpkd.ac.in

was also extended to decentralized control of large scale
systems [17], [18]. Depending upon the strategy used for data
generation and policy update, ADP is mainly subdivided into
on-policy and off-policy approaches. In on-policy algorithms,
control policy under evaluation is used for data generation,
however this can potentially introduce bias in the cost func-
tion due to added excitation noise for online implementation,
which is not desirable. Also on-policy algorithms can lead
to undesirable system responses during the learning phase,
hence it is not widely recommended for many engineering
applications. To address this issue, off-policy RL is employed
to optimal control problems, where the behavior policies are
utilized to collect the data and the target policy is learned
online [19]. Off-policy algorithms can be designed to ensure
stable and reliable system behavior throughout the learning
process and it also potentially alleviate the exploration prob-
lem as data is collected using the behavior policies. There
has been extensive use of off-policy algorithm in addressing
optimal control problems with unknown dynamics: optimal
tracking problems, zero-sum game problems and multi-agent
problems in continuous-time (CT) and discrete-time (DT)
setting [20]–[23].

There has been efforts to address the optimal control
problems with uncertainty for CT systems in a model-free
way using on-policy approach, however partial knowledge
of the system dynamics were still utilized to find the op-
timal policy [24], [25]. In line with that, model-free CT
linear quadratic regulator (LQR) for systems subjected to
additive disturbances based on Kleinman’s policy iteration
was addressed in [26]. The approach was further extended
to robust stabilization problem of DT systems with bounded
mismatched uncertainties using on-policy and off-policy
variants [27]. Surpassing these studies, robust control of non-
linear systems with matched and unmatched uncertainties
in system and input dynamics were investigated in [28] by
combining off-policy RL and neural network approximation.

To the best of our knowledge, off-policy PI algorithm
has not been employed to address R-LQR problem for CT
systems with parametric uncertainties. This paper explores
model-free off-policy PI algorithm for R-LQR control of
systems with parametric uncertainties. The standard optimal
control problem and robust LQR problem is presented in
section II. Model-free off-policy R-LQR PI algorithm and
its implementation are provided in Section III. Numerical
simulations are presented in section IV to validate the
proposed algorithm and Section V provides the conclusion.
Notations: Let Rn denote the standard Euclidean space of
dimension n. The set of non-negative integers are represented

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 2499

as Z+. For matrix M, M⊤ and M−1 denotes the transpose and
inverse respectively. diag(M) represents the diagonal matrix
with values only along the main diagonal. In the case of two
real symmetric matrices X and Y , X ≻Y (X ⪰Y) represents
that X −Y is positive definite (semi-definite) matrix. The
symbol ⊗ denotes the Kronecker product and In represents
the identity matrix of dimension n.

II. BACKGROUND
A. Optimal control problem

Consider a continuous-time linear dynamics

ẋ = Ax+Bu, (1)

where x ∈ Rnx is the state, u ∈ Rnu is the control input, and
matrices A and B are of suitable dimension. The objective
of standard LQR problem is to design a control policy

u =−Kux (2)

that minimizes the cost functional

J =

ˆ
∞

0

[
x⊤Qx+u⊤ℜu

]
dt, (3)

where Q⪰ 0 and ℜ≻ 0. The optimal solution of this problem
relies on the algebraic Riccati equation (ARE)

PA+A⊤P+Q−PBℜ
−1B⊤P = 0, (4)

where P = P⊤ ≻ 0. The above ARE is solved to obtain P,
and the optimal feedback gain is obtained as follows

Ku = ℜ
−1B⊤P. (5)

B. Robust Linear Quadratic Regulator

Assumption 1: All the uncertainties are present within
matrix A and are deemed to be within a bounded interval.

Under Assumption 1, the uncertainties in A can be mod-
eled as:

Ã = A+
q

∑
i=1

ηiWi, ηi ∈ R, |ηi| ≤ 1, (6a)

Wi = lin
⊤
i , (6b)

L = [l1 l2 l3 · · ·], N = [n1 n2 n3 · · ·] (6c)

with A representing the nominal system. Here Wi represent
the structure of the uncertainty, which is scaled by ηi. It is
assumed that there are q uncertain parameters and each of
them is considered to be within a bounded interval.
Remark 1. Uncertainties of the type mentioned in Assump-
tion 1 generally occurs in large space structures [29], where
the parameters such as stiffness (kS) and damping coefficient
appear in matrix A are quite uncertain, but the values of all
masses, which influence B is considered to be known with
higher accuracy.

Now, by applying Ã in ARE (4) gives the following

PÃ+ Ã⊤P−PBℜ
−1B⊤P+Q = 0 (7)

PA+A⊤P+
q

∑
i=1

ηiPWi +
q

∑
i=1

ηiW⊤
i P−PBℜ

−1B⊤P+Q = 0.

(8)

Now, using (8), by further simplification and by applying the
inequality 2|ab| ≤ γa2+ 1

γ
b2 for scalars a∈R and b∈R with

arbitrary γ > 0, robust algebraic Riccati equation (R-ARE)
can be obtained [4] as

PA+A⊤P+
(

Q+ γN N ⊤
)

−P
(
−1

γ
L L T +Bℜ

−1B⊤
)

P = 0. (9)

To achieve stability and robustness, the R-ARE (9) must be
solved to find P, and then we can determine the optimal
policy using (5), but solution of (9) requires the complete
knowledge of system matrices A, B that may be difficult to
obtain in real-time scenarios. The following remark shows
the translation of R-LQR to standard LQR problem.
Remark 2. The R-ARE (9) can be reformulated as follows

PA+A⊤P+ Q̃−PB̄ℜ̄
−1B̄⊤P = 0, (10)

where B̄ = [L B], ℜ̄ =

[
−γIq×q 0

0 ℜ

]
and Q̃ =(

Q+ γN N ⊤). Consider a cost function

J̃ =

ˆ
∞

0
x⊤

[
Q̃+K⊤

ℜ̄K
]

x dt (11)

with dynamics

ẋ = Ax+ B̄ū, (12)

where
ū =

[
Kw Ku

]⊤
︸ ︷︷ ︸

≜K

x. (13)

Here ū consists of two gains, Kw is the gain contributed by
the uncertain part and Ku is the control input gain. The R-
LQR problem is now transformed into the standard LQR
problem with cost function of the form (11), whose solution
can be obtained by solving R-ARE (10).

Iterative Lyapunov equation corresponds to (10) can be
obtained as follows

Ai⊤
k Pi +PiAi

k + Q̃+Ki⊤
ℜ̄Ki = 0 (14)

with the feedback gain update

Ki+1 = ℜ̄
−1B̄⊤Pi. (15)

where Ai
k = A− B̄Ki. This is a model-based policy iteration

method for CT linear system [30], where (14) is used for
policy evaluation and (15) for policy improvement.

III. OFF-POLICY REINFORCEMENT LEARNING FOR
R-LQR

This section presents an off-policy RL algorithm to solve
the R-ARE (9) in a model-free framework. Off-policy RL
helps to learn policies using data generated by policies other
than the optimal ones. This is achieved with the help of
behavior policy (ū) for data collection and target policy (Ki)
for improvement. Rewrite the system (12) as follows

ẋ = Ai
kx+ B̄(Kix+ ū), (16)

2500

System Stop
Yes

No

Initialization

Data set

Solving using LS

Use control input

to obtain

Fig. 1: Schematic of off-policy R-LQR PI algorithm

where Ai
k = A− B̄Ki. Consider the derivative of a Lyapunov

function x⊤Pix with respect to time and substituting (14),
(16) and B̄⊤Pi = ℜ̄Ki+1 (15) gives

d
dt
(x⊤Pix) = x⊤

(
Ai⊤

k Pi +PiAi
k

)
+2(Kix+ ū)⊤B̄⊤Pix

=−x⊤
(

Q̃+Ki⊤
ℜ̄Ki

)
+2(Kix+ ū)ℜ̄Ki+1x.

(17)

Rearranging (17) and applying integration over [t, t + δ t]
gives

x(t +δ t)⊤Pix(t +δ t)− x(t)T Pix(t)

=−
ˆ t+δ t

t
xT

(
Q̃+Ki⊤

ℜ̄Ki
)

x dτ

+2
ˆ t+δ t

t

(
ū+Kix

)T
ℜ̄Ki+1x dτ. (18)

Let

Λxx =
[
ξ1,ξ2, · · · ,ξl−1

]⊤
, where ξi = (x⊗ x)|ti+1

ti (19a)

Γxx =
[
χ1,χ2, · · · ,χl−1

]⊤
, where χi =

ˆ ti+1

ti
(x⊗ x) dτ

(19b)

Γxū =
[
µ1,µ2, · · · ,µl−1

]⊤
, where µi =

ˆ ti+1

ti
(x⊗ ū) dτ,

(19c)

where ti+1 = ti+δ t, δ t > 0, and l ∈Z+. Now using (19) and
vec operator, (18) is modified as follows

Ψ
i

[
vec

(
Pi
)

vec
(
Ki+1

)]
= Φ

i, (20)

where

Ψ
i =

[
Λxx,−2Γxx(Inx ⊗Ki⊤ℜ̄)−2Γxū(Inx ⊗ ℜ̄)

]
,

Φ
i =−Γxx vec(Q̃+Ki⊤

ℜ̄Ki).

Then, (20) can be solved as follows[
vec

(
Pi
)

vec
(
Ki+1

)]=
(

Ψ
i⊤

Ψ
i
)−1

Ψ
i⊤

Φ
i. (21)

From the solution of (21), the policy Ki
u can be extracted and

then the resulting control input will be used.
Remark 3. For the existence of unique solution pair
(Pi,Ki+1), the following rank condition [21] must be sat-
isfied.

rank
([

Γxx Γxū

])
=

nx(nx +1)
2

+(nu +nw)nx, (22)

where nx, nu and nw are number of states, input and uncertain
parameters. If condition (22) is satisfied, then Ψi has full
column rank ∀i ∈ Z+. The above requirement is termed
as persistence of excitation (PE) condition in ADP, which
is necessary to solve (20). There must be an exploration
noise ne injected to the control input to satisfy the PE
condition and online implementation. Exploration signals
that are generally used for different practical applications
include random noise, exponentially decaying signals and
sum of sinusoids [14], [31] etc.

The procedure for off-policy R-LQR PI is provided in
Algorithm 1 and schematic is shown in Fig. 1.

Algorithm 1 Model-free off-policy R-LQR PI algorithm

1: Initialization: Set i = 0 and start using a stabilizing
behavior policy ū =−K0x+ne over the interval [t0 tl].

2: Collect online data to compute Ψi and Φi.
3: Solve (21) using least squares to obtain Pi and Ki+1.
4: Check for the convergence

∥∥Pi −Pi−1
∥∥ ≤ ε , if not,

increment i = i+1 and go to 3.
5: Extract and update the control policy u =−Ki

ux.

Online information (19) can be collected by applying the
initial stabilizing policy K0 and then data can be recorded
in Λxx, Γxx and Γxū matrices. This information can be used
to build Ψi and Φi, and least square equation (21) can be
solved iteratively till the convergence criterion is satisfied.
In the last step, from the resulting Ki, the control gain Ki

u is
extracted and is applied to the system.

Theorem 1. Convergence of off-policy R-LQR PI algo-
rithm: Starting from a initial stabilizing policy ū = −K0x,
if condition (22) is satisfied, then sequences

{
Pi
}∞

i=0 and{
Ki
}∞

i=1 obtained by solving (21) converge towards the
optimal solution P∗ of R-ARE (9) and K∗ respectively.

2501

Proof. With the given stabilizing gain K0, let Pi, i = 0,1,2...
be the solution of the iterative Lyapunov equation

Ai⊤
k Pi +PiAi

k + Q̃+Ki⊤
ℜ̄Ki = 0,

and the optimal gain is recursively determined by

Ki+1 = ℜ̄
−1B̄⊤Pi.

Then, the conditions defined below hold [30]:
1) A− B̄Ki is Hurwitz.
2) P∗ ⪯ Pi+1 ⪯ Pi.
3) limi→∞ Pi = P∗ and limi→∞ Ki = K∗.

From the above properties, (14) converges to optimal P∗ and
K∗. The solution pair (P̂i, K̂i+1) obtained from

Ψ
i

[
vec

(
P̂i
)

vec
(
K̂i+1

)]
= Φ

i

must satisfy (14) according to (18). From remark 3, such a
solution pair is always unique. Therefore, given the unique-
ness of the solution, it can be shown that P̂i = Pi and
K̂i+1 =Ki+1. Hence the solution of Pi to Lyapunov recursion
(14) and the corresponding Ki+1 = ℜ̄−1B̄⊤Pi are identical to
the solution of (20) ∀i. Therefore, the off-policy R-LQR (20)
is equivalent to (14), which converges to the optimal solution
as mentioned by the properties of Lyapunov recursion. Thus,
convergence of the off-policy R-LQR PI is proved.

IV. SIMULATIONS AND RESULTS

In this section, off-policy R-LQR PI controller is com-
pared with the nominal-LQR (N-LQR) (4) design, which is
without uncertainties through simulation examples. Precise
knowledge of the system matrices are not known apriori for
learning the optimal solutions. For more clarity to the read-
ers, to conduct simulations we utilize the system matrices
for data generation only, while our algorithm just depends on
state and input data. We present two examples, one involving
single parametric uncertainty and the other involving double
parametric uncertainty, given as example 1 and example 2
respectively.

A. Example 1: Single spring-mass system

Spring-mass system with an uncertain stiffness kS∈ [0.5,2]
that connects two masses m1 = m2 = 1kg is considered as
shown in Fig. 2. The objective is to control position y = x2
of mass m2 by applying control u on mass m1. The system

Fig. 2: Single spring-mass system

matrices are considered as:

A =


0 0 1 0

0 0 0 1

−kS kS 0 0

kS −kS 0 0

 , B =


0

0

1

0

 .

The design parameters are chosen as, ℜ = 0.01, γ = 1, Q =

diag
[
0 1 0 0

]
, and kS = 1.25, which is the midpoint

value of uncertain stiffness range. The uncertain part of Ã is
chosen as

W =


0 0 0 0

0 0 0 0

−w w 0 0

w −w 0 0

=


0

0

l

−l




−n

n

0

0


⊤

with L = [0 0 l − l]⊤, N ⊤ = [−n n 0 0], w = 0.75 and
l = n = 0.866. Depending on the value of η =-1 or 1, kS is
considered to have its minimum and maximum value of 0.5
and 2 according to (6a).

B. Example 2: Two spring-mass system

Consider the example of three masses m1 =m2 =m3 = 1kg
coupled by means of two uncertain springs kS1, kS2 ∈ [0.5,2]
as shown in Fig. 3. The position y = x3 must be regulated
by control signals u1 and u2 acting on mass m1 and m2. The
system dynamics can be represented as follows

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−kS1 kS1 0 0 0 0

kS1 −kS1 − kS2 kS2 0 0 0

0 kS2 −kS2 0 0 0


B =



0 0

0 0

0 0

1 0

0 1

0 0


,

where kS1 = kS2 = 1.25. The uncertain part is given by,

L =



0 0

0 0

0 0

l 0

−l l

0 −l


N =



−n 0

n −n

0 n

0 0

0 0

0 0


,

where l = n = 0.866. Consider ℜ = 0.01I2, γ = 1, Q =
diag[0 0 1 0 0 0]. The direct solution using N-ARE (4) and

Fig. 3: Two spring-mass system

2502

TABLE I: Comparison of matrix P and feedback gain Ku for N-LQR, R-ARE and Off-policy R-LQR PI

System Method P Ku

Single
spring

N-LQR (4)


0.2633 0.1390 0.0809 0.3427
0.1390 0.7605 0.0191 0.4045
0.0809 0.0191 0.0402 0.0899
0.3427 0.4045 0.0899 0.5609

 [
8.0902 1.9098 4.0225 8.9945

]

R-ARE (9)


1.2882 0.0366 0.2553 1.8243
0.0366 1.3576 −0.0127 0.9714
0.2553 −0.0127 0.0748 0.3313
1.8243 0.9714 0.3313 3.8020

 [
25.5316 −1.2656 7.4831 33.1313

]

Off-policy
R-LQR PI
(ε=0.0001)


1.2882 0.0366 0.2553 1.8243
0.0366 1.3576 −0.0127 0.9714
0.2553 −0.0127 0.0748 0.3313
1.8243 0.9714 0.3313 3.8020

 [
25.5316 −1.2656 7.4831 33.1313

]

Two
spring

N-LQR (4)



0.018 0.004 −0.004 0.005 0.013 0.015
0.004 0.201 0.151 −0.004 0.064 0.295
−0.004 0.151 0.749 −0.002 0.023 0.401
0.005 −0.004 −0.002 0.010 0.002 −0.003
0.013 0.064 0.023 0.002 0.036 0.089
0.015 0.295 0.401 −0.003 0.089 0.519


[

0.518 −0.423 −0.206 1.0 0.185 −0.341
1.27 6.375 2.35 0.185 3.567 8.95

]

R-ARE (9)



0.356 −0.029 −0.040 0.082 0.012 0.399
−0.029 1.522 −0.002 0.037 0.277 2.062
−0.040 −0.002 1.379 −0.023 −0.019 0.895
0.082 0.037 −0.023 0.042 0.006 0.127
0.012 0.277 −0.019 0.006 0.079 0.369
0.399 2.062 0.895 0.127 0.369 4.598


[

8.224 3.701 −2.327 4.156 0.609 12.724
1.171 27.672 −1.924 0.609 7.855 36.911

]

Off-policy
R-LQR PI
(ε=0.0001)



0.356 −0.029 −0.040 0.082 0.012 0.399
−0.029 1.522 −0.002 0.037 0.277 2.062
−0.040 −0.002 1.379 −0.023 −0.019 0.895
0.082 0.037 −0.023 0.042 0.006 0.127
0.012 0.277 −0.019 0.006 0.079 0.369
0.399 2.062 0.895 0.127 0.369 4.599


[

8.224 3.701 −2.327 4.156 0.609 12.725
1.171 27.673 −1.925 0.609 7.855 36.912

]

(a) Single spring-mass system (b) Two spring-mass system

Fig. 4: Convergence of P and Ku for off-policy R-LQR PI

R-ARE (9) for both the examples are given in Table I. For
simulating off-policy R-LQR PI algorithm, initial states x0 =
[0 1 0 0]⊤ and x0 = [0 0 1 0 0 0]⊤ are chosen for example
1 and 2 respectively. Stabilizing behavior policy is applied
till the end of data collection from t = 0 to 1s with injected
excitation noise and the data is collected at intervals of 0.01s.
The learned P and Ku matrices with off-policy R-LQR PI
is given in Table I, which exactly converges to the optimal
solution of R-ARE (9) and the convergence is shown in Fig.

(a) Single spring-mass system (b) Two spring-mass system

Fig. 5: State trajectories with off-policy R-LQR PI

4. The learned controller is applied to the system after 1s
and the state trajectories are plotted in Fig. 5, that exactly
converges to zero. The output response of unlearned system,
off-policy R-LQR and N-LQR are shown in Fig. 6, which
clearly shows that the off-policy R-LQR converges quickly
and the transients are also minimized, which indicates the
robustness against the uncertainties.

2503

(a) Single spring-mass system (b) Two spring-mass system

Fig. 6: Comparison of output profile of N-LQR and off-
policy R-LQR PI

V. CONCLUSIONS

Off-policy reinforcement learning algorithm is addressed
for robust linear quadratic regulator (R-LQR) problem of
continuous-time linear systems with parametric uncertainties
using policy iteration (PI) framework. The proposed model-
free off-policy R-LQR PI algorithm makes use of the data
samples rather the system dynamics to solve the modified
Riccati equation corresponding to R-LQR problem which
is beneficial in situations where there are uncertainties in
the plant, as the proposed method more effectively mitigates
the impact of the system’s uncertain dynamics. Numerical
simulations are carried out to validate our algorithm for sys-
tems subjected to parametric uncertainties. Future extension
of this work could involve applying the off-policy R-LQR
PI algorithm to nonlinear systems with a more general type
of uncertainty.

REFERENCES

[1] D. E. Kirk, Optimal control theory: an introduction. Courier
Corporation, 2004.

[2] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John
Wiley & Sons, 2012.

[3] J. Douglas and M. Athans, “Robust linear quadratic designs with
real parameter uncertainty,” IEEE Transactions on automatic control,
vol. 39, no. 1, pp. 107–111, 1994.

[4] J. S. Douglas, “Linear quadratic control for systems with structured
uncertainty,” Ph.D. dissertation, Massachusetts Institute of Technology,
1991.

[5] D. Bertsekas, Reinforcement learning and optimal control. Athena
Scientific, 2019.

[6] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dy-
namic programming for feedback control,” IEEE circuits and systems
magazine, vol. 9, no. 3, pp. 32–50, 2009.

[7] D. Liu, S. Xue, B. Zhao, B. Luo, and Q. Wei, “Adaptive dynamic
programming for control: A survey and recent advances,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 51,
no. 1, pp. 142–160, 2020.

[8] D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, Adaptive dynamic
programming with applications in optimal control. Springer, 2017.

[9] K. G. Vamvoudakis, D. Vrabie, and F. L. Lewis, “Online adaptive
algorithm for optimal control with integral reinforcement learning,”
International Journal of Robust and Nonlinear Control, vol. 24, no. 17,
pp. 2686–2710, 2014.

[10] H. Zhang, L. Cui, X. Zhang, and Y. Luo, “Data-driven robust approx-
imate optimal tracking control for unknown general nonlinear systems
using adaptive dynamic programming method,” IEEE Transactions on
Neural Networks, vol. 22, no. 12, pp. 2226–2236, 2011.

[11] C. Mu, Z. Ni, C. Sun, and H. He, “Data-driven tracking control
with adaptive dynamic programming for a class of continuous-time
nonlinear systems,” IEEE transactions on cybernetics, vol. 47, no. 6,
pp. 1460–1470, 2016.

[12] H. Modares and F. L. Lewis, “Linear quadratic tracking control
of partially-unknown continuous-time systems using reinforcement
learning,” IEEE Transactions on Automatic control, vol. 59, no. 11,
pp. 3051–3056, 2014.

[13] W. Gao and Z.-P. Jiang, “Adaptive dynamic programming and adaptive
optimal output regulation of linear systems,” IEEE Transactions on
Automatic Control, vol. 61, no. 12, pp. 4164–4169, 2016.

[14] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Model-free Q-
learning designs for linear discrete-time zero-sum games with appli-
cation to H-infinity control,” Automatica, vol. 43, no. 3, pp. 473–481,
2007.

[15] B. Luo, Y. Yang, and D. Liu, “Policy iteration Q-learning for data-
based two-player zero-sum game of linear discrete-time systems,”
IEEE Transactions on Cybernetics, vol. 51, no. 7, pp. 3630–3640,
2020.

[16] W. Wang, X. Chen, H. Fu, and M. Wu, “Data-driven adaptive dynamic
programming for partially observable nonzero-sum games via Q-
learning method,” International Journal of Systems Science, vol. 50,
no. 7, pp. 1338–1352, 2019.

[17] B. Zhao and Y. Li, “Model-free adaptive dynamic programming based
near-optimal decentralized tracking control of reconfigurable manip-
ulators,” International Journal of Control, Automation and Systems,
vol. 16, no. 2, pp. 478–490, 2018.

[18] X. Yang and H. He, “Adaptive dynamic programming for decen-
tralized stabilization of uncertain nonlinear large-scale systems with
mismatched interconnections,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 50, no. 8, pp. 2870–2882, 2018.

[19] B. Luo, H.-N. Wu, and T. Huang, “Off-policy reinforcement learning
for H∞ control design,” IEEE transactions on cybernetics, vol. 45,
no. 1, pp. 65–76, 2014.

[20] Y. Wen, H. Zhang, H. Su, and H. Ren, “Optimal tracking control
for non-zero-sum games of linear discrete-time systems via off-policy
reinforcement learning,” Optimal Control Applications and Methods,
vol. 41, no. 4, pp. 1233–1250, 2020.

[21] Y. Jiang and Z.-P. Jiang, “Computational adaptive optimal control for
continuous-time linear systems with completely unknown dynamics,”
Automatica, vol. 48, no. 10, pp. 2699–2704, 2012.

[22] B. Kiumarsi, F. L. Lewis, and Z.-P. Jiang, “H∞ control of linear
discrete-time systems: Off-policy reinforcement learning,” Automatica,
vol. 78, pp. 144–152, 2017.

[23] A. Mullachery and S. Chitraganti, “Off-policy reinforcement learning
for optimal control of a two wheeled self balancing robot,” in Ninth
Indian Control Conference, 2023, pp. 383–388.

[24] J. Na, J. Zhao, G. Gao, and Z. Li, “Output-feedback robust control of
uncertain systems via online data-driven learning,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 32, no. 6, pp. 2650–
2662, 2020.

[25] J. Zhao and Q. Zeng, “Adaptive robust control for uncertain systems
via data-driven learning,” Journal of Sensors, vol. 2022, pp. 1–9, 2022.

[26] B. Pang, T. Bian, and Z.-P. Jiang, “Robust policy iteration for
continuous-time linear quadratic regulation,” IEEE Transactions on
Automatic Control, vol. 67, no. 1, pp. 504–511, 2021.

[27] Y. Yang, Z. Guo, H. Xiong, D.-W. Ding, Y. Yin, and D. C. Wunsch,
“Data-driven robust control of discrete-time uncertain linear systems
via off-policy reinforcement learning,” IEEE transactions on neural
networks and learning systems, vol. 30, no. 12, pp. 3735–3747, 2019.

[28] A. Amirparast and S. Kamal Hosseini Sani, “Off-policy reinforcement
learning algorithm for robust optimal control of uncertain nonlinear
systems,” International Journal of Robust and Nonlinear Control.

[29] A. Filiatrault, Elements of earthquake engineering and structural
dynamics. Presses inter Polytechnique, 2013.

[30] D. Kleinman, “On an iterative technique for riccati equation compu-
tations,” IEEE Transactions on Automatic Control, vol. 13, no. 1, pp.
114–115, 1968.

[31] Y. Yang, Y. Wan, J. Zhu, and F. L. Lewis, “H∞ tracking control for
linear discrete-time systems: model-free Q-learning designs,” IEEE
Control Systems Letters, vol. 5, no. 1, pp. 175–180, 2020.

2504

