
Optimizing Queues with Deadlines under Infrequent Monitoring

Faraz Farahvash and Ao Tang

Abstract— In this paper, we aim to improve the per-
centage of packets meeting their deadline in discrete-time
M/M/1 queues with infrequent monitoring. More specifi-
cally, we look into policies that only monitor the system
(and subsequently take actions) after a packet arrival. We
model the system as an MDP and provide the optimal
policy for some special cases. Furthermore, we introduce
a heuristic algorithm called ”AB-n” for general deadlines.
Finally, we provide numerical results demonstrating the
desirable performance of ”AB-n” policies.

I. INTRODUCTION

In recent years, there have been a lot of queuing
systems where packets have a deadline to meet [1], [2],
[3]. Such queuing systems are called ”real-time queuing
systems” in the literature [4]. In these systems, packets
missing their deadline are discarded. Thus, using smart
queuing policies to increase the percentage of packets
meeting their deadline is needed.

The classical result proposed by [5] states that
the ”Earliest Deadline First (EDF)” policy minimizes
the percentage of packets missing their deadline in
G/M/c + G queues. There have been numerous pa-
pers analyzing EDF. An approximation performance
analysis is done by [6]. Also, [4] does a heavy traffic
analysis for EDF queues. [7] argues that EDF is not
necessarily optimal for wireless channels where queue
failures can happen. Other related works include but
are not limited to [8], [9], [10], [11], and [12].

A key assumption for the optimality of EDF policies
is that a packet is dropped from the queue (or server)
as soon as its deadline elapses. Enforcing that requires
the policy to constantly monitor the system. This is not
always feasible. In this paper, we will look into cases
where the queuing policy can only monitor the system
infrequently. Infrequent monitoring will result in a
possibility of packets being served past their deadline.
Thus, to prevent that, queue management policies will
have to drop packets before their deadline. However,
by dropping packets prematurely, we can lose packets
that could have made their deadline. Analyzing this
tradeoff is the center of this paper.

More specifically, we will analyze a discrete-time
M/M/1 queue where the policy can only drop packets
after a packet arrival event happens. We choose packet

This work was supported by National Science Foundation (NSF).
Grant number: 2133403

Faraz Farahvash and Ao Tang are with the School of Electrical and
Computer Engineering, Cornell University, Ithaca, NY 14853, USA.
Emails: {ff227,atang}@cornell.edu

arrival as our monitoring trigger for three main rea-
sons: (a) First of all, arrivals at the queue naturally
incur a trigger in the system (no external clocks are
needed). (b) It causes a relatively low frequency of
monitoring. (c) It is not policy or model specific and
can be extended more easily to general G/G/1 queues
(in contrast to non-frequent versions of EDF where the
monitoring occurs after a packet misses its deadline).
We assume all the packets have the same hard deadline
(D). We use two different approaches to this problem.

As a first approach, we write the optimization prob-
lem as a Markov Decision Process (MDP). We find
the optimal policies for small deadlines (D = 2, 3).
We also mention some observations and properties of
the optimal policies. We observe that, in contrast to
frequent modeling case, the decision of dropping a
packet depends on the arrival rate, service rate, and
the ages of packets present at the queue. This increases
the complexity of the optimal policy considerably (as
EDF only needs to keep track of the age of the packet
at the head).

Noting that finding the optimal policy for general
deadline using the MDP approach is inefficient, we will
provide a heuristic policy called ”AB − n”. This policy
reduces the computation complexity by only consider-
ing the first n packets in the queue and maximizing
their chances of meeting their respective deadlines. We
will show that this policy outperforms the previously
proposed algorithms.

The rest of the paper is organized as follows. In
section II, we formulate the problem and discuss the
notion of extended states and infrequent monitoring.
In section III, some previous results (namely EDF and
DPGP) are mentioned. In section IV, we formulate the
MDP for this problem. Section V presents the results
for the optimal policy stemming from the MDP. The
heuristic policy AB − n is introduced in section VI.
Section VII presents some experiments. Section VIII
concludes the paper.

II. PROBLEM FORMULATION

In this section, we formally define the problem. We
will use the conventional discrete-time model for the
M/M/1 queue described in [13]. The time is divided
into time slots of unit duration, and we have the
following rules:

• At each time slot, at most one packet arrival or
service happens. Arrival and service can not occur
at the same time slot.

2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

979-8-3503-1632-2/24/$31.00 ©2024 IEEE 7686

• Events in different time slots are independent.
• At each time slot, an arrival happens with proba-

bility λ. If the queue is not empty, a packet service
happens with probability µ.

Furthermore, all packets have the same hard dead-
line (D). Packets that do not meet the deadline are
rendered pointless. We are trying to maximize the
percentage of packets that meet their deadline.

At each time, the queue is recorded as T =
(T1, ..., TN) where Ti is the age of the ith packet (i.e.,
the time elapsed since its arrival). We assume T1 is the
head of the queue and TN is the tail. This is the same
definition presented at [14] as extensive states.

Finally, unlike previous results (i.e., EDF), the queue
is only monitored after a packet arrival (infrequent
monitoring). In other words, the policy is only allowed
to drop a packet (or packets) after a packet arrives at
the queue. Packets are only dropped from the head of
the queue.

III. PREVIOUS RESULTS

In this section, we will present some previous results
that will serve as points of comparison. More specifi-
cally, we will look into two specific policies (DPGP and
EDF) and explain why these policies are not optimal in
our model.

A. Earliest Deadline First (EDF)
In the real-time queuing literature, [5] provides the

following definition for the Earliest Deadline First (or
Shortest Time to Extinction (STE)) Policies and proves
that EDF is the optimal policy for the discrete-time
G/M/c+G queue.

Definition. A policy is an Earliest Deadline First policy
if (1) at any time, it always schedules the available packet
closest to its deadline, (2) the servers are always busy as
long as there are available packets (there are no forced idle
times), and (3) the packets are discarded (removed from the
queue and server) as soon as their deadline elapses.

Remark. Note that the third condition for EDF policies can
not be enforced with infrequent monitoring (the policy is only
allowed to drop at certain time slots).

Here, we provide an intuitive example to illustrate
the reason why EDF can be sub-optimal with infre-
quent monitoring.
Example. Let’s assume we are looking into the queue
at time slot t. Also, let the packet at the head of the
queue (p1) and the second packet (p2) have k and
k + k′ timeslots till their deadline, respectively. We
are interested in the expected number of the packets
making their deadline out of these two packets (we
ignore the rest of the queue). We want to see whether
dropping the packet at the head of the queue at time t
can increase this probability.

First, we look into the constant monitoring case.
By dropping the packet at the head of the queue at

time t, the second packet will have k + k′ timeslots
to be served. Thus, the expected number of packets
served before their deadline is equal to A = 1 −
(1 − µ)k+k′ . Now, by not dropping the packet, p1 will
have k timeslots to be served. Furthermore, p2 will
have at least k′ timeslots to be served. (because of the
constant monitoring p1 is dropped after k timeslots if
not served.) Hence, the expected number of packets
being served is at least B = 2 − (1 − µ)k − (1 − µ)k′ . It
is easy to see that ∀k, k′ ∈ N, µ ∈ (0, 1), B ≥ A. Thus,
dropping a packet before its deadline never increases
the expectation (regardless of the values of t, k, k′, µ).

Now, we go back into the infrequent monitoring case.
Here, by dropping the packet at the head of the queue
at time t, the desired expected value will be the same
as the constant monitoring case (i.e., A). Finally, if we
decide to not drop the packet at time t, p1 will still have
k timeslots to be served. But contrary to the frequent
monitoring case, p2 can have less than k′ timeslots to
be served (depending on the next arrival and departure
times). Thus, there exist cases where dropping will
increase the expectation. We will inspect these cases
more thoroughly in future sections.

B. Drop Positive Gain Policy (DPGP)

[14] argues that when deciding to drop a packet,
two factors should be considered:

1) The probability of the packet making the deadline
2) The impact of the packet being dropped on the

probability of other packets meeting their respec-
tive deadlines.

Remark. The probability of the ith packet making the
deadline is equal to Iµ(i, D − Ti − i + 1), Where I is the
regularized incomplete beta function [15] (Section 6.6).

To formally compute the trade-off of the two factors,
the paper introduces the concept of gain as follows (The
original definition is for the continuous time queue. We
change the definition to fit the discrete model).

Definition. The gain of dropping the ith packet in state s
is defined as:

gains
i (µ) = −Iµ(i, D − Ti − i + 1) (1)

+
N

∑
j=i+1

(
Iµ(j − 1, D − Tj − j + 2)− Iµ(j, D − Tj − j + 1)

)
Using the gain function defined above and by prov-

ing that the gain function is maximized at the head
of the queue, [14] introduces the Drop Positive Gain
Policy as follows:

”Drop the packet at the head of the queue if and only
if the gains

1(µ) > 0.”

Remark. gain is a myopic concept and ignores future
system evolution (packet arrival, service, or drop). Thus,
DPGP is not the optimal policy.

7687

Now that we have established that the previously
proposed policies are not optimal, we will provide two
different approaches to finding better policies. First, in
section IV, we will try to find the optimal policy by
formulating the queue as an MDP. Next, in section VI,
using the intuition gained from the example above, we
propose a heuristic policy.

IV. QUEUE AS AN MDP

Markov Decision Processes (MDPs) are used for
making a sequence of decisions in situations where
the outcomes are uncertain. This framework can fit the
queue optimization problem that we are analyzing in
this paper. The MDP we use for this problem is an
infinite-horizon MDP where we are trying to maximize
the average reward per stage.

A. General definition

An MDP is defined as M = (S,A, P, r) where, S is
the state space. A is the action space. It maps a state
to admissible actions for that state. P is the transition
function. P : S × A → ∆(S) where ∆(S) is the space
of probability distributions over S. In simple words, P
explains the transition probability from a state and an
action taken when in that state, to a new state. Finally,
r is the reward function. r : S ×A → R. r(s, a) is the
stage reward associated with taking action a in state s.
We will try to optimize the average reward per stage
starting from state s (using policy π), which is defined
as:

Jπ(s) = lim
N→∞

1
N

E

[
N−1

∑
t=0

r(st, at)|π, s0 = s

]
In the next part, we will formulate the problem of max-
imizing the expected percentage of packets meeting the
deadline as an MDP.

B. MDP Design

To derive the MDP for this problem, we will define
each of (S,A, P, r). We also note that state transitions
will happen after a packet arrives, is served, or is
dropped.

1) S: The states are the same as T (extensive states)
with two additional binary bits (ba, br) which are de-
fined as below:

ba =

{
1, If we are allowed to drop packets
0, otherwise

(2)

And:

br =

1, If ba = 0 and the previously served

packet made the deadline
0, otherwise

(3)

In other words, ba accounts for whether or not a packet
service was the reason for the previous state transition
(this will help us define the action space). br shows that

if the previous state transition was caused by a packet
service, whether the packet made the deadline or not
(this will help us define the reward function). Note that
without defining br, we need to record the previous
state to realize whether the previous packet made its
respective deadline. Thus, although the addition of
these two binary bits are not necessary, they greatly
simplify the definition of the action space and the
reward function.

To conclude, state s can be defined as:

s = ((Ts
1 , ..., Ts

n), bs
a, bs

r)

2) A: To define the action space, we will use ba. We
have two possibilities:

• bs
a = 0: If bs

a = 0, a packet service was the reason
for the previous state transition. Thus, we are not
allowed to drop a packet and A(s) = {d̄} Where
d̄ means not dropping a packet.

• bs
a = 1: If bs

a = 1, a packet service was not the
reason for the previous state transition. Thus, we
are allowed to drop a packet and: A(s) = {d̄, d}
Where d̄ means not dropping a packet, and d
means dropping the packet at the head.

3) P: We will first provide the following lemma.

Lemma 1. If the queue is not empty, the interval between
two consecutive state transitions comes from a geometric
distribution with parameter λ + µ and the probability of an
arrival triggering the state transition is λ

λ+µ .

Proof: If the queue is not empty, the probability
of no arrival and no service (failure) in a slot is 1 −
µ − λ. Thus, the probability distribution of the first
success (arrival or packet service) is geom(λ + µ). The
probability of the success being from arrival is λ

λ+µ .

Remark. If the queue is empty, the interval between two
consecutive state transitions comes from a geometric distri-
bution with parameter λ.

To describe the transition function, we condition it
on the action taken:

• a = d: The next state is deterministic and it will be
s′ = ((Ts

2 , . . . , Ts
n), 1, 0) with probability 1.

• a = d̄: Here the next state is stochastic. We have:
– n=0: Then the next state will be s′ = ((0), 1, 0)

with probability 1.
– n > 0: Then using lemma 1, we get that with

probability λ
λ+µ :

s′ = ((Ts
1 + K, ..., Ts

n + K, 0), 1, 0)

where K ∼ geom(λ + µ).
Otherwise, with probability µ

λ+µ :

s′ = ((Ts
2 + K, ..., Ts

n + K), 0, bs′
r)

where K ∼ geom(λ + µ) and:

bs′
r =

{
1, If K ≤ D − Ts

1
0, Otherwise

7688

4) r: The reward function is pretty simple and has
the form of r(s, a) = 2bs

r .
In the next part, we will provide reasoning on the

equivalence of the MDP defined above and the opti-
mization problem itself.

C. On the equivalence of the MDP and original problem
Note that we are optimizing:

Jπ(s) = lim
N→∞

1
N

E

[
N−1

∑
t=0

r(st, at)|π, s0 = s

]
Now, first, note that each packet causes two state
transitions (once with arrival and once with departure).
Thus, asymptotically speaking, if we let the number of
packets till state transition number N be YN , we have:

lim
N→∞

YN
N

=
1
2

and thus, we can rewrite Jπ(s):

Jπ(s) = lim
N→∞

1
2YN

E

[
N−1

∑
t=0

2bst
r |π, s0 = s

]
∑N−1

t=0 bst
r is equal to the number of packets meeting the

deadline till N. Thus:

lim
N→∞

1
YN

E

[
N−1

∑
t=0

bst
r |π, s0 = s

]
= P(meeting the deadline)

Thus, an optimal policy for the MDP problem maxi-
mizes the expected percentage of packets meeting the
deadline. Furthermore, the reward incurred by a policy
on the MDP is the same as the probability of a packet
meeting the deadline if policy π is implemented for the
original problem. Thus, to the extent of our interest,
these two problems are equivalent.

V. MDP OPTIMIZATION

In this section, we present results on the optimal
policies for the MDPs presented in previous sections.

As the number of states is infinite (or with some con-
siderations mentioned in the next part, exponential), it
is not efficient to solve this MDP using methods such as
policy iteration or value iteration. But, we will provide
the optimal policy for some special cases (i.e., D = 2, 3)

A. The case with D=2
Here, we would define the optimal policy for the

special case where the deadline is equal to 2. Any opti-
mal policy would drop the packets that have missed
the deadline (If they are allowed to drop packets).
Furthermore, the queue under any optimal policy will
never have a length of more than 3. Finally, if Ti ≥ D,
we will say Ti = D since we only care that the packet
has missed the deadline. Also, for simplicity define
α = λ + µ.

Using the above considerations, the queue for D=2
will have 9 possible states. We will describe the state
transitions here:

1) ((), 0, 0): The only possible action is not dropping,
and the next state will be ((0), 1, 0) with probabil-
ity 1.

2) ((), 0, 1): The only possible action is not dropping,
and the next state will be ((0), 1, 0) with probabil-
ity 1.

3) ((0), 1, 0): The only possible action is not dropping
(as if we drop the packet here, we will circulate
between state 1 and this state forever, and the
reward would be zero.). We have:

((0), 1, 0) d̄−→

((), 0, 0), wp µ

(1−α)2

α

((), 0, 1), wp µ(2 − α)

((1, 0), 1, 0), wp λ

((2, 0), 1, 0), wp λ
(1−α)

α

4) ((1), 0, 1): The only possible action is not dropping,
and the next state will be:

((1), 0, 1) d̄−→

((), 0, 0), wp µ

(1−α)
α

((), 0, 1), wp µ

((2, 0), 1, 0), wp λ
α

5) ((2), 0, 0): The only possible action is not dropping,
and the next state will be:

((2), 0, 0) d̄−→
{
((), 0, 0), wp µ

α

((2, 0), 1, 0), wp λ
α

6) ((1, 0), 1, 0): This is the most important state, and
we have two possible actions:
• Drop packet 1: The next state will be ((0), 1, 0)

with probability 1.
• Don’t drop: The next will be:

((1, 0), 1, 0) d̄−→

((1), 0, 1), wp µ

((2), 0, 0), wp µ 1−α
α

((2, 1, 0), 1, 0), wp λ

((2, 2, 0), 1, 0), wp λ(1−α)
α

7) ((2, 0), 1, 0): Any optimal policy would drop
packet 1 as it has missed its deadline. Thus, the
next state will be ((0), 1, 0).

8) ((2, 1, 0), 1, 0): Any optimal policy would drop
packet 1 as it has missed its deadline. Thus, the
next state will be ((1, 0), 1, 0).

9) ((2, 2, 0), 1, 0): Any optimal policy would drop
packet 1 as it has missed its deadline. Thus, the
next state will be ((2, 0), 1, 0).

Thus, any policy has to decide which action to take in
state 6. Let’s see what decision DPGP makes. gains

1(µ)
is equal to:

gains
1(µ) = (µ + µ(1 − µ))− µ2 − µ = µ − 2µ2

Thus, DPGP will be:

a(s6) =

{
d, if µ < 0.5
d̄, if µ ≥ 0.5

(4)

7689

To compute the optimal policy, let πd be the station-
ary distribution of the Markov chain induced by policy
d on our MDP. Now, by definition of the reward (r =
2br), the percentage of packets meeting the deadline
will be 2(πd

2 +πd
4). Thus, given λ, µ, the optimal policy

maximizes 2(πd
2 + πd

4) (Call that AR(λ, µ)).
Depending on µ and λ, the optimal policy has one

of these two forms. Either a(s6) = d and we drop at
state 6 or a(s6) = d̄ and we keep the packet.

We will compute the rewards of each policy and
compute the optimal policy.

1) a(s6) = d: If we decide to drop from the head in
state 6, the Markov chain will have the structure
shown in Fig. 1.
The transition matrix would have the format
(deleting the states that we will never enter):

P =

1 : 0 0 1 0 0
2 : 0 0 1 0 0

3 : µ
(1−α)2

α µ(2 − α) 0 λ λ 1−α
α

6 : 0 0 1 0 0
7 : 0 0 1 0 0

To compute the stationary distribution, we must
have πP = π. We have:

π1 + π2 + π3 + π6 + π7 = 1 (5)
π3 = π1 + π2 + π6 + π7 (6)
π2 = µ(2 − α)π3 (7)

Combining equation 5 and 6, we get that π3 = 0.5
and plugging it in equation 7, we get:

AR1(λ, µ) = 2(πd
2 + πd

4) = µ(2 − α) (8)

2) a(s6) = d̄: If we decide not to drop from the head
in state 6, the Markov chain will have the following

1 2

6 3 7

1

1

1 1

(1−α)2µ
α

µ(2 − α)

λ λ 1−α
α

Fig. 1. The Markov chain of a = d

transition matrix 1. Without going into further
detail, we present the stationary distribution for
important states:

π2 =
µ

2
[(2 − α)(1 − λ) + µ], π4 =

µλ

2
We have:

AR2(λ, µ) = µ(2 − α) + λµ[2µ + λ − 1] (9)

Thus, the optimal policy would decide to drop the
packet in state 6 if and only if AR1(λ, µ) > AR2(λ, µ).
This will happen when:

AR1(λ, µ) > AR2(λ, µ) ↔ 2µ + λ < 1

Therefore, the optimal policy is described below:

a∗(s6) =

{
d, if 2µ + λ < 1
d̄, Otherwise

(10)

Fig. 2 shows the boundary of the optimal policy. For
any pair (λ, µ) below the red line, the optimal policy
would drop from the head when at state (1,0). Similarly,
for any pair (λ, µ) above the red line, the optimal policy
wouldn’t drop any packets at state (1,0).

Remark. Note that DPGP is the same as the optimal policy
for λ = 0. This is true as DPGP ignores any effect that a
new arrival has on the system. Thus, for small arrival rates,
the myopic gain computed by DPGP is close to the actual
gain.

1

P =

0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

µ
(1−α)2

α µ(2 − α) 0 0 0 λ λ 1−α
α 0 0

µ
(1−α)

α µ 0 0 0 0 λ
α 0 0

µ
α 0 0 0 0 0 λ

α 0 0
0 0 0 µ µ

(1−α)
α 0 0 λ λ 1−α

α
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

Fig. 2. Optimal policy for D=2

7690

Fig. 3. optimal policy boundary for D=3

B. The case with D=3

Here, we will define the optimal policy for the special
case where the deadline is equal to 3. We have the
same considerations as D=2. Without going into further
detail (for a complete analysis, visit Appendix A in
[16]), we mention that the system will have 20 states,
and the optimal policy should decide in 3 different
states (that are non-trivial) whether to drop from the
head or not drop at all. These states are ((1,0),1,0),
((2,0),1,0), and ((2,1,0),1,0) respectively. We see that,
depending on (λ, µ), the optimal policy has one of the
following forms:
(a) Drops in all of the above states.
(b) Drops in states ((2,1,0),1,0) and ((2,0),1,0).
(c) Only drops in state ((2,1,0),1,0).
(d) Drops in none of the above states.

Fig. 3 shows the boundaries of the optimal policy. For
any pair (λ, µ) below the blue line, the optimal policy
would be (a). For (λ, µ) between red and blue lines,
policy (b) would be optimal. If the point is between
red and yellow lines, we would only drop in the state
((2, 1, 0), 1, 0) (i.e., policy (c)). Finally, if we are above
the yellow line, (d) is the optimal policy.

Alternatively, for any point below the yellow line,
we would drop at state ((2,1,0),1,0). If (λ, µ) is below
the red line, an optimal policy would drop at state
((2,0),1,0), and for all parameters below the blue line,
we would drop at state ((1,0),1,0).

C. On properties of the boundaries

In this section, we will present some key properties
of the boundaries of the optimal policies for general
deadline D. (The boundaries for special cases can be
seen in Fig. 2, 3, and 4)

From now on, for any state s, we will refer to the
boundary point at λ = 0 as M(s). Also, we let µbound
to be the service rate where gains

1(µ
s
bound) = 0.

Theorem 1. For any state s, M(s) = µs
bound.

Proof: If the arrival rate is equal to zero, we have
two important observations:

1) The reward only depends on the packets already
in the system (there will not be packet arrivals).

2) As there are no arrivals in the future, we can
not drop any packets in the future, and thus the
probability of the ith packet making the deadline
is exactly Iµ(i, D − Ti − i + 1) if we decide to keep
the packet at the head and Iµ(i − 1, D − Ti − i + 2)
if we decide to drop. (III-B)

Thus, the M(s) would be the service rate where the gain
is indifferent to the dropping policy at s. In other words
(let Hj = D − Tj − j):

N

∑
j=1

IM(s)(j, Hj + 1) =
N

∑
j=2

IM(s)(j − 1, Hj + 2)

By a little rearrangement, we get:

N

∑
j=2

(
IM(s)(j − 1, Hj + 2)− IM(s)(j, Hj + 1)

)
− IM(s)(1, D − T1) = 0

Which means gains
1(M(s)) = 0 and thus M(s) = µs

bound.
Finally, we will present a conjecture we suspect to be

true regarding the boundary lines.

Conjecture 1. For a given deadline D, non-trivial states
have an ordering. More specifically, let Bs(λ) be the bound-
ary curve for the optimal policy at non-trivial state s. These
curves don’t cross. More precisely:

∄s1, s2 ∈ S, λ < 1 : Bs1(λ) = Bs2(λ), Bs1(λ) ̸= 1 − λ
(11)

VI. HEURISTIC POLICY (AB − n)
As established in the previous section, finding the

optimal policy using the MDP method is not feasible
for larger deadlines. Thus, in this section, we will intro-
duce a heuristic algorithm to approximate the optimal
policy.

To do that, we will look back into the example
provided in section III-A. Recall that we are looking
into the first two packets at the head of the queue
(with k and k + k′ timeslots until expiration), and we
are trying to maximize the expected number of packets
meeting their deadline out of the two packets.

If we decide to drop the packet at the head of the
queue, the expectation is equal to A2(k, k′) = 1 − (1 −
µ)k+k′ . Now, we compute the expectation without drop-
ping the packet. Call this number B2(k, k′). We calculate
this value by conditioning on the next event (arrival or
departure). There are three types of possibilities for the
next event.

1) An arrival event happens before the deadline of
the first packet: In this case, the expected value is
equal to max(A2(k − i, k′), B2(k − i, k′)) where i is
the time of the packet arrival.

7691

2) A departure event happens before the deadline of
the first packet: In this case, the expected value is
equal to 2− (1− µ)k+k′−i where i is the time of the
packet departure.

3) An arrival or departure event happens after the
deadline of the first packet: In this case, the ex-
pected value is equal to 1 − (1 − µ)k+k′−i where i
is the time of the event happening.

Putting all the results above together, we get the defi-
nition of B2(k, k′) in equation 12.

Remark. Note that B2(k, k′) only depends on B2(l, k′) with
l ≤ k. Thus, we can calculate B2(k, k′) without the need to
solve linear equations.

Now, that we have calculated B2(k, k′), we can intro-
duce the ”AB − 2” policy:
AB − 2 Policy: While deciding whether to drop in state
T, the AB − 2 policy will drop the packet if and only
if either T1 ≥ D or |T| > 1 and A2(D − T1, T2 − T1) >
B2(D − T1, T2 − T1).

Remark. If the deadline is equal to 2 (D=2), the AB − 2
policy would drop in state T = (1, 0) (the only nontrivial
state) iff λ+ 2µ < 1 which is the same as the optimal policy.

Note that by extending the number of packets con-
sidered in the expected value, we can improve the
AB − 2 policy (We call it the AB − n policy where
n is the number of packets considered). A3 and B3
for AB − 3 policy can be seen in equations 13 and 14
respectively.

VII. NUMERICAL RESULTS AND EXPERIMENTS

A. The D=4 case
Here, we will experimentally find the optimal policy

for the case where the deadline is equal to 4. In this
case, we have 7 non-trivial states where our policy has
to decide. To find the optimal policy, we implement the
M/M/1 queue with different λ and µ using each policy
and find the policy that maximizes the percentage of
packets meeting their deadline. Fig. 4 shows the bound-
ary of the optimal policies. For any pair (λ, µ) below
each line, the optimal policy would drop from the head
when at that state. For instance, if (λ, µ) is below the
green line, we would drop at state ((3, 1, 0), 1, 0).

B. AB − n with different n values
Fig. 5, compares the performance of AB − n policies

with different values of n for λ = 0.3, µ = 0.2. As
can be seen, the percentage of packages meeting their
deadlines improves by increasing the value of n, but
the rate of improvement decreases as n gets larger.

C. AB − 5 vs DPGP and EDF
Fig. 6 compares the performance of AB − 5 policy

with DPGP and EDF introduced in section III. Both
EDF with frequent and infrequent monitoring are used.
AB − 5 outperforms both DPGP and infrequent EDF

for shorter deadlines. For larger deadlines, the perfor-
mance of DPGP and AB − 5 becomes almost identical.
Generally speaking, we observe that, by increasing the
deadline, DPGP will eventually outperform AB − n
(albeit slightly). We note that in comparison to DPGP,
AB − n policy disregards certain packets (if the queue
length is more than n) to gain farsightedness and
consider all future interactions of the n packets. Thus,
we believe that the above phenomenon happens as a
result of the benefit of farsightedness being outweighed
by the drawbacks caused by disregarding packets.
Hence, it is not surprising that by increasing n this
phenomenon happens later.

VIII. CONCLUSION

In this paper, we looked into discrete time M/M/1
queues where packets have a hard deadline. We as-
sumed that continuous monitoring of the system is not
feasible. Thus, we introduced infrequent monitoring,
where the system is only monitored after a packet
arrival event happens. We tried to maximize the per-
centage of packets meeting their deadline.

We had two approaches to this problem. First, the
queue was modeled as an MDP. We presented the
optimal policy for small deadlines (D=2, 3). Some
properties of the optimal policies were discussed.

As a second approach, we introduced a heuristic
policy (AB − n) which improves the performance of
the queue compared with previous algorithms (DPGP
and EDF). Finally, some numerical simulations were
provided to verify the results.

As a line of future works, this approach can be ap-
plied to latency based utility optimization (cases with-
out a hard deadline). Another natural extension could
be generalizing the results and methods to Geom/G/1
queues. This can be done by recording the number of
timeslots the packet at the head has been served. We
have designed the MDP for this queue but omitted it
in interest of conciseness.

Fig. 4. Optimal policy boundary for D=4

7692

B2(k, k′) =
k

∑
i=1

λ(1 − λ − µ)i−1 max(A2(k − i, k′), B2(k − i, k′)) +
k

∑
i=1

µ(1 − λ − µ)i−1(2 − (1 − µ)k+k′−i)

+
k+k′

∑
i=k+1

(µ + λ)(1 − λ − µ)i−1(1 − (1 − µ)k+k′−i)

(12)

A3(k1, k2, k3) = max(A2(k1 + k2, k3), B2(k1 + k2, k3)) (13)

B3(k1, k2, k3) =
k1

∑
i=1

λ(1 − λ − µ)i−1 max (A3(k1 − i, k2, k3), B3(k1 − i, k2, k3)) +
k1

∑
i=1

µ(1 − λ − µ)i−1(1 + B2(k1 + k2 − i, k3))

+
k1+k2

∑
i=k1+1

λ(1 − λ − µ)i−1 max (B2(k1 + k2 − i, k3), A2(k1 + k2 − i, k3)) +
k1+k2

∑
i=k1+1

µ(1 − λ − µ)i−1B2(k1 + k2 − i, k3)

+
k1+k2+k3

∑
i=k1+k2+1

λ(1 − λ − µ)i−1(1 − (1 − µ)k1+k2+k3−i) +
k1+k2+k3

∑
i=k1+k2+1

k1+k2+k3

∑
j=i+1

(µ2 + µλ)(1 − λ − µ)j−2(1 − (1 − µ)k1+k2+k3−j)

(14)

Fig. 5. AB − n Performance

REFERENCES

[1] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better
never than late: Meeting deadlines in datacenter networks,” in
Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM
’11, (New York, NY, USA), p. 50–61, Association for Computing
Machinery, 2011.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center tcp
(dctcp),” in Proceedings of the ACM SIGCOMM 2010 Conference,
SIGCOMM ’10, (New York, NY, USA), p. 63–74, Association for
Computing Machinery, 2010.

[3] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware dat-
acenter tcp (d2tcp),” in Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Proto-
cols for Computer Communication, SIGCOMM ’12, (New York, NY,
USA), p. 115–126, Association for Computing Machinery, 2012.

[4] Łukasz Kruk, J. Lehoczky, K. Ramanan, and S. Shreve, “Heavy
traffic analysis for EDF queues with reneging,” The Annals of
Applied Probability, vol. 21, no. 2, pp. 484 – 545, 2011.

[5] S. S. Panwar and D. Towsley, “On the optimality of the ste rule
for multiple server queues that serve,” tech. rep., USA, 1988.

[6] J. Hong, X. Tan, and D. Towsley, “A performance analysis of
minimum laxity and earliest deadline scheduling in a real-
time system,” IEEE Transactions on Computers, vol. 38, no. 12,
pp. 1736–1744, 1989.

[7] S. Shakkottai and R. Srikant, “Scheduling real-time traffic with
deadlines over a wireless channel,” in Proceedings of the 2nd ACM
international workshop on Wireless mobile multimedia, pp. 35–42,
1999.

[8] J. R. Haritsa, M. Livny, and M. J. Carey, “Earliest deadline
scheduling for real-time database systems,” tech. rep., Univer-

Fig. 6. AB − n performance compared with previous algorithms

sity of Wisconsin-Madison Department of Computer Sciences,
1991.

[9] L. Zhang, Y. Cui, J. Pan, and Y. Jiang, “Deadline-aware trans-
mission control for real-time video streaming,” in 2021 IEEE
29th International Conference on Network Protocols (ICNP), pp. 1–
6, IEEE, 2021.

[10] L.-O. Raviv and A. Leshem, “Maximizing service reward for
queues with deadlines,” IEEE/ACM Transactions on Networking,
vol. 26, no. 5, pp. 2296–2308, 2018.

[11] B. Doytchinov, J. Lehoczky, and S. Shreve, “Real-time queues in
heavy traffic with earliest-deadline-first queue discipline,” The
Annals of Applied Probability, vol. 11, no. 2, pp. 332 – 378, 2001.

[12] R. Atar, A. Biswas, and H. Kaspi, “Fluid limits of g/g/1+g
queues under the nonpreemptive earliest-deadline-first disci-
pline,” Mathematics of Operations Research, vol. 40, no. 3, pp. 683–
702, 2015.

[13] S. Mohanty and W. Panny, “A discrete-time analogue of the
m/m/1 queue and the transient solution: a geometric ap-
proach,” Sankhyā: The Indian Journal of Statistics, Series A,
pp. 364–370, 1990.

[14] F. Farahvash and A. Tang, “Delay performance optimization
with packet drop,” in 2023 59th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp. 1–7, 2023.

[15] M. Abramowitz, I. A. Stegun, and R. H. Romer, “Handbook
of Mathematical Functions with Formulas, Graphs, and Mathe-
matical Tables,” American Journal of Physics, vol. 56, pp. 958–958,
10 1988.

[16] F. Farahvash and A. Tang, “Optimizing queues with deadlines
under infrequent monitoring,” 2024. arXiv 2403.14525.

7693

