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Abstract— Trajectory planners of autonomous vehicles usu-
ally rely on physical models to predict the vehicle behavior.
However, despite their suitability, physical models have some
shortcomings. On the one hand, simple models suffer from
larger model errors and more restrictive assumptions. On the
other hand, complex models are computationally more demand-
ing and depend on environmental and operational parameters.
In each case, the drawbacks can be associated to a certain
degree to the physical modeling of the yaw rate dynamics.
Therefore, this paper investigates the yaw rate prediction
based on conditional neural processes (CNP), a data-driven
meta-learning approach, to simultaneously achieve low errors,
adequate complexity and robustness to varying parameters.
Thus, physical models can be enhanced in a targeted manner
to provide accurate and computationally efficient predictions
to enable safe planning in autonomous vehicles. High fidelity
simulations for a variety of driving scenarios and different
types of cars show that CNP makes it possible to employ and
transfer knowledge about the yaw rate based on current driving
dynamics in a human-like manner, yielding robustness against
changing environmental and operational conditions.

I. INTRODUCTION

Vehicle models are key components for trajectory planning
in highly automated [1], [2], [3], [4] or even autonomous
driving [5], [6], [7] that allow to predict the vehicle behavior
as a function of the model inputs. Thus, physically feasible
trajectories can be generated and evaluated [8]. However,
the complexity of the model has a decisive impact. Simple
models benefit from lower computational costs but have
more restrictive assumptions and a higher model error [9],
[10]. For instance, the most simple point-mass model [11],
[12] abstracts the vehicle to a large extent and therefore
neglects the non-holonomic behaviour. Accordingly, already
parking maneuver planning requires a more complex model
such as the kinematic single-track model [5]. For evasive
maneuver planning, however, a kinematic model is not
sufficient and dynamic single-track models are typically used
for this purpose [13], [14]. When it comes to highly dynamic
maneuvers, single-track drift models or even multi-body
models are required [15], [16].

More sophisticated models reveal a higher level of detail
in the tire model and the lateral dynamics. The less restrictive
assumptions and reduced systematic model error implies
not only a higher complexity and computational effort, but
also increases the number of environmental and operating
dependent parameters such as friction or vehicle mass [17].
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Since such parameters have a significant impact on driving
dynamics, variations of these parameters cannot be neglected
in the trajectory planning of highly autonomous vehicles.

One way to improve the robustness to changing conditions
is the use of sensor systems [18], [19], [20], which leads to
higher costs and more potential failure sources. Another way
might be software-based virtual sensor systems that estimate
these parameters from already existing sensor systems [21],
[22]. This methodology offers the possibility to create a ve-
hicle model with fewer assumptions and a larger operational
domain of validity, which is of particular importance for
highly automated driving.

Numerical investigations of a kinematic single-track model
with ground truth yaw angle show that the model is robust
to varying parameters and the error is very small even in
dynamic situations [23], [24], [25]. Thus, if the yaw angle
could be determined more accurately and robustly without
extended modeling of tires and lateral dynamics, prediction
speed could be improved. Since the yaw rate is orientation
invariant in contrast to the yaw angle, but leads to the angle
by integration, the focus is on the modeling of the yaw rate.

An alternative to detailed physical description of the yaw
rate is data-driven modeling [26], [25]. Likewise, there is the
possibility to describe dynamic systems by means of contin-
uous neural ODEs [27] or to supplement them by Gaussian
processes [28]. Ultimately, the majority of approaches result
in one final model. However, vehicle dynamics are subject
to different effects depending on the use, thus several spe-
cific models and a proper approach for model switching or
blending are required for widely accurate predictions [29].
In this area, meta learning could provide a remedy.

The key principle of meta-learning is learning-to-learn
[30]. This is achieved, for example, by a dual exploitation
of the supervised learning methodology. On the meta level,
the mapping from a data set to a dedicated predictor is
realized. In this paper, the baseline meta-learning approach
of conditional neural processes (CNP) [31] is used to predict
the yaw rate. A detailed review of the work that has been
done in the area of neural processes in general is provided
by [32]. To the best of the authors knowledge, this is the
first time that yaw rate predictions are realized a) without
detailed physical modeling of tires or lateral dynamics, b)
without additional sensors, c) without limiting assumptions
on dynamic, environmental, and operational domains, d)
thus providing robustness to changing operational and en-
vironmental conditions, e) while providing fast predictions
through meta-learning.

The paper is structured as follows: physical models of dif-
ferent complexity are introduced in Section II. The method-
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ology of CNP and the application to yaw rate prediction
are described in Section III. Finally, CNP are evaluated in
different scenarios and the results are compared with the
various physical models in Section IV.

II. PHYSICAL MODELS
Physical models represent the state of the art in modeling

yaw rate dynamics and form the basis to compare against
CNP. The equations describing the yaw rate of the kinematic
single-track model (KST), the dynamic single-track model
(DST), and the single-track drift model (STD) are outlined
below and represent a concise summary of the benchmark
CommonRoad [33].

A. Kinematic Single-Track Model (KST)
In the case of the simplest physical baseline model, the

yaw angle Ψ is modeled directly [33]. Therefore, the yaw
rate dynamics

Ψ̈KST =
d

dt

(
Ψ̇
)
=

d

dt

( v

lwb
tan(δ)

)
, (1)

is determined by the derivative of the yaw angle dynamics
Ψ̇, where v denotes the velocity, δ the steering angle, and
lwb the wheelbase.

B. Dynamic Single-Track Model (DST)
In contrast, the yaw rate dynamics Ψ̈DST of the dynamic

single-track model [33] is given by

Ψ̈DST =
1

Iz

(
lfCfδ + (lrCr − lfCf )β − (l2fCf + l2rCr)

Ψ̇

v

)
(2)

with the moment of inertia Iz of the vehicle about the z-axis,
the slip angle β at the center of gravity and the distances
lf , lr from the center of gravity to the front and rear axle,
respectively. The cornering stiffness Cf , Cr for front and
rear

Ci = µCS,iFz,i, i ∈ {f, r} (3)

depends on the friction coefficient µ, specific cornering
stiffness coefficients CS,f , CS,r, and the vertical forces

Fz,f = m
glr − alonghcg

lr + lf
, Fz,r = m

glf + alonghcg

lr + lf
(4)

that take into account the load transfer caused by the longi-
tudinal acceleration along as a function of the mass m and
the height of the center of gravity hcg.

C. Single-Track Drift Model (STD)
The single-track drift model [33] extends the consideration

of lateral dynamics and the complexity of the tire model. The
yaw rate dynamics Ψ̈STD of the single-track drift model

Ψ̈STD =
1

Iz

(
Fy,f cos(δ)lf − Fy,rlr + Fx,f sin(δ)lf

)
(5)

is computed by means of the longitudinal tire forces
Fy,f , Fy,r for front and rear as well as the lateral tire force
Fx,f for front. The longitudinal and lateral tire forces are
calculated via the Pacejka magic tire formula for combined
slip [34]. This formula, which is omitted due to space con-
straints, takes into account the vertical tire forces Fz,f , Fz,r

like in (4) as well as the lateral tire slip αf , αr for front and
rear

αf = arctan
(v sin(β) + Ψ̇lf

v cos(β)

)
− δ

αr = arctan
(v sin(β)− Ψ̇lr

v cos(β)

)
,

(6)

and the longitudinal tire slip sf , sr for front and rear

sf = 1− Rωωf

uω,f
, sr = 1− Rωωr

uω,r
, (7)

with the effective tire radius Rω and the front and rear tire
velocities uω,f , uω,r. The tire velocities can be computed by

uω,f = v cos(β) cos(δ) + (v sin(β) + lf Ψ̇) sin(δ)

uω,r = v cos(β).
(8)

Since the dynamic single-track model as well as the
single-track drift model become singular at low velocities,
a distinction is mandatory. In this paper, the simulations
of the physical models are based on the implementation of
CommonRoad [33], where the dynamic single-track model
is switched for velocities smaller than 0.1 m s−1. In com-
parison, the single-track drift model utilizes a more complex
model blending [33]. The above equations describe only the
pure modeling in the cases without singularity issues.

III. CONDITIONAL NEURAL PROCESSES (CNP)

While supervised learning operates on single datasets of
single tasks and provides a task-specific predictor, meta-
learning operates on datasets of multiple related tasks and
provides an advanced predictor that shares knowledge across
tasks to be able to predict even in unseen tasks. Since
predictions represent a foundation for decision-making in
trajectory planning, the consideration of model uncertainty is
of critical interest. The neural process family [32] represents
a group of models that belong to the Bayesian meta-learning
domain and constitute an adequate solution. In the following,
the conditional neural processes [31] as basic model of this
group are described.

A. CNP Framework

Classical supervised learning approaches have a dataset
D = {(xn,yn)}Nn=1 consisting of inputs xn ∈ X ⊆ RdX

and outputs yn ∈ Y ⊆ RdY and learn the input-output
mapping function f : X → Y such that the final weights
result in a minimum error over the entire dataset. Thus, a
model is trained which approximates the process best on
average. However, in the case that the data generating process
itself is subject to variations due to changing conditions,
the model would neglect them. To counteract this issue, a
meta-learning dataset considers a finite set of input-output
mapping functions f : X → Y , sampled from a probability
distribution P over functions. Each sampled function fj
leads to a task dataset Dj = (Cj , Tj) containing a labeled
context set Cj = {(xi,yi)}Ni=1 and an unlabeled target set
Tj = {xi}N+M

i=N+1. Thus, the meta-learning dataset DM =
{Dj}Kj=1 emerges as a set of K task-specific datasets.
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The objective of the meta-learning procedure is to capture
the stochastic process that generated a given context set Cj
to predict the outputs corresponding to the target set Tj . For
this purpose, CNP maps the context set into embeddings

ej,i = ϕθ(xi,yi) ∀(xi,yi) ∈ Cj (9)

using a learnable encoder neural network ϕθ : X×Y → Rde .
Here, the dimension of the embeddings de is a design param-
eter of fixed size. Furthermore, the task-agnostic embedding
set Ej = {ej,i}Ni=1 is converted into a single representation

ej = a(Ej) = ej,1 ⊕ ej,2 ⊕ · · · ⊕ ej,N−1 ⊕ ej,N (10)

employing an aggregation function. For better generaliza-
tion, CNP require that the aggregation function performs
commutative operations ⊕ to guarantee a single permutation
invariant representation ej , according to Deep Sets [35]. In
order to consider context datasets of flexible size, the average
is usually taken. The encoded context is decoded together
with the target set

dj,i = ρθ(xi, ej) ∀xi ∈ Tj (11)

by means of a learnable decoder neural network ρθ :
X × Rde → Rdd . In regression tasks, the decoding dj,i

is used to parameterize the mean µj,i(dj,i) and variance
σ2
j,i(dj,i) of a Gaussian distribution for each xi in Tj .

The simplest parameterization is the definition of a two-
dimensional decoder output (dd = 2), which directly assigns
a value to µ and σ2. In addition, CNP are characterized by
the fact that multilayer perceptrons (MLP) are used for the
encoder-decoder structure.

More generally and compactly, the CNP models the con-
ditional predictive distribution

p(f(T )|T , C) = p(f(T )|ρ(T ,E(C),θ) (12)

for a given context and target set by means of a decoder
ρ and an encoding composition E = a ◦ ϕ, which is a
joint distribution over the random variables f(xi)

N+M
i=1 }. For

regression tasks, the predictive distribution is modeled as a
factorized Gaussian over the target set

p(f(T )|T , C) =
N+M∏
i=1

N (µi, σ
2
i ). (13)

Under this direct parameterization, mathematical guarantees
of stochastic processes are traded off in favor of higher flex-
ibility and scalability for conditional predictions, resulting
in a complexity of O(N +M) for M predictions given N
context pairs.

B. CNP based Yaw Rate Prediction
The framework of CNP offers the possibility to consider

information of the current driving dynamics in the form of
the context set C and to provide a distribution of predictions
p(f(T )|T , C) depending on this context. Therefore, the
dynamics of the yaw rate is interpreted as a stochastic process
and the measured data from various circumstances, e.g.
different dynamic ranges or weather conditions, as sampled
functions f ∼ P from the distribution P of this stochastic
process.

In this paper CarMaker1 (CM) is used to generate the
meta-learning dataset. The simulation tool CarMaker is
widely used in the automotive industry due to its high-
quality multi-body model and tire models [36], [37]. Data are
selected in two urban cases, two interurban cases, two longi-
tudinal dynamic cases and fourteen lateral dynamic cases to
yield a balanced data set, which is a general requirement for
accurate predictions [38]. All twenty cases are simulated in
different weather conditions, simulated by different friction
values (µdry = 1.0, µwet = 0.5, µicy = 0.2). Furthermore,
the velocity is varied between 0 and 120 kmh−1. As with
real-world data, time series of different lengths occur depend-
ing on the test run. The used model builds up on the neural
process family implementation2 and extends the framework
to use datasets of different length without any additional data
selection procedure.

An overview of the architecture of the used CNP is listed
in the Tab. I. There are two encoders listed, which represent
the single encoder in Sec. III-A. Here, the inputs are encoded
first which are further encoded with the targets in the second
encoder. As the architecture reveals, an embedding size de
of 64 is used. Inspired by the physical models, different

TABLE I: CNP Architecture.

General Network Hidden Hidden Activation
Modules Architecture Layers Size Function

Feature Encoder MLP 1 64 ReLU
Context Encoder MLP 2 128 ReLU

Decoder MLP 4 64 ReLU

input vectors xi have been investigated for the prediction
of the scalar output variable yi = Ψ̇. As a result, an input
vector consisting of the steering angle δ, velocity v and
the longitudinal acceleration along has emerged. The CNP
is trained by randomly sampling task data sets from the
metadata set, selecting context and target splits, passing
the data through the architecture, calculating the loss, and
performing a stochastic gradient update until it converges.
As a loss function, the negative conditional log likelihood

L(θ) = −Ef∼P

[
ES [log pθ({yi}Si=1|{xi}Si=1, CS)]

]
(14)

is minimized, where S denotes a subset of the sampled task-
set. Since the CNP is trained offline, no gradient updates
are necessary during the deployment, which enables fast
predictions. The overall deployment workflow of the trained
model is outlined in Fig. 1.

The learning-to-learn approach makes it possible to trans-
fer the knowledge to previously unseen cases and thus offers
a computationally efficient alternative to online learning.
Due to the strict separation of learning and deployment, no
improvement or adaptation can be achieved online, but at
the same time catastrophic forgetting [39] is counteracted
by having a temporally unchangeable system.

1https://ipg-automotive.com/en/products-
solutions/software/carmaker/

2http://yanndubs.github.io/Neural-Process-Family/.
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Fig. 1: CNP for yaw rate predictions.

IV. EVALUATION RESULTS

The methodology is evaluated on the basis of the wide
range of scenarios that are also used for the training, but
under different environmental and usage conditions. Due to
modified conditions, these scenarios represent new samples
of the underlying stochastic processes.

In order to investigate the adaptation to changing environ-
mental conditions, variations of the friction coefficient are
considered to simulate different road and weather conditions.
With regard to changed operating conditions, a changed
load (additional four persons, each 80 kg) is selected. For
the purposes of generalization, further scenarios as well as
the transfer to other vehicles are considered. The evaluation
compares the CNP against the physical models, which are
parameterized using the parameters of the CarMaker simu-
lation software, which is used as reference.

A. Friction variation

The model is trained using data from 20 scenarios, each
at different speeds and for friction coefficients 1.0, 0.5 and
0.2. In this evaluation, the trained model is executed in the
same 20 scenarios, each across different velocities for friction
coefficients 0.75, 0.35 and 0.1. The context set is based on
measurements over a length of 10% of each scenario. The
target set is determined by Euler integration of the control
variables over the length of the scenario. The CNP model
is compared against the physical models, which also employ
Euler integration for yaw rate prediction. We simulate on
the one hand models without online parameter adaption
(KST, DST, STD) and models with an ideal online parameter
update (DST(µ), STD(µ)). The results in Fig. 2 show that
the physical models perform slightly better than the CNP
at a friction coefficient close to dry roads. However, the
CNP performs better at lower friction coefficients. The DST
model does not benefit from the knowledge of the friction
coefficient, but the STD model does. Presumably, this can be
attributed to drift behavior of the vehicle in highly dynamic
scenarios. The CNP demonstrates consistent performance
over the different friction coefficients. On average, only the

ideal STD(µ) is superior, which has full knowledge about
the current friction coefficient.
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Fig. 2: Evaluation under changed friction coefficients.

B. Mass Variation
The effect of changed mass is evaluated similarly to the

effect of changed friction. The mass was increased for this
purpose, the friction remains the same as in the training. The
ideal physical models (DST(µ,m), STD(µ,m)) use ground
truth mass and friction values in this evaluation. Figure 3
shows that in the case of dry roads, simple models are
slightly better. In the wet and icy road case, more complex
models indicate significant advantages. Overall, it can be
seen that mass is a less influential factor than friction, but
this may be due to uniform load distribution. Again, it
becomes apparent that only the ideal STD(µ,m) can benefit
from the actual ground truth values. Similar to the first
evaluation, the error of the CNP is relatively constant over
the variations compared to other models. Again, on average
only the STD(µ,m) model performs comparably.
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Fig. 3: Evaluation of prediction under varied mass. Results
separated according to different road (friction) conditions.

C. Scenario variation
Unlike previous evaluations, this evaluation is based on

scenarios that are not part of the training. Two urban
scenarios, two interurban driving scenarios, two racetrack
scenarios (Nordschleife Nürburgring, Hockenheimring) and
one mountain pass scenario serve as the test cases. In all
scenarios, velocity is varied appropriately. Friction parame-
ters are likewise varied to simulate dry, wet and icy road
surfaces. The numerical evaluation in Fig. 4 illustrates a
similar pattern as in the previous evaluations. While CNP
receives only the acceleration as an additional input com-
pared to the simplest KST model, the error is comparable to
complex physical models, which furthermore have the true
parameters given. To complete the analysis, Fig. 5 shows the
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prediction of the yaw rate for various friction coefficients
for the Hockenheimring racetrack scenario. In the dry road
domain, the CNP performs lowest while showing the highest
uncertainty. In the area of wet and icy roads, the prediction is
better while the uncertainty is quite low. The scenario on the
icy road is significantly shorter, since the same driving style
over different road parameters causes the vehicle to leave the
track in this icy condition.
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Fig. 4: Prediction evaluation under varied scenarios. Results
separated according to different road (friction) conditions.

D. Vehicle variation

The training and evaluation up to now is based on the use
of a VW Beatle, the CarMaker DemoCar. In this evaluation
the transferability of the CNP to other vehicles is evaluated.
Here, the evaluation from Section IV-C is applied to a small
car (Honda Fit), an SUV (BMW X5), a van (VW T6) and a
sports car (Porsche 911). The results for dry roads (Tab. II),
wet roads (Tab. III), icy roads (Tab. IV) as well as average
(Tab. V) demonstrate that the CNP performs similarly on
other vehicles. This shows that the CNP is able to extract
the characteristics of the present dynamics from a context
dataset and to transfer learned knowledge to a large extent.

V. CONCLUSIONS AND FUTURE WORKS

The investigation of the meta-learning approach condi-
tional neural processes in terms of yaw rate prediction
shows that the methodology is robust to environmental
and operational variations and can even be transferred to
other cars. It is also demonstrated that CNP offer a low
mean prediction error while simultaneously maintaining a
low computational complexity. Thus, a kind of model-order
reduction of classical models is feasible. Moreover, the
methodology also provides the possibility of uncertainty
quantification, and more recent architectures of the neural
process family are proven to yield improvement in this
area. Future work remains to investigate the performance
difference towards more advanced neural processes models,
especially with respect to variance, which in general needs
to be investigated in more detail. In addition, the impact of
stochastic measurement inputs remains to be investigated.
Ultimately, the behavior of a resulting stochastic hybrid
vehicle model for trajectory planning in autonomous driving
is to be investigated. While the methodology offers great
advantages, and resolves e.g. out-of-distribution issues in a
targeted manner, the safety assurance of AI will be a key
research question.
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(a) Dry road condtions (µ = 1.0).
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(b) Wet road condtions (µ = 0.5).
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(c) Icy road condtions (µ = 0.2).

Fig. 5: Qualitative trajectory evaluation over (a) dry, (b) wet
and (c) icy roads on the Hockenheim racetrack. The vertical
dashed line separates the context set on the left from the
predictions on the right. The time horizon in (c) is shorter
since, given the same driving behavior, the vehicle leaves the
road under icy conditions.
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