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Abstract— This paper presents a direct data-driven approach
for computing robust control invariant (RCI) sets and their
associated state-feedback control laws for linear time-invariant
systems affected by bounded disturbances. The proposed
method utilizes a single state-input trajectory generated from
the system, to compute a polytopic RCI set with a desired
complexity and an invariance-inducing feedback controller,
without the need to identify a model of the system. The problem
is formulated in terms of a set of sufficient linear matrix
inequality conditions that are then combined in a semi-definite
program to maximize the volume of the RCI set while respecting
the state and input constraints. We demonstrate through a
numerical case study that the proposed data-driven approach
can generate RCI sets that are of comparable size to those
obtained by a model-based method in which exact knowledge
of the system matrices is assumed.

I. INTRODUCTION

Set invariance theory has received a significant attention
over the years for constrained systems and stability analy-
sis [6], [7]. A set is called robust control invariant (RCI) if
from all initial states within the set, an admissible control
input exists, which keeps the state trajectories within the
set for all bounded disturbances acting on the system [6].
Several contributions have been proposed in the literature
to compute the RCI set and its associated controllers given
a model of the system, see, for e.g., [8], [12], [15], [17],
[21], [23]. These are model-based methods where the main
underlying assumption is that a model of the true system
is available. However, there are several challenges to obtain
an accurate model of the system [16]. An inaccurate model
can lead to loss of the invariance property as well as viola-
tion of constraints when operating in the closed-loop [24].
To overcome these limitations, recent developments have
emphasized data-driven approaches. Control-oriented data-
driven identification is proposed in [9], [20], consisting of
concurrent model selection along with RCI set computation,
which results in reduced conservatism. Alternatively, direct
data-driven control approaches [2]–[5], synthesize robust
controllers directly from the open-loop data, without the need
for model identification.

The direct data-driven methods presented in [4], [5], com-
pute a state-feedback controller from data to induce robust
invariance in a given polyhedral set. However, these methods
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require that the set is fixed and known a priori. A recent work
[24] offers a method for computing an invariant set as well as
its associated feedback controller. This approach constructs
an ellipsoidal invariant set. It should be noted that ellipsoidal
sets are potentially more conservative than polyhedral sets,
as the latter present several theoretical and practical advan-
tages over the ellipsoids via flexible and arbitrarily complex
representation [7], with the only drawback of scalability.

In this paper, we develop a direct data-driven approach to
compute polytopic RCI sets and state-feedback controllers
for unknown linear systems subject to bounded disturbances.
We utilize a single state-input trajectory generated in open-
loop and derive data-based sufficient linear matrix ineqality
(LMI) conditions which can guarantee invariance and con-
straint satisfaction. The sufficient LMI conditions are then
combined in a semi-definite program (SDP) to maximize
the volume of the RCI set. The proposed approach can
be seen as a data-driven counterpart to the model-based
method presented in [13]. We point out that in [13], the exact
model of the true system is assumed to be known, while the
approach presented in this paper neither requires knowledge
of the model nor any system identification step.

II. NOTATIONS AND PRELIMINARIES

An identity matrix of dimension n is denoted by In and
ei represent and its i-th column. A matrix of zeros with
appropriate dimension is denoted as 0. The vector of ones
with dimension m is denoted by 1m. X ≻ 0 (⪰ 0) denotes
a positive (semi) definite matrix X . For compactness, in
the text ∗’s will represent matrix entries that are uniquely
identifiable from symmetry. Let A ∈ Rm×n be a matrix
written according to its n column vectors as A = [ a1 ··· an ],
we define vectorization of A as A⃗ ≜ [ a⊤

1 ··· a⊤
n ]

⊤, which
returns a vector of dimension (mn×1), stacking the columns
of A. For a finite set Θv = {θ1, θ2, . . . , θr} with θj ∈ Rn for
j = 1, . . . , r, the convex-hull of Θv is given by, conv(Θv) ≜{
θ ∈ Rn : θ =

∑r
j=1 αjθ

j , s.t
∑r

j=1 αj = 1, αj ∈ [0, 1]
}

.
For matrices A and B of compatible dimensions, A ⊗ B
denotes their Kronecker product. The following result will
be used in the paper:

Lemma 1 (Vectorization): For matrices A ∈ Rk×l, B ∈
Rl×m, C ∈ Rm×n and D ∈ Rk×n, the matrix equation
ABC = D is equivalent to (see, [1, Ex. 10.18]),

(C⊤ ⊗A)
#»

B =
#         »

ABC =
#»

D (1)
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III. PROBLEM SETTING

A. Data-generating system and constraints

We consider the following discrete-time data-generating
system

x(k + 1) = Ax(k)+Bu(k)+w(k), (2)

where x(k) ∈ Rn, u(k) ∈ Rm and w(k) ∈ Rn are the
state, control input and the (additive) disturbance vectors at
time k, respectively. The system matrices A ∈ Rn×n and
B ∈ Rn×m are unknown. A state-input trajectory of T + 1
samples {x(k), u(k)}T+1

k=1 is generated from system (2). The
generated data is represented with the following matrices,

X+ ≜ [x(2) x(3) · · · x(T + 1)] ∈ Rn×T , (3a)

X ≜ [x(1) x(2) · · · x(T )] ∈ Rn×T , (3b)

U ≜ [u(1) u(2) · · · u(T )] ∈ Rm×T . (3c)

The system (2) is subject to the following state, input and
disturbance constraints, respectively:

X ≜ {x : Hx ≤ 1nx
} , U ≜ {u : Gu ≤ 1nu

} , (4a)

W ≜ {w : −1nw
≤ Dw ≤ 1nw

} , (4b)

where H ∈ Rnx×n, G ∈ Rnu×m and D ∈ Rnw×n are given
matrices. The generated state samples in (3) are affected
by bounded but unknown disturbance w(k) ∈ W for k =
1, . . . , T + 1.

B. Feasible model set and ‘informative’ data

We characterize a set of feasible models M = [A B ] ∈
Rn×(n+m), which are compatible with the measured data
X+, X, U and the disturbance set W , defined as follows

M ≜ {M : x(k+1)−M
[
x(k)
u(k)

]
∈ W, k = 1, . . . , T}. (5)

Using the definitions of data matrices in (3) and disturbance
set W in (4), the feasible model set M is represented as,

M ≜
{
M : −1̄ ≤ DX+ −DM [XU ] ≤ 1̄

}
, (6)

with 1̄ ≜ [ 1nw 1nw ··· 1nw ] ∈ Rnw×T .
Proposition 1 ( [5], [24]): The feasible model set M in

(6) is a bounded polyhedron if and only if rank ([XU ]) =
n+m and D has a full column rank.
The above proposition relates to the “informative” data and
persistency of excitation conditions [10]. The full row rank
of [XU ] can be checked from the data, if this condition is not
satisfied, the set M is unbounded which makes it difficult
to find a feasible controller and RCI set for all M ∈ M.

C. RCI set definition and invariance inducing controller

Let us consider a static state feedback control law

u(k) = Kx(k), (7)

where K ∈ Rm×n is a feedback gain matrix. The resulting
closed-loop dynamics for a feasible model M ∈ M (using
(5) and (7)) is

x+ = M [ I
K ]x+ w, (8)

where the k dependence is dropped and x(k+1) is denoted
as x+ for convenience.

Let us consider the following polytopic set1

C ≜
{
x ∈ Rn : −1np

≤ PW−1x ≤ 1np

}
, (9)

where P ∈ Rnp×n, W ∈ Rn×n.
The set C is referred to as robustly invariant for the

system (8), if the following condition is satisfied:
x ∈ C ⇒ x+ ∈ C, ∀w ∈ W, ∀M ∈ M. (10)

The set C has to satisfy the state and input constraints, this
implies C ⊆ X and KC ⊆ U , which can be further expressed
as

x ∈ C ⇒ x ∈ X , (11)
x ∈ C ⇒ u = Kx ∈ U . (12)

The problem considered in this paper is formalized as
follows:

Problem 1: Given data matrices (X+, X, U) defined in
(3), the constraints sets (4) and a fixed matrix P , find the
matrix W defining the invariant set C in (9) and a feedback
controller gain K such that: (i) The invariance condition
(10) holds; (ii) All elements of the set C satisfy the state
and input constraints (11) and (12), respectively.

We aim at maximizing the volume of set C solving
Problem 1.

IV. TRACTABLE FORMULATIONS FOR SYSTEM
CONSTRAINTS AND INVARIANCE CONDITION

In this section, we present a convenient coordinate trans-
formation [13] such that state and control input constraints
(11)-(12) are expressed as affine inequalities, while the
invariance condition (10) is expressed as a set of LMIs.

A. System constraints

Let us consider the following state transformation

θ = W−1x ⇔ x = Wθ. (13)

This allows us to express the set C in (9) as

C ≜ {Wθ ∈ Rn : θ ∈ Θ} , (14)

where Θ is a symmetric set defined as follows:

Θ ≜
{
θ ∈ Rn : −1np ≤ Pθ ≤ 1np

}
. (15)

Note that in the θ-state-space, the candidate invariant set Θ is
a known symmetric set around the origin. The corresponding
polytopic set C in the x-state-space will be completely
determined by the choice of W, which we aim to compute.
As P is a known matrix, the symmetric set Θ can be
expressed as the convex hull of the finitely many known
vertices

{
θ1, . . . , θ2σ

}
:

Θ = conv
({

θ1, . . . , θ2σ
})

, (16)

where σ is some known positive integer determined by the
choice of P . We now express the state and input inequality
constraints (4) in the θ-state-space by using the transfor-
mation (13). Satisfaction of these inequalities constraints

1We have assumed that W is invertible, which would be later guaranteed
by the LMI conditions for invariance. Choice of P is discussed in [14].
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at the vertices {θj}2σj=1 ensures that they are satisfied over
the whole set Θ as well. Therefore, we can write the state
constraints (11) in terms of W as follows:

HWθ ≤ 1nx ,∀θ ∈ Θ ⇔ HWθj ≤ 1nx , j=1, . . . , 2σ.
(17)

In order to express the control input constraints in terms of
W, let us consider a new matrix variable as follows:

N ≜ KW ⇔ K = NW−1. (18)

The control input constraints in (12) are then given as

GNθ ≤ 1nu
,∀θ ∈ Θ ⇔ GNθj ≤ 1nu

, j = 1, . . . , 2σ.
(19)

The system constraints (17) and (19) are affine and are
identified by nx × 2σ and nu × 2σ scalar inequalities.

B. Invariance conditions in the transformed state-space

Let us express the system dynamics in the θ-state-space.
Using (13), the closed-loop dynamics (8) can be written as

Wθ+ = M

[
W
N

]
θ + w, (20)

for a feasible model M ∈ M and w ∈ W .
We now state two equivalent invariance conditions in the

θ state-space based on the closed-loop dynamics (20).
Lemma 2: If the set Θ in (15) is robustly invariant for

system (20) then the following two statements are equivalent:
(i) for all θ ∈ Θ, ∀(w,M) ∈ (W,M),

θ+ =

(
W−1M

[
W
N

]
θ +W−1w

)
∈ Θ (21)

(ii) for each vertex θj , j = 1, . . . , 2σ of the set Θ, and
∀(w,M) ∈ (W,M),

θj
+
=

(
W−1M

[
W
N

]
θj +W−1w

)
∈ Θ (22)

Proof: Since for each vertex θj , it holds that θj ∈ Θ,
it can be easily seen that (i) ⇒ (ii). Let us now prove the
converse statement, i.e., (ii) ⇒ (i). From (16), any θ ∈ Θ
can be expressed as a convex combination of the vertices,

θ =

2σ∑
j=1

αjθ
j ,

2σ∑
j=1

αj = 1, αj ∈ [0, 1]. (23)

Then, based on the closed-loop dynamics (20) we get,

θ+ = W−1M

[
W
N

] 2σ∑
j=1

αjθ
j

+W−1w

=

2σ∑
j=1

αj

(
W−1M

[
W
N

]
θj +W−1w

)
︸ ︷︷ ︸

θj+

(24)

We know that θj
+ ∈ Θ,∀(w,M) ∈ (W,M) according to

(22). Since θ+ in (24) is obtained as a convex combination
of θj+ and as the set Θ is convex, it necessarily follows that
θ+ ∈ Θ ∀(w,M) ∈ (W,M), thus proving (ii) ⇒ (i).
In the rest of the paper, we will consider condition (22) for
robust invariance of the set Θ.

C. Data-based LMI condition for invariance

We will now state and prove a data-based sufficient
condition to render the set Θ invariant with an associated
state-feedback controller. Let us first define the following
matrix Z ∈ RTnw×n(n+m) and a vector d ∈ RTnw , which
are constructed from the given state-input data (3) and a
known disturbance set matrix D in (4).

Z ≜

([
X
U

]⊤
⊗D

)
, d ≜

 Dx(2)
...

Dx(T + 1)

 (25)

The following theorem states the data-based sufficient LMI
feasibility condition for invariance and control.

Theorem 3 (Data-based LMI for invariance): Given data
matrices (X+, X, U) and a fixed matrix P ∈ Rnp×n, if there
exists W ∈ Rn×n, N ∈ Rm×n, and the variables {ϕij ∈
R+,Λij ∈ DTnw

+ ,Γij ∈ Dnw
+ } that satisfy the following

LMIs for i = 1, . . . , np and j = 1, . . . , 2σ,
rij −d⊤ΛijZ 0 0
∗ Z⊤ΛijZ 0 G⊤(W,N, θj

)
∗ ∗ D⊤ΓijD In
∗ ∗ ∗ W+W⊤−ϕi,jP

⊤eie
⊤
i P

≽0,

(26)
where,

rij ≜ ϕij−1⊤Λij1−1⊤
nw
Γij1nw

+ d⊤Λijd ∈ R, (27a)

G
(
W,N, θj

)
≜

([
W
N

]
θj
)⊤

⊗In ∈ Rn×n(n+m), (27b)

then, the state feedback controller gain is obtained as K =
NW−1 which renders the set C in (14) robust invariant.

Proof: We first rewrite the feasible model set M in (6)
for vector

# »

M ∈ Rn(n+m) as follows,

M ≜
{

# »

M : −1Tnw+d ≤ Z
# »

M ≤1Tnw+d
}
, (28)

where we have used the identity (1) to rewrite the inequalities
in (6) in a vector form and substituted Z, d as defined in (25).

Similarly, using the identity (1), we rewrite the closed-loop
dynamics (20) at the vertex θj as follows,

Wθj
+
=

(([
W
N

]
θj
)⊤

⊗ In

)
︸ ︷︷ ︸

G(W,N,θj)

# »

M + w. (29)

From (15) the invariance condition in (22) can be written
as, for all i = 1, . . . , np, j = 1, . . . , 2σ,

1− (e⊤i Pθj
+
)2 ≥ 0, ∀w ∈ W, ∀ # »

M ∈ M, (30)

where ei is the i-th column vector of the identity matrix Inp
.

We now multiply (30) by a positive scalar variable ϕij > 0
and lower bound the left hand side by a term that is known to
be non-negative for all w ∈ W,

# »

M ∈ M (S-procedure [22]).
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In this way, we obtain a sufficient condition for invariance
as follows,

ϕij(1− (e⊤i Pθj
+
)2) ≥

2
(
θj

+
)⊤(

G(W,N, θj)
# »

M + w −Wθj
+
)

︸ ︷︷ ︸
0

+
(
(1+ d)− Z

# »

M
)⊤

Λij

(
(1− d) + Z

# »

M
)

︸ ︷︷ ︸
≥0

+ (1+Dw)⊤Γij(1−Dw)︸ ︷︷ ︸
≥0

, (31)

with Λij ∈ DTnw
+ ,Γij ∈ Dnw

+ , being diagonal matrices hav-
ing non-negative entries. Based on (29) and the set definitions
W , M in (4), (28) respectively, it is straightforward to verify
that the right hand side of (31) is nonnegative. A sufficient
invariance condition is obtained by re-arranging (31) into the
following quadratic form,

κ⊤Pij(W,N,Λij ,Γij ,ϕij)κ ≽ 0, ∀κ, (32)

where κ⊤ =
[
1

# »

M⊤ w⊤ −(θj
+
)⊤
]

and Pij is a
symmetric matrix given by the left hand side of (26). The
invariance condition (22) holds if Pij ≽ 0.

D. Dilated data-based LMI condition for invariance

In this subsection, we derive a set of modified data-based
LMI conditions for invariance. These LMIs have additional
matrix variables and are potentially less conservative than
those introduced in Theorem 3. We will now state the
following dilated sufficient LMI conditions for invariance.

Theorem 4 (Dilated LMI conditions for invariance):
Given data matrices (X+, X, U) and a fixed matrix
P ∈ Rnp×n, if there exists W ∈ Rn×n, N ∈ Rm×n, and
variables {ϕij ∈ R+,Λij ∈ DTnw

+ ,Γij ∈ Dnw
+ ,Xij ,Vi,j ∈

Rn×n} that satisfy the following LMIs for i = 1, . . . , np

and j = 1, . . . , 2σ,[
W⊤ +W −Xij ϕijP

⊤ei
ϕije

⊤
i P ϕij

]
≽0. (33)


rij −d⊤ΛijZ 0 0 0
∗ Z⊤ΛijZ 0 G⊤ (W,N, θj

)
0

∗ ∗ D⊤ΓijD In 0
∗ ∗ ∗ Vij+V⊤

ij V⊤
ij

∗ ∗ ∗ ∗ Xij

 ≽ 0,

(34)
where, rij , G(W,N, θj) are as defined in (27a), (27b), then,
the state feedback controller gain is obtained as K = NW−1

which renders the set C in (14) robust invariant.
Proof: Let us introduce new matrix variables Vij ∈

Rn×n and signals ξij = V−1
ij Wθj

+, for i = 1, . . . , np and
j = 1, . . . , 2σ. From the dynamics (29) we obtain,

G
(
W,N, θj

) # »

M + w −Vijξij = 0. (35)

The sufficient condition in (31) is now expressed in the new
introduced variables as follows:

ϕij(1− (e⊤i PW−1Vijξij)
2) ≥

2ξ⊤ij

(
G(W,N, θj)

# »

M + w −Vijξij

)
︸ ︷︷ ︸

0

+
(
(1+ d)− Z

# »

M
)⊤

Λij

(
(1− d) + Z

# »

M
)

︸ ︷︷ ︸
≥0

+ (1+Dw)⊤Γij(1−Dw)︸ ︷︷ ︸
≥0

. (36)

As described in the previous subsection, a sufficient condi-
tion for invariance is obtained by re-arranging (36) into the
following quadratic form:

κ⊤Pij(W,N,Λij ,Γij ,ϕij ,Vij)κ ≽ 0, ∀κ, (37)

where κ⊤ =
[
1

# »

M⊤ w⊤ −ξ⊤ij

]
and Pij is a symmetric

matrix. The invariance condition thus holds if Pij ≽ 0, i.e.,
rij −d⊤ΛijZ 0 0
∗ Z⊤ΛijZ 0 G⊤ (W,N, θj

)
∗ ∗ D⊤ΓijD In
∗ ∗ ∗ Vij+V⊤

ij−V⊤
ijLijVij

 ≽ 0

(38)
where Li ≜ ϕijW

−⊤P⊤eie
⊤
i PW−1 and rij , G(W,N, θj)

are as defined in (27a), (27b) respectively. Note that the
block (4, 4) in (38) has a nonlinear dependence on ϕi,j ,Vi,j

and W, which is resolved by introducing a new matrix
variable Xij = X⊤

ij ≻ 0 such that X−1
ij −Lij≻0. Then

by applying Schur complement followed by a congruence
transform, eq. (38) can be rewritten as the LMI in (34),
see [18, Theorem 4] for the detailed proof.

V. COMPUTATION OF RCI SET WITH VOLUME
MAXIMIZATION

In this section, we present algorithms to maximize the
volume of the RCI set, combining state, input constraints and
LMI invariance conditions derived in the previous section in
a SDP problem.

A. One-step algorithm:

For a fixed P , volume of the invariant set C in (9) is
proportional to the determinant |det(W)| [14]. Moreover,
the RCI set is required to satisfy the state constraints
(17), control input constraints (19) as well as data-based
LMI conditions for invariance (33)-(34) (or (26)). Under
these constraints, we formulate a determinant maximization
problem. Thus, Problem 1 is feasible if the following SDP
program has a feasible solution,

Algorithm 1:

max log det(W)
ZSDP

subject to: W = W⊤,
(17), (19), (state-input constraints)
(33)−(34) (or (26)) (invariance LMIs)

(39)
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where the optimization variables are ZSDP ≜
(W,N,Xij ,Vij ,ϕij ,Λij ,Γij) for i = 1, . . . , np, j =
1, . . . , 2σ. The symmetry condition W = W⊤ is imposed
to make the objective function log det(W) concave.

B. Iterative algorithm:

We now present an iterative volume maximization scheme
to compute the RCI set. In this approach, the SDP (39)
is solved with an iterative procedure such that the solution
obtained at the q-th iteration is utilized in the problem to
be solved at the (q + 1)-th iteration in order to reduce
conservatism. In such iterative scheme, W is not required
to be symmetric and the conservatism introduced due to the
linearization can be reduced. Let W q and Xq

ij denote the
values of the variables W, Xij obtained at the q-th iteration.
In order to ensure that at each iteration the volume of the RCI
set increases, i.e., |det(W q+1)| ≥ |det(W q)|, we impose the
following,

W⊤W q + (W q)⊤W − (W q)⊤W q ≽ Wobj ≻ 0, (40)

where Wobj = W⊤
obj ∈ Rn×n is the new symmetric matrix

variable. Moreover, the non-linearity can be written as,

W⊤X−1
ij W≽W⊤Zq

ij+(Zq
ij)

⊤W−(Zq
ij)

⊤XijZ
q
ij , (41)

and the (1, 1)-block in (33) is replaced with the right hand
side of (41) at the q-th iteration as follows,[

W⊤Zq
ij + (Zq

ij)
⊤W − (Zq

ij)
⊤XijZ

q
ij ϕijP

⊤ei
ϕije

⊤
i P ϕij

]
≽0.

(42)
For brevity, we omit the detailed proof of the iterative

algorithm. The reader is referred to [14], [18] for the details.
The iterative algorithm is summarized as follows:
Algorithm 2: q-th iteration:

max log det(Wobj)
ZSDP

subject to: (40),
(17), (19), (state-input constraints)
(34) (42), (invariance LMIs)

(43)
where the optimization variables are ZSDP ≜
(W,N,Xij ,Vij ,ϕij ,Λij ,Γij ,Wobj) for i =
1, . . . , np, j = 1, . . . , 2σ.

VI. NUMERICAL EXAMPLE

We demonstrate the effectiveness of the proposed approach
via a numerical case study. All algorithms have been im-
plemented in the Python environment using cvxpy pack-
age [11] utilizing MOSEK [19] to solve the SDP programs.

We consider an open-loop unstable double integrator sys-
tem having dynamics described as in (2) with[

x1(k + 1)
x2(k + 1)

]
=

[
1 1
0 1

]
︸ ︷︷ ︸

A

[
x1(k)
x2(k)

]
+

[
0
1

]
︸︷︷︸
B

u(k) + w(k). (44)

Note that the system matrices (A,B) are unknown, but
they are only used to gather the data. A single state-input
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Fig. 1: Top left: DD 1-step algorithm (39), Top right: DD
iterative approach (43), Bottom: Model-based approach [13].

trajectory of T = 20 samples is gathered (see, [18, Fig. 1])
by exciting the system (44) with inputs uniformly distributed
in [−2, 2]. The data satisfies the rank conditions given in
Proposition 1. The disturbance w is assumed to take values
in the bound [−0.1, 0.1]. The state constraints are (x1, x2) ∈
[−2, 2]× [−2, 2] and the input constraints are u ∈ [−2, 2].

Comparison between data-driven (DD) approaches and
a model-based (MB) method: We compare the proposed
DD algorithms with a model-based approach [13]. In the
MB approach, exact values of the system matrices (A,B)
are assumed to be known. The complexity of the RCI sets

is selected as np = 3 by choosing P =

10 10
10 0
1 11

. The

RCI sets and the associated state-feedback control laws are
computed by running one-step Algorithm 1 solving (39) and
Algorithm 2 solving (43) iteratively for 5 iterations with
dilated LMI conditions. We also compute the RCI set and
control law based on dilated LMI conditions given in the
model-based method [13]. The resulting RCI sets matrices
and the state-feedback gains are obtained as follows:[

W
K

]
=

 17.54 −2.46
−2.46 15.77
−0.71 −1.45

 , (Data-driven: 1-step)

[
W
K

]
=

 20.00 2.11
−3.51 16.48
−0.38 −1.21

 , (Data-driven: iterative)

[
W
K

]
=

 20.00 2.77
−3.87 16.13
−0.41 −1.18

 (Model-based)

The obtained RCI sets are depicted in Fig. 1. It can be
observed that the proposed direct data-driven approach is
able to generate RCI sets which are of comparable volume to
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TABLE I: Comparison between DD and MB algorithms.

DD: 1-step DD: iterative MB [13]
Volume of C 8.31 9.86 9.50

0 10 20 30 40 50
k

−2

−1

0

1

2

u

Fig. 2: Control input u = Kx trajectories for the computed
state-feedback gain (blue) and input constraints (dashed-red).

those obtained with the model-based method. The main ad-
vantage is that explicit knowledge of model matrices (A,B)
is not required, thus avoiding an additional identification
step. The corresponding volumes of the RCI sets are reported
in Table I, which shows that iterative Algorithm 2 with
dilated LMI conditions generates relatively larger size RCI
sets than those computed with the one-step Algorithm 1,
which indicate that Algorithm 2 is indeed less conservative
for this example. Furthermore, Fig. 1 also shows closed-loop
state trajectories starting from each vertex of the RCI set.
These trajectories are obtained by simulating the true system
in closed-loop with the state-feedback controller u = Kx.
During the closed-loop simulation, a random disturbance
uniformly distributed in the interval [−0.1, 0.1] is acting on
the system at each time instance. The figure shows that
the approach guarantees robust invariance in the presence
of a bounded but unknown disturbance while respecting
the state-constraints. The corresponding input trajectories
computed with the iterative data-driven algorithm are shown
in Fig. 2. The figure shows that the input constraints are also
satisfied. Further analyses on the effect of choosing different
P matrices corresponding to different complexities of the
polytope is presented in the report [18].

VII. CONCLUSIONS

We proposed a direct data-driven approach to compute a
full complexity polytopic RCI set and an associated linear
state-feedback control law. In the proposed algorithm neither
the model of the system is required to be known nor any
identification step is necessary. The algorithm is robust w.r.t.
a set of all feasible models compatible with the available
state-input data and satisfying the disturbance bounds. The
direct data-driven approach is able to generate RCI sets with
sizes that are comparable to that of an approach in which
exact system knowledge is assumed. As a future work, the
proposed approach can be extended to generate RCI sets and
controllers for a more general class of systems, e.g., linear
parameter-varying and non-linear systems.
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knowledge and data for robust controller design. IEEE Transactions
on Automatic Control, pages 1–16, 2022.

[4] A. Bisoffi, C. De Persis, and P. Tesi. Data-based guarantees of set
invariance properties. In Proc. of the 21st IFAC World Congress, pages
3953–3958, Berlin, Germany, 2020.

[5] A. Bisoffi, C. De Persis, and P. Tesi. Controller design for robust
invariance from noisy data. IEEE Transactions on Automatic Control,
68(1):636–643, 2023.

[6] F. Blanchini. Set invariance in control. Automatica, 35(11):1747–1767,
1999.

[7] F. Blanchini and S. Miani. Set-Theoretic Methods in Control.
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