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Abstract— We analyze the problem of network identifiability
with nonlinear functions associated with the edges. We consider
a static model for the output of each node and by assuming a
perfect identification of the function associated with the mea-
surement of a node, we provide conditions for the identifiability
of the edges in a specific class of functions. First, we analyze the
identifiability conditions in the class of all nonlinear functions
and show that even for a path graph, it is necessary to measure
all the nodes except by the source. Then, we consider analytic
functions satisfying f(0) = 0 and we provide conditions for
the identifiability of paths and trees. Finally, by restricting
the problem to a smaller class of functions where none of the
functions is linear, we derive conditions for the identifiability
of directed acyclic graphs. Some examples are presented to
illustrate the results.

I. INTRODUCTION

Networked systems composed by nodes or subsystems
interacting with each other are ubiquitous [1]. In several
of these systems, the knowledge of the dynamics associated
with edges is essential for the analysis of the system and
design of control algorithms. However, the identification of
the networked systems from partial measurements without
disconnections of some parts of the network can be really
challenging since a measured signal depends on the combi-
nation of the dynamics of potentially many edges.

There has been some recent works in the linear case on the
conditions of identifiability: when is it possible to unambigu-
ously recover local dynamics from a set of measured nodes?
This question is important in order to design experiments and
position sensors and excitations [2]–[4]. This depends mainly
on the topology of the network and on the position of the
excitation and measured signal. Graph theoretical conditions
are available in full measurement case or full excitation [5],
but not in the general case yet [6]–[9]. However, most actual
systems of interest are nonlinear, including many different
research fields like coupled oscillators [10], gene regulatory
networks [11], biochemical reaction networks [12], social
networks [13], among others. While linear systems usually
provide a local approximation of nonlinear phenomena, no
one to the best of our knowledge has studied the identifia-
bility question for nonlinear systems.

The identification of a nonlinear system is itself a chal-
lenging problem due to the variety of potential models
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(e.g., Hammerstein, Wiener, Volterra series) and the con-
stant arising of new formulations for particular applications.
Depending on the type of nonlinearities and its location
(i.e., at the level of inputs, outputs or in the middle of
interactions), certain models can be more suited for specific
applications, while others could not give a good description
of some systems [14]–[16]. In addition to the complexity of a
single nonlinear model, a network involves several nonlinear
systems associated with the edges, which generates complex
collective behaviors and increase considerably the difficulties
of the identification problem.

In the nonlinear case, the conditions for identifiability
of networks do not depend only on the network topology
but also on the types of nonlinear functions. For instance,
trigonometric functions in coupled oscillators [10] are very
different from the activation functions in neural networks that
can be nondifferentiable [17]. Furthermore, in heterogeneous
networks, different types of functions could be associated
with edges in the same network. In addition, the class of
functions considered for the problem of identifiability could
be determinant. It is clear that if we restrict the problem to
a small class of functions, the conditions for identifiability
of a network could be relaxed, but the functions in the class
could not fit real models. Moreover, properties of functions
such as continuity, differentiability, analyticity, etc., could
play an important role in the determination of conditions for
the identifiability of networks.

We study here the question of identifiability in the nonlin-
ear setting, assuming in this first work that the local dynamics
have very simple structure (i.e., the output of a node is
entirely determined by static interactions with the neighbors).
We show that, surprisingly, the conditions for identifiability
in directed acyclic graphs are weaker than in the linear
case, provided that the dynamics are indeed not linear, and
do not involve constant output component (when they do,
the problem is indeed unsolvable). We explain this by the
fact that in the linear case, the loss of identifiability often
results from ambiguities made possible by the superposition
principle/superposition of signal, which is no longer possible
in the nonlinear case.

In this work, we provide a formulation of the network
identifiability problem in the nonlinear case, by considering
a static model in the edges. By restricting the problem
to a specific class of functions, we provide identifiability
conditions for paths and trees. Furthermore, by considering
a smaller class of functions, we derive conditions for the
identifiability of directed acyclic graphs.
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II. PROBLEM FORMULATION

A. Model class

Since the type of nonlinear dynamics in a network can be
really complex, in this preliminary work, we will consider a
static additive model to focus on the effect of the nonlineari-
ties. Therefore, we exclude dynamical processes that involve
any memory at the level of nodes or edges. Our objective
is to generalize the results of this paper to more complex
dynamical models in future works.

For a network composed by n nodes, we consider that the
output of each node i is given by:

yki =
∑
j∈Ni

fi,j(y
k−1
j ) + uk−1

i , for all i ∈ {1, . . . , n}, (1)

where the superscripts denote the value of the inputs and
outputs at the specific time instant, fi,j is a nonlinear
function, Ni is the set of in-neighbors of node i, and ui is an
external excitation signal. The node i is not included in Ni,
since it would imply a dynamical process at the level of the
node. The model (1) corresponds to a nonlinear static version
of the model considered in [5]–[7], where the nonlinearities
are located in the edges. In this case, the output of a node i is
determined by its own excitation signal ui, and the outputs
of the neighbors yj affected by a nonlinear function fi,j
associated with the edge that connects the neighbor. Notice
that when the functions fi,j in (1) are linear, the conditions
for identifiability of linear networks derived in [5]–[7] also
hold. In this work, we will consider analytic functions with
a Taylor series that converges to the function for all x ∈ R.
This representation as power series will allow us to derive
conditions for the identifiability of nonlinear networks.

Model (1) corresponds to the full excitation case where
all the nodes are excited. The nonzero functions fi,j between
the agents define the topology of the network G, forming the
set of edges E. In this work, we do not consider multi-edges
between two nodes.

Assumption 1: The topology of the network is known,
where the presence of an edge implies a nonzero function.

Assumption 1 implies that we know which nodes are con-
nected by nonzero functions. The objective is to determine
which nodes need to be measured to identify all the nonlinear
functions in the network.

Similarly to [5]–[7], for the identification process we
assume that in an ideal scenario the relations between excita-
tions and outputs of the nodes have been perfectly identified.
In this work, we restrict our attention to networks that do not
contain any cycle (i.e., directed acyclic graphs). This implies
that when we measure a node i, we identify the function F k

i :

yki =uk−1
i + F k

i (u
k−2
1 , . . . , uk−m1

1 , . . . , uk−2
ni

, . . . , u
k−mni
ni ),

1, . . . , ni ∈ N p
i , (2)

where N p
i denotes the set of nodes that have a path to the

measured node i. The function F k
i is implicitly defined by

(1) and only depends on a finite number of inputs due to
the absence of memory on the edges and nodes, and the
absence of cycles. With a slight abuse of notation, we use

1

2

3

f2,1 f3,2

f3,1

u1

u2

u3

Fig. 1. The function Fk
3 associated with the measurement of the node 3

depends on the past inputs of the nodes 1 and 2 that have a path to the
node 3.

the superscript in the function F k−s
i to indicate that all the

inputs in (2) are delayed by s.
Example 1: Let us consider the graph in Fig. 1 where the

measurement of the node 3 provides the output:

yk3 = uk−1
3 + F k

3

= uk−1
3 + f3,2(u

k−2
2 + f2,1(u

k−3
1 )) + f3,1(u

k−2
1 ). (3)

We can observe that the function F k
3 depends on the inputs

of the nodes 1 and 2 that have a path to the node 3.

B. Identifiability
The identifiability problem is related to the possibility of

identifying the functions fi,j based on several measurements.
For this, we introduce the following relationship between the
measurements and the functions fi,j .

Definition 1 (Set of measured functions): Given a set of
measured nodes Nm, the set of measured functions F (Nm)
associated with Nm is given by:

F (Nm) := {F k
i | i ∈ Nm}.

We say that a function fi,j associated with an edge satisfies
F (Nm) if fi,j can lead to F (Nm) through (1).

For completely arbitrary functions, the identifiability prob-
lem can be really challenging or even unrealistic. For this
reason, we restrict the identifiability problem to a certain
class of functions F , which implies that the functions asso-
ciated with the edges belong to F and that the identifiability
is considered only among the functions belonging to F . The
different classes of functions will be specified depending on
the results.

Definition 2 (Edge identifiable): In a network G, an edge
fi,j is identifiable in a class F if given a set of measured
functions F (Nm), every set of functions in F leading to
F (Nm) has the same fi,j .

Definition 3 (Network identifiable): A network G is iden-
tifiable in a class F if all the edges are identifiable in the
class F .

The function F k
i in (2) is the most complete information

that we can obtain when we measure a node i. This implies
that if it is not possible to identify the functions fi,j with
F k
i , these edges are unidentifiable. On the contrary, if the

functions fi,j are identifiable, it seems reasonable that under
some conditions, the function F k

i can be well approximated
after sufficiently long experiments, which could allow us to
identify the functions fi,j approximately.
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C. First results

We provide a result about the information that we can
obtain with the measurement of sinks and sources1.

Proposition 1 (Sinks and sources): The measurement of
the sources is never necessary for the identifiability of the
network. The measurement of all the sinks is necessary for
the identifiability of the network.

Proof: First, the measurement of any source j generates
the output ykj = uk−1

j , which does not provide any informa-
tion about functions associated with edges in the network.
Next, let us consider a sink i with m incoming edges. The
measurement of this sink provides an output:

yki = uk−1
i + fi,1(y

k−1
1 ) + · · ·+ fi,m(yk−1

m ), (4)

and it is the only way of obtaining information of the
functions fi,1, . . . , fi,m. Thus, the measurement of all the
sinks is necessary.

The following lemma provides a result about the structure
of the function F k

i associated with the measurement of a
node i with respect to the excitation signals of the in-
neighbors.

Lemma 1: Let j be an in-neighbor of a measured node i
and the function F k

i . Then, by assuming all the variables but
uk−2
j constant, we have:

F k
i = α+ fi,j(u

k−2
j + β),

where α and β are constants with respect to uk−2
j .

Proof: According to (2), the function F k
i of a measured

node i is given by:

F k
i =

m∑
ℓ=1

fi,ℓ(y
k−1
ℓ )

=

m∑
ℓ=1

fi,ℓ(u
k−2
ℓ + F k−1

ℓ ), (5)

where m is the number of in-neighbors of the node i. All
the functions F k−1

ℓ depend on inputs delayed by 1, which
implies that no F k−1

ℓ depends on uk−2
j . Finally, no fi,p with

p ̸= j can be a function of uk−2
j since there are no multi-

edges.
Lemma 1 implies that fi,j in (5) is the only function that

depends on uk−2
j , and F k−1

j does not depend on uk−2
j .

III. PATHS AND TREES

A. Strong requirements for general nonlinear functions

Since the conditions for the identifiability of linear net-
works are based on the existence of paths in the network that
carry information from the excited nodes to the measured
nodes [5], [7], we first focus on the conditions for the
identifiability of a path graph 2 in the nonlinear case.

In the linear case, for this graph topology we only need to
measure the sink to identify all the transfer functions of the

1A source is a node with no incoming edges. A sink is a node with no
outgoing edges.

2A path graph is a graph that can be drawn so that all the nodes and
edges lie on a single straight line.

1 2 3
f3,2(x)f2,1(x)

1 2 3
f̃3,2(x) = f3,2(x− γ)f̃2,1(x) = f2,1(x) + γ

Fig. 2. A path graph with 3 nodes and different nonlinear functions that
satisfy Fk

3 = F̃k
3 . For any γ ̸= 0, the measurement of the sink is not

enough for the identification of the network.

network thanks to the superposition principle [5]. However,
this is not true for the nonlinear case.

Example 2 (Path graph): Fig. 2 presents a simple path
graph with 3 nodes where the measurement of the sink is
not enough to identify the network when general nonlinear
functions are considered.

Proposition 2 (General nonlinear functions): For identi-
fiability of a path graph in the class of general nonlinear
functions, it is necessary to measure all the nodes except by
the source.

Proof: Let us consider a path graph with n > 2 nodes
and a node i in the middle, which is neither the source nor
the sink. The output of the node i+ 1 is given by:

yki+1 = uk−1
i+1 + F k

i+1 (6)

= uk−1
i+1 + fi+1,i(u

k−2
i + fi,i−1(u

k−3
i−1 + F k−2

i−1 )).

If the node i is not measured and we consider the functions
f̃i,i−1(x) = fi,i−1(x)+γ and f̃i+1,i(x) = fi+1,i(x−γ) with
γ ̸= 0, the function F k

i+1 in (6) is the same, which implies
that the path graph cannot be identified.

On the other hand, if we measure all the nodes, we know
the function F k

j associated with any node j in the network.
Let us consider a node i with an in-neighbor and we set all
the inputs to 0 except uk−1

i . Then, the measurement of the
node i gives us:

yki = uk−1
i + F k

i (7)

= uk−1
i + fi,i−1(u

k−2
i + F k−1

i−1 (0))

If there is another function f̃i,i−1 satisfying F k
i in (7), we

would have for all uk−2
i ∈ R:

fi,i−1(u
k−2
i + F k

i−1(0)) = f̃i,i−1(u
k−2
i + F k

i−1(0)),

which implies that fi,i−1 = f̃i,i−1 and we can identify fi,i−1.
Following a similar approach for the other nodes, we can
identify all the nonlinear functions in the path graph. Finally,
by Proposition 1, it is never necessary to measure the source.

Notice that in the proof of Proposition 2 we do not use
properties of analytic functions and the results are also valid
for nonlinear functions that are not analytic. Proposition 2
shows that even in a simple graph topology like a path graph,
which is the key for the identification of more complex
network topologies, the identification of general nonlinear
functions cannot be performed by only measuring the sink.
This is due to the constant factor associated with the static
behavior of the function.
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B. Identifiability conditions for functions with no constant
effect

We restrict the identifiability problem to a smaller class of
functions without a static component.

Definition 4 (Class of functions FZ): Let FZ be the class
of functions f : R → R with the following properties:

1) f is analytic in R.
2) f(0) = 0.

Thus, we consider that for any function in FZ , the Taylor
series at 0 converges to the function for all x ∈ R. Since
the power series is unique, there is no loss of generality
by considering the Taylor series at 0 and not centered at a
different point in R.

Notice that the class FZ encompasses numerous nonlinear
functions [18], including polynomial functions which are
used for the approximation of continuous functions through
the Weierstrass Approximation theorem [19]. Also, there is
no loss of generality with the class FZ since the results are
valid for the variable part of the functions.

Lemma 2: For identifiability in the class FZ , the measure-
ment of a node provides the identification of all the incoming
edges of the node.

Proof: Let us consider a node i with m incoming edges.
The output of the node i is given by:

yki = uk−1
i + F k

i (u
k−2
1 , . . . , uk−2

m , . . .), (8)

where F k
i is determined by the set of functions {f} associ-

ated with the edges of the network. Let us assume that there
exists another set of functions {f̃} ≠ {f} such that:

F k
i (u

k−2
1 , . . . , uk−2

m , . . .) = F̃ k
i (u

k−2
1 , . . . , uk−2

m , . . .),

where F̃ k
i is composed by the functions in the set {f̃}. Let

us choose a point (uk−2
j , 0, . . . , 0) with j = 1, . . . ,m, such

that all the inputs are set to zero except one of the inputs of
the incoming edges of the node i. Then, since each function
is in FZ and by Lemma 1 we have:

F k
i = fi,j(u

k−2
j ) and F̃ k

i = f̃i,j(u
k−2
j ).

Since we assume that F k
i = F̃ k

i , it yields:

fi,j(u
k−2
j ) = f̃i,j(u

k−2
j ), for all uk−2

j ∈ R,

which implies that fi,j = f̃i,j . Following a similar argument
for each incoming edge of node i, we prove that all the
functions associated with the incoming edges of the node i
are unique and can be identified.

Notice that due to other possible paths from an in-neighbor
j of the node i, additional terms of the form uk−r

j , r > 2
could appear in (8). However, they will always be delayed
by virtue of Lemma 1.

The following lemmas involve properties of analytic func-
tions that will be used in the proof of the results in this
section.

Lemma 3: (Periodic functions) If for some p0 ∈ R, an
analytic function f : R → R is periodic for periods p ∈
[p0 − ϵ, p0 + ϵ] with ϵ > 0, then the function f is constant.

Proof: The proof is left to Appendix A.

Lemma 4: Given three non-zero analytic functions f :
R → R and g, g̃ : Rm → R satisfying g(0) = g̃(0) = 0.
If for all x ∈ R, y ∈ Rm, the functions f , g and g̃ satisfy:

f(x+ g(y1, . . . , ym)) = f(x+ g̃(y1, . . . , ym)),

then either g = g̃ or f is constant.
Proof: The proof is left to Appendix B.

Corollary 1: Under the same conditions as in Lemma 4,
if f(0) = 0, then

g = g̃.

Proposition 3 (Paths): For identifiability of a path graph
in the class FZ , it is necessary and sufficient to measure the
sink.

Proof: Let us consider a path with n nodes. The
measurement of the sink gives us the output:

ykn = uk−1
n + F k

n

= uk−1
n + fn,n−1(u

k−2
n−1 + F k−1

n−1 ). (9)

Let us assume that there is a set {f̃} ≠ {f} such that F k
n =

F̃ k
n , which by (9) implies:

fn,n−1(u
k−2
n−1 + F k−1

n−1 ) = f̃n,n−1(u
k−2
n−1 + F̃ k−1

n−1 ).

By Lemma 2, we can guarantee that fn,n−1 = f̃n,n−1, and
we have:

fn,n−1(u
k−2
n−1 + F k−1

n−1 ) = fn,n−1(u
k−2
n−1 + F̃ k−1

n−1 ).

Then, we use Corollary 1 to guarantee that F k−1
n−1 = F̃ k−1

n−1 .
Notice that now the identifiability problem is equivalent to
having measured the node n− 1 and by following a similar
approach, we can continue with the identification of all the
edges and guarantee that {f} = {f̃}, such that all the path
can be identified.

Proposition 4 (Trees): For identifiability of a tree in the
class FZ , it is necessary and sufficient to measure all the
sinks.

Proof: From Proposition 1, it is necessary to measure
all the sinks. Let us consider an arbitrary tree and the
measurement of a sink i. Let us assume that there are m
in-neighbors of the sink i and there is a set {f̃} ≠ {f} such
that F k

i = F̃ k
i , which implies:

m∑
ℓ=1

fi,ℓ(u
k−2
ℓ + F k−1

ℓ ) =

m∑
ℓ=1

f̃i,ℓ(u
k−2
ℓ + F̃ k−1

ℓ ). (10)

Since in a tree, the functions F k−1
ℓ do not have common

inputs because they come from different branches, we can
select a in-neighbor j and set to zero the inputs of all the
nodes that do not have a path to j, such that we have:

fi,j(u
k−2
j + F k−1

j ) = f̃j,j(u
k−2
j + F̃ k−1

j ).

Then, by using Lemma 2 and Corollary 1 we can guarantee
that fi,j = f̃i,j and F k−1

j = F̃ k−1
j for all j = 1, . . . ,m,

which is equivalent to having measured the in-neighbors of i.
Then, we can continue with the identification of each branch
independently and by following the same approach we can
identify all the paths that finish in the sink i. Finally, by
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measuring the other sinks and following a similar approach,
we can identify all the edges in the tree.

Remark 1 (Linear functions): Notice that Propositions 3
and 4 are also valid if all or some of the edges in the
network contain pure linear functions. In the next section, we
will provide stronger results in the identification of nonlinear
networks when linear functions are excluded.

IV. DIRECTED ACYCLIC GRAPHS

Directed acyclic graphs encompass a large number of
graph topologies that present specific characteristics that
can be used for the derivation of conditions for identi-
fiability [20]. Unlike a tree, in a directed acyclic graph,
the functions F k−1

ℓ in (10) can have common variables
due to several possible paths between two nodes with the
same length, which makes impossible the application of
Corollary 1. In order to obtain a result similar to Corollary 1
that allow us to identify a directed acyclic graph, we consider
a smaller class of functions.

Definition 5 (Class of functions FZ,NL): Let FZ,NL be
the class of functions f : R → R with the following
properties:

1) f is analytic in R.
2) f(0) = 0.
3) The associated Taylor series f(x) =

∑∞
n=1 anx

n con-
tains at least one coefficient an ̸= 0 with n > 1.

The third property of the functions in FZ,NL implies that
none of the functions is linear.

Clearly FZ,NL is a subclass of FZ and all the results of
the previous section for functions in FZ are also valid for
functions in FZ,NL.

Lemma 5: Given the non-zero analytic functions fi : R →
R and gi, g̃i : Rm → R satisfying fi(0) = gi(0) = g̃i(0) = 0
for i = 1, . . . , n. Let us assume that none of the functions
fi is linear. If for all x ∈ R, y ∈ Rm, the functions fi, gi
and g̃i satisfy:

n∑
i=1

fi(xi + gi(y1, . . . , ym)) =

n∑
i=1

fi(xi + g̃i(y1, . . . , ym)),

then gi = g̃i for all i = 1, . . . , n.
Proof: The proof is left to Appendix C.

Notice that when n = 1, Lemma 5 is also covered by
Corollary 1.

Proposition 5: For the functions in FZ,NL, in a directed
acyclic graph, the measurement of a node provides the
identification of all the nonlinear functions of any path that
finishes in the measured node.

Proof: Let us assume an arbitrary directed acyclic
graph. The measurement of a node i provides an output of
the type:

yki = uk−1
i + F k

i

= uk−1
i +

m∑
j=1

fi,j(u
k−2
j + F k−1

j ),

1

2

4

3

f2,1 f4,2

f3,1 f4,3

Fig. 3. Nonlinear network that can be identified by only measuring the
sink. In the linear case, the measurement of the sink is not enough to identify
this network.

where m is the number of in-neighbors of i. Let us assume
that there is a set {f̃} ̸= {f} such that F k

i = F̃ k
i , which

implies:

m∑
j=1

fi,j(u
k−2
j + F k−1

j ) =

m∑
j=1

f̃i,j(u
k−2
j + F̃ k−1

j ),

By applying Lemma 2 we have fi,j = f̃i,j for all j =
1, . . . ,m and:

m∑
j=1

fi,j(u
k−2
j + F k−1

j ) =

m∑
j=1

fi,j(u
k−2
j + F̃ k−1

j ),

and by using Lemma 5 we guarantee:

F k−1
j = F̃ k−1

j for all j = 1, . . . ,m.

Notice that the identification of each F k−1
j is equivalent

to having measured the node j and can be treated in a
similar way to the node i, independently of other paths
corresponding to the other in-neighbors of i. By following
a similar approach, we can guarantee that {f} = {f̃} for
every path that ends in the node i.

Theorem 1 (Directed acyclic graph): For identifiability
of a directed acyclic graph in the class FZ,NL, it is
necessary and sufficient to measure all the sinks.

Proof: From Proposition 1, it is necessary to measure
all the sinks. In a directed acyclic graph, we can always
find a path from any node i to some sink [21]. Therefore,
according to Proposition 5, it is sufficient to measure the
sinks to identify all the paths in a directed acyclic graph.

Unlike the linear case, where the measurement of the sinks
is not enough to guarantee identifiability of directed acyclic
graphs [5], Theorem 1 provides weaker conditions for the
identifiability in the nonlinear case when linear functions are
excluded.

Example 3 (Directed acyclic graph): Let us consider the
graph in Fig. 3. In the linear case, this network cannot be
identified by only measuring the sink since the functions f2,1
and f3,1 cannot be distinguished. However, in the nonlinear
case, the measurement of the sink is enough to identify all
the network.
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V. CONCLUSIONS AND FUTURE WORK

We have derived identifiability conditions for a network
characterized by nonlinear interactions through a static
model. We showed that in a path graph it is necessary
to measure all the nodes, except by the source, when
the nonlinear functions have a static component. Then, by
restricting the identifiability problem to a specific class of
functions, we showed that the measurement of the sinks is
necessary and sufficient to identify all the edges in paths and
trees. Finally, by considering a smaller class of functions, we
showed that the measurement of the sinks is necessary and
sufficient for the identifiability of directed acyclic graphs.
This simple model of nonlinear interactions allowed us to
highlight fundamental differences with respect to the linear
case.

For future work, it would be interesting to extend the
results to the case of general digraphs with cycles where the
function F k

i in (2) depends on an infinite number of inputs.
Also, it would be important to consider dynamical models
that include past inputs. In this case, the Volterra series seems
to be the more adequate model since it only depends on past
inputs, and many of our results could still hold.

REFERENCES

[1] F. Bullo, Lectures on Network Systems, 1.6 ed. Kindle Direct
Publishing, 2022.

[2] K. R. Ramaswamy, P. M. J. Van den Hof, and A. G. Dankers, “Gen-
eralized sensing and actuation schemes for local module identification
in dynamic networks,” in 2019 IEEE 58th Conference on Decision
and Control (CDC), 2019, pp. 5519–5524.

[3] X. Bombois, K. Colin, P. M. J. Van den Hof, and H. Hjalmarsson,
“On the informativity of direct identification experiments in dynamical
networks,” Automatica, vol. 148, p. 110742, 2023.

[4] E. M. M. Kivits and P. M. J. Van den Hof, “Identifiability of diffusively
coupled linear networks with partial instrumentation,” in 22nd World
Congress of the International Federation of Automatic Control (IFAC
2023 World Congress), 2023.

[5] J. M. Hendrickx, M. Gevers, and A. S. Bazanella, “Identifiability of
dynamical networks with partial node measurements,” IEEE Transac-
tions on Automatic Control, vol. 64, no. 6, pp. 2240–2253, 2019.

[6] A. Legat and J. M. Hendrickx, “Local network identifiability with
partial excitation and measurement,” in 2020 59th IEEE Conference
on Decision and Control (CDC), 2020, pp. 4342–4347.

[7] ——, “Path-based conditions for local network identifiability,” in 2021
60th IEEE Conference on Decision and Control (CDC), 2021, pp.
3024–3029.

[8] A. S. Bazanella, M. Gevers, and J. M. Hendrickx, “Network identifi-
cation with partial excitation and measurement,” in 2019 IEEE 58th
Conference on Decision and Control (CDC), 2019, pp. 5500–5506.

[9] X. Cheng, S. Shi, I. Lestas, and P. M. J. Van den Hof, “A neces-
sary condition for network identifiability with partial excitation and
measurement,” IEEE Transactions on Automatic Control, 2023.

[10] F. Dörfler and F. Bullo, “Synchronization in complex networks of
phase oscillators: A survey,” Automatica, vol. 50, no. 6, pp. 1539–
1564, 2014.
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APPENDIX

A. Proof of Lemma 3
Let us choose an arbitrary point x̂. Since f is periodic for

p ∈ [p0− ϵ, p0+ ϵ], we have that for all y ∈ [x̂− ϵ+ p0, x̂+
ϵ+ p0]:

f(y) = f(x̂),

which implies that the function f is constant and its
derivative f ′ is zero in [x̂ − ϵ + p0, x̂ + ϵ + p0].
Since f is analytic, its derivative f ′ is also ana-
lytic and due to the Principle of isolated zeros for 1-
dimensional real analytic functions [22], the derivative f ′

is zero for all x, which implies that f is constant for
all x.

B. Proof of Lemma 4
Let us assume that there exists a point ŷ ∈ Rm such that

g(ŷ) = a and g̃(ŷ) = b with a ̸= b. Then, we would have:

f(x+ a) = f(x+ b), for all x ∈ R,

which is equivalent to

f(z) = f(z + b− a), for all z ∈ R,

implying that f is periodic with period b − a. Since
g(0) = g̃(0) = 0, and g and g̃ are continuous, the
function g̃ − g is also continuous and all the values be-
tween 0 and b − a belong to its range. Thus, f should
be periodic in the interval [0, b − a]. But by virtue
of Lemma 3, the function f should be constant. If f
is not constant, we have a contradiction which implies
that g = g̃.

C. Proof of Lemma 5
Let us take the derivative with respect to only one variable

xj where j = 1, . . . , n. Then, we have:

f ′
j(xj + gj(y)) = f ′

j(xj + g̃j(y)), for all xj ∈ R, y ∈ Rm.

Since the function fj is analytic, its derivative f ′
j is also

analytic, and by Lemma 4, we can have two cases: either
f ′
j is constant or gj = g̃j . If f ′

j is constant, then fj is
linear or constant (i.e., fj = 0), which is a contradiction.
Therefore gj = g̃j . Following the same procedure for the
other variables xj , we complete the proof.
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