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Abstract— Chance-constrained optimization problems, an
important subclass of stochastic optimization problems, are of-
ten complicated by nonsmoothness, and nonconvexity. Thus far,
non-asymptotic rates and complexity guarantees for computing
an ε-global minimizer remain open questions. We consider
a subclass of problems in which the probability is defined
as P {ζ | ζ ∈ K(x)}, where K is a set defined as K(x) =
{ζ ∈ K | c(x, ζ) ≤ 1}, c(x, •) is a positively homogeneous
function for any x ∈ X , and K is a nonempty and convex set,
symmetric about the origin. We make two contributions in this
context. (i) First, when ζ admits a log-concave density on K,
the probability function is equivalent to an expectation of a
nonsmooth Clarke-regular integrand, allowing for the chance-
constrained problem to be restated as a convex program. Under
a suitable regularity condition, the necessary and sufficient
conditions of this problem are given by a monotone inclusion
with a compositional expectation-valued operator. (ii) Second,
when ζ admits a uniform density, we present a variance-
reduced proximal scheme and provide amongst the first rate
and complexity guarantees for resolving chance-constrained
optimization problems.

I. INTRODUCTION

The chance-constrained optimization problem has been
studied extensively over the last 70 years [1]. A prototypical
instance, denoted by (CCOPT), is defined as

min
x∈X

{f(x) | P { ζ | c(x, ζ) ≤ 1 } ≥ (1− ε)} , (CCOPT)

where f : X → R is a continuous function, c : X ×
Rd → Rm is a vector function, P is the given probability
measure, and ε is a positive scalar. Chance-constrained
programming [1] has found utility in a breadth of plan-
ning, operational, and financial settings (cf. [2]) as well
as control and decision theory [3]. Computational resolu-
tion has been roughly partitioned into three sub-areas: (i)
Sequential unconstrained minimization (SUMT) techniques
utilize the nonlinear programming approach as represented
by SUMT [4] and require gradients of the probability
function [5]. (ii) Monte-Carlo sampling methods rely on
recasting the probability of interest as an expectation of a
(discontinuous) indicator function [6]. Recent efforts have
employed smoothing to address the discontinuity [7] while
convergence guarantees to Clarke-stationary points have been
proven via variational analysis. (iii) Integer programming
techniques [8] have led to a sample-average approxima-
tion (SAA) framework for chance-constrained optimization,
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where the SAA problem requires solving an integer program;
such estimators converge a.s. to the global minimizers of the
original problem [8]. Yet a key gap persists.

Gap. To the best of our knowledge, there are no non-
asymptotic rate and overall complexity guarantees for
computing an ε-global minimizer of (CCOPT).

The above gap motivates the present work, which repre-
sents a comprehensive generalization of our prior work [9]
focusing on probability maximization problems. The main
contributions of the present work are as follows.

(I) When c(•, ζ) abides by a suitable algebraic structure
and ζ admits a log-concave density on a convex set K
symmetric about the origin, by leveraging a layer-cake
representation, we show that (CCOPT) is equivalent to a
convex stochastic optimization problem with a compositional
expectation-valued constraint. In particular, this expectation
is with respect to a suitably defined Gaussian density.

(II) Under a suitable regularity condition, the necessary
and sufficient conditions of the aforementioned optimization
problem can be viewed as a monotone stochastic inclu-
sion. A variance-reduced inexact stochastic proximal-point
framework is presented for resolving such a problem when
ζ admits a uniform density and is supported by rate and
complexity guarantees.

The remainder of this paper is organized into five sections.
Section II provides some preliminary background while in
Section III, we prove that under a log-concavity assumption
on the density, the necessary and sufficient conditions of
(CCOPT) are given by a monotone inclusion with a com-
positional expectation-valued operator. A variance-reduced
proximal scheme with rate and complexity guarantees is
derived in Section IV.

II. PRELIMINARIES

A. Background

Our approach relies on extending the framework presented
in [9] for the probability maximization problem, defined as

max
x∈X

P {ζ | ζ ∈ K(x) } , where (1)

K(x) , { ζ | c(x, ζ) ≤ 1 } (2)

and c : X × Rn → Rn1 is a real-valued map. Our
prior research [9] relied on assuming that ζ was uniformly
distributed on a compact and convex set, symmetric about the
origin (such as a sphere or an ellipsoid). In this paper, we
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introduce a crucial generalization to symmetric log-concave
densities from uniform densities.

Definition 1 (Sym. log-concavity). A function h : Rn →
[0,∞) is sym. log-concave if for any u, v ∈ Rn, λ ∈ [0, 1],
h(u) = h(−u) and h((1−λ)u+λv) ≥ [h(u)]1−λ[h(v)]λ.�

This generalization complicates matters significantly since
a key requirement of our prior work is the positive homo-
geneity of c(x, •) for any x. This requirement is crucial in
leveraging our claim building our equivalence claim. Before
continuing, we recall the definition of positive homogeneity.

Definition 2 (Positive Homogeneity). A continuous function
h : Rn → R is called positively homogeneous function
(PHF) with degree p ∈ R if it is a nonnegative function
and h(αx) = αph(x) for all α > 0 and all x ∈ Rn. �

Our analysis closely relies on leveraging the Minkowski
functional of K, defined next.

Definition 3 (Minkowski Functional). Let the set K ⊂ Rn.
Then, the Minkowski functional associated with the set K,
denoted by ‖ • ‖K, is defined as follows for any ζ ∈ K.

‖ζ‖K , inf
{
t > 0 | ζt ∈ K

}
. �

Recall that ‖ • ‖K defines a norm when K is compact,
convex and symmetric about the origin. For instance, if K is
the unit ball in Rn, then the Minkowski functional reduces
to ‖ • ‖2 in Rn i.e. ‖ζ‖K = ‖ζ‖2. The class of symmetric
log-concave distributions is a large class that includes many
commonly used distributions such as Gaussian, uniform over
convex symmetric sets, Laplace, and Logistic. Next, we
discuss the avenue adopted for probability maximization.

B. Probability maximization

In this subsection, we define the set K(x) as

K(x) , { ζ | c(x, ζ) ≤ 1 } , (3)

where for i = 1, · · · , n1, c̃i(x, ζ) is a positively homoge-
neous function with degree p for any x ∈ X and c is defined
as c(x, ζ) , max

i∈{1,...,n1}
c̃i(x, ζ). By the definition of c, we

have that c(x, •) is a positively homogeneous function of
degree p for any x ∈ X . In prior work [9], we considered
the following probability maximization problem.

max
x∈X

f(x), where f(x) , P { ζ ∈ K | ζ ∈ K(x) } . (4)

The above probability can be expressed as an expectation
with respect to a particular density by leveraging a result
relating the integral over a set defined by the intersection of
inequalities specified by PHFs to a distinct integral.

Lemma 1. [10, Cor. 2.3] Let h be a positively ho-
mogeneous function of degree p and let r1, . . . , r` be
PHFs of degree 0 6= t ∈ R. Let Ψ be a bounded

set defined as Ψ , {ζ | rk(ζ) ≤ 1, k = 1, · · · , ` } . If∫
Rn |h(ξ)| e−max{r1(ξ),...,r`(ξ)} dξ <∞, then∫
Ψ

h(ζ) dζ = 1
Γ(1+(n+p)/t)

∫
Rn
h(ξ)e−max{r1(ξ),...,r`(ξ)} dξ.

In [9], when ζ is uniformly distributed on K, the above
result allowed for relating the probability defined in (4) to an
expectation of a continuous (Clarke-regular) integrand with
respect to a suitably density, as specified next. This contrasts
with standard approaches where probabilities can be cast as
expectations of (discontinuous) indicator functions.

Theorem 1. Let ζ be uniformly distributed on the set K,
where K is a closed, convex, and compact set, symmetric
about the origin. Let ξ be a random vector whose support is
the whole space Rn, i.e. pξ(ξ) > 0 for all ξ ∈ Rn. Define
the continuous function F̃unif(•, ξ) as

F̃unif(x, ξ) , 1
vol(K)Γ(1+d/p)

1
pξ(ξ)

e−max{c(x,ξ),‖ξ‖pK}, (5)

where c(x, ζ) , max
i=1,2,...,n1

c̃i(x, ζ). Then

P {ζ | ζ ∈ K(x)} = Eξ
[
F̃unif(x, ξ)

]
. �

We now articulate the gaps in our prior work.

(a) Distributional assumptions. Prior work required
ζ to be uniformly distributed on K and no direct
extension to generalizations (such as log-concave
distributions) was unavailable.
(b) Probabilistic constraints. Prior work focused
on maximizing the probability, defined in (4). By
observing that a global maximizer of (4) can
be obtained by minimizing a convex composition
of E

[
F̃ unif(x, ξ)

]
, a regularized variance-reduced

scheme is developed. Our interest is in obtaining
a global minimizer of (CCOPT), a probabilistically
constrained problem and a generalization of (4).

III. LOG-CONCAVE GENERALIZATIONS
In this section, we develop a convex representation for

chance-constrained optimization problems characterized by
log-concave, rather than uniform, densities. The neces-
sary and sufficient conditions of optimality of the chance-
constrained problem can be cast as a monotone stochastic
inclusion. Throughout this section, we impose the following
requirement on the density of the random variable ζ.

Assumption 1. The density of ζ, denoted by pζ , is log-
concave and symmetric about the origin. Furthermore, let
β , max

ζ
pζ(ζ) = pζ(0).

Let the super-level set of pζ be defined as S(τ) ,
{ ζ | pζ(ζ) ≥ τ } for some τ > 0. For τ ∈ (0, β), S(τ) is
compact, convex and symmetric about the origin. Suppose
the indicator function of the set S(τ) is defined as

1S(τ)(ζ) ,

{
1 if ζ ∈ S(τ)

0 if ζ /∈ S(τ).

6296



We first show that the probability P [ ζ | ζ ∈ K(x) } can be
expressed as an expectation of a continuous integrand when ζ
has a log-concave density. We begin by assuming that m = 1
in the definition of c, i.e. c(x, ζ) = c̃1(x, ζ), where c̃1(x, ζ)
is defined as

c̃1(x, ζ) , |ζ>x|. (6)

Remark 1. We should note at this point that a broad range
of probabilistic constraints involving linear functions can be
formulated using modifications of the function above.

Theorem 2. Suppose Assumption 1 holds and c̃ is defined
as (6). Then P { ζ | ζ ∈ K(x) } = Eξ,t

[
F̃ (x, ξ, τ)

]
,

where F̃ : Rn × Rn → R is defined as

F̃ (x, ξ, τ) , Cτ (2π)n/2e−max{|ξTx|2,‖ξ‖2S(τ)}+
‖ξ‖2S(τ)

2

and E
[
F̃ (x, ξ, τ)

]
denotes the expectation of F̃ (x; ξ, τ)

with respect to joint distribution of ξ and τ , denoted by p̃ξ,τ

and defined as p̃ξ,τ (ξ, τ) , 1
β(2π)n/2Dτ

e
−‖ξ‖2S(τ)

2 , where Dτ

is a positive scalar such that
∫

(0,β]

∫
Rn

1
(2π)n/2Dτ

e
−‖ξ‖2S(τ)

2 =

1 and Cτ , CDτ , where C , 1
Γ(1+n/2) , and the random

parameter τ has a density given by p̃τ (τ) , 1
β , and β > 0.

Proof. Since pζ(z) ≥ 0 for any z, attaining its maximum at

β ,

(
max
z∈Rn

p(z)

)
= p(0) as a result of the symmetric

nature of the density function pz. Since K is defined as
K(x) ,

{
ζ | 1− |ζ>x| ≥ 0

}
, it follows that

P { ζ | ζ ∈ K(x) } =

∫
K(x)

pζ(ζ)dζ

=

∫
K(x)

∫
[0,β]

1S(τ)(ζ) dτ dζ =

∫
[0,β]

∫
K(x)

1S(τ)(ζ) dζ dτ

=

∫
[0,β]

∫
K(x)∩S(τ)

1 dζ dτ,=

∫
(0,β]

∫
K(x)∩S(τ)

1 dζ dτ,

where second equality follows from the Fubini-Tonelli The-
orem for interchanging the order of the integration. Since
the super-level sets S(τ) are compact (since τ > 0), convex
and symmetric, the Minkowski functional ‖•‖S(τ) associated
with these super-level sets defines a norm. Therefore, it is a
PHF and by the definition of the Minkowski functional,

ζ ∈ S(τ) ⇐⇒ ‖ζ‖S(τ) ≤ 1,

for some τ > 0. Then it follows that

K(x) ∩ S(τ) =
{
ζ | |ζ>x| ≤ 1

}
∩ { ζ | ζ ∈ S(τ) }

=
{
ζ | |ζ>x| ≤ 1

}
∩
{
ζ | ‖ζ‖S(τ) ≤ 1

}
=
{
ζ | |ζ>x|2 ≤ 1

}
∩
{
ζ | ‖ζ‖2S(τ) ≤ 1

}
=
{
ζ | max

{
|ζ>x|2, ‖ζ‖2S(τ)

}
≤ 1

}
.

If g is defined as g(x, ζ) , max
{
|ζ>x|2, ‖ζ‖2S(τ)

}
and

Λ(x, τ) = K(x) ∩ S(τ), we may invoke Lemma 1 by noting

that Λ(x, τ) is a bounded set since τ ∈ (0, β), which implies
that S(τ) is a bounded set. Consequently,∫

(0,β]

∫
K(x)∩S(τ)

dζ dτ =

∫
(0,β]

∫
Rn e

−g(x,ξ)dξ dτ

Γ(1+n/2))

=

∫
(0,β]

∫
Rn

(
Cτ (2π)n/2e−max{|ξ>x|2,‖ξ‖2S(τ)}+

‖ξ‖2S(τ)
2

)

×
(

1
β

1
Dτ,β(2π)n/2

e−
‖ξ‖2S(τ)

2

)
dξ dτ

=

∫
(0,β]

∫
Rn
F̃ (x, ξ, τ)p̃ξ,τ (ξ, τ)dξdτ = Eξ,τ

[
F̃ (x, ξ, τ)

]
,

where Dτ is chosen such that p̃ξ,τ is a density, i.e.∫
(0,β]

∫
Rn
p̃ξ,τ (ξ, τ)dξdτ = 1.

We observe that F (•, ξ, τ) can be proven to be Clarke-
regular as done in our prior work [9], which in turn allows for
claiming the interchange ∂E[F̃ (x, ξ, τ)] = E[∂F̃ (x, ξ, τ)].
We now investigate the development of a convex represen-
tation of the chance-constrained problem by first recalling a
result from the study of convex measures [11, Lemma 6.2].

Lemma 2. Consider an α-concave symmetric probability
measure P and let K be defined as (2). Then for any α ≥
−1, d is convex on Rn, where d(x) , 1

P{ ζ | ζ ∈K(x) } .�

Consequently, a reformulation of (CCOPT), given by
(CCP1), is indeed a convex optimization problem when f
is convex on X and h(x) = 1

Eξ,τ [ F̃ (x,ξ,τ) ]
− 1

1−ε .

min
x∈X

{f(x) | h(x) ≤ 0} (CCP1)

As a result, under a suitable regularity condition, x∗ is the
optimal solution of (CCP1) if and only if (x∗, λ∗) is primal-
dual solution of the following system, where h is a scalar-
valued function.

0 ∈ ∇xf(x) + λ∂xh(x) +NX (x)

0 ≤ λ ⊥ h(x) ≤ 0.
(7)

In fact, (7) can be cast as an inclusion, defined as

0 ∈ ∇xf(x) + λ∂xh(x) +NX (x)

0 ∈ −h(x) +NR+
(λ),

(SMI)

and compactly representable as 0 ∈ T (z), where

z = (x;λ) and T (z) , {∇xf(x) + λ∂xh(x) +NX (x)}
×
{
−h(x) +NR+

(λ)
}
. (8)

Note that the interchangeability result allows us to claim that
∂h(x) = − E[G̃(x,ξ,τ)]

(E[F̃ (x,ξ,τ)])2
where G̃(x, ξ, τ) ∈ ∂F̃ (x, ξ, τ) and

∂[•] represents the Clarke subdifferential when the argument
is not necessarily convex. Our next result formalizes the
relationship between (CCOPT), (CCP1), and the necessary
and sufficient optimality conditions of the latter.

Theorem 3. Consider (CCOPT) where X is a closed convex
set, f : X → R is a smooth convex function, c(x, ζ) ,
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∣∣ ζ>x∣∣, and K is defined as (2). Suppose Assumption 1 holds
and there exists an x̂ such that P

{
ζ |

∣∣ ζ>x∣∣ ≤ 1
}
> (1−

ε). Then (CCOPT) is equivalent to (CCP1) and x̄ is a solution
of (CCP1) if and only if (x̄, λ̄) is a solution of (7). �

Proof sketch. It can be seen that (CCP1) is a simple reformu-
lation of (CCOPT) while convexity of (CCP1) follows from
Lemma 2. Under the prescribed Slater regularity condition,
the KKT conditions are necessary and sufficient. �

Next, we present a scheme for resolving (CCOPT), but
restricted to settings where ζ is uniformly distributed on K.
Consequently, h(x) , 1/E[F̃ (x, ξ)].

IV. A VARIANCE-REDUCED PROXIMAL SCHEME

A. Proximal-point framework

One approach for resolving a deterministic monotone
inclusion is the proximal-point algorithm (PPA) proposed by
Rockafellar [12]. First, we observe that the map T , defined
in (8), is monotone (proof omitted). It may be recalled that
the resolvent operator of a monotone operator T , defined as
JTα , (I + αT )−1, satisfies[

z̃ = JTα (z)
]
≡

[
0 ∈ T (z̃) + 1

α (z̃− z)
]
. (9)

Challenges arising in employing a proximal-point framework
include the computation of the following in finite time: (i) the
resolvent JTα (z) = (I + αT )−1(z); (ii) an unbiased evalua-
tion and subgradient of h where h(x) = 1

E[F̃ (x,ξ)]
− 1

1−ε .
To this end, a variance-reduced inexact variant proximal-
point framework (VR-IPP) is proposed, necessitating the
generation of a sequence {zk} such that each iterate is an
ek-approximate evaluation of the resolvent operator, leading
to the following update rule, given z0.

zk+1 := JTαk(zk) + ek, k ≥ 0. (VR-IPP)

If ek ≡ 0 for all k, (VR-IPP) reduces to the exact
proximal-point method. Such a framework has been proposed
in [13] to resolve monotone inclusion problems when T
is an expectation-valued set-valued operator and JTαk(zk) is
approximated via Monte-Carlo sampling, contributing to the
random error ek. In this particular setting, T , as defined in
(8), is a compositional expectation-valued map. We compute
a an approximate solution of JTαk(zk) (or equivalently a zero
of T (•) + 1

αk
(z − zk) by generating a sequence {yjk}

Mk
j=1,

as per the following update rule for j = 1, · · · ,Mk, where
ψ(r) , 1/r, yjk = (xjk;λjk), and y0

k = zk−1.

xj+1
k := ΠX

[
xjk − γj

(
∆xkj +

xkj−xk
αk

)]
, (10)

λj+1
k := Π+

[
λjk − γj

(
∆λkj +

λjk−λk
αk

) ]
, (11)

where ũjk , ṽjk + 1
αk

(zk,j − zk), ṽjk ,

[
∆xjk
∆λjk

]
(12)

=

∇xf(xjk) + λjk

(∑Nj
`=1 G̃(xjk,ξ

`
k,j)

)
ψ′εj

(F̄Nj (xjk))

Nj

−hNj ,εj (x
j
k)

 , (13)

G̃(xjk, ξ
`
k,j) ∈ ∂xF̃ (xkj , ξ

k
j ), ψ′ε(r) = −1

r2+ε , (14)

h̄Nj ,εj (x
j
k) =

(
1

F̄Nj (xjk) +εj
− 1

1−ε

)
, (15)

and F̄Nj (x
j
k) =

∑Nj
`=1 F̃ (xjk,ξ

`
k,j)

Nj
.

Moreover, the strongly monotone inclusion problem, given
by (9), can be formulated as

0 ∈ ∇xf(x) + λ∂xh(x) +NX (x) + 1
αk

(x− xk)

0 ∈ −h(x) +NR+(λ) + 1
αk

(λ− λk), (SMI(zk))

is equivalent to the variational inequality problem
VI(Z, H(•, zk)) where Z , X × R+ and

H(•, zk) ,

[
∇xf(x) + λ∂xh(x)

−h(x)

]
+ 1

αk

[
x− xk
λ− λk

]
. (16)

Recall that VI(Z, H(•, zk)) requires (u∗k, z
∗
k) such that

(z− z∗k)
>
u∗k ≥ 0, ∀ z ∈ Z, (17)

where u∗k ∈ H(z∗k, zk). However, ũjk is not an unbiased
evaluation of H(yjk, zk) since ṽjk is not an unbiased evalu-
ation of T (yjk), where

ṽjk = v̄jk + wj
k =

[
∇xf(xjk) + λjkG(xjk)ψ′(F (xjk))

−h(xjk)

]
︸ ︷︷ ︸

, v̄jk

(18)

+

λjk (∑Nj
`=1 G̃(xjk,ξ

`
k,j)

Nj
ψ′εj (F̄Nj (x

j
k))−G(xjk)ψ′(F (xjk))

)
−h̄Nj ,εj (x

j
k) + h(xjk)


︸ ︷︷ ︸

,wjk

,

F (x) = E
[
F̃ (x, ξ)

]
, G(x) ∈ ∂xE

[
F̃ (x, ξ)

]
. (19)

We close by providing a formal statement in Algorithm 1.

Algorithm 1 Variance reduced proximal-point (VR-SPP)

Require: Given K, {αk}K−1
k=0 , {Mk}K−1

k=0 , {γj}
Mk
j=1, k := 0, z0 := (x0;λ0)

where x0 ∈ X , λ0 ≥ 0.

while k < K do . Step 1
Let y0

k = zk .
Generate {yjk}

Mk−1

j=1 by (10)–(11)
Let zk+1 = yk .
Set k : k + 1 and go to step 1.

end while

B. Analysis of moments

In this subsection, we analyze the moment properties of
wj
k. By invoking (18),

‖wj
k‖

2 ≤ (λjk)2‖wj
k,G‖

2 + ‖wj
k,h‖

2

≤ ‖yjk‖
2‖wj

k,G‖
2 + ‖wj

k,h‖
2, where (20)

wj
k,G , ḠNj (x

j
k)ψ′εj (F̄Nj (x

j
k))−G(xjk)ψ′(F (xjk)), (21)

wj
k,h , −h̄Nj ,εj (x

j
k) + h(xjk), (22)

h̄Nj ,εj (x
j
k) is defined in (15) and ḠNj (x

j
k) =∑Nj

`=1(G̃(xjk,ξ
`
k,j))

Nj
. Prior to deriving a bound on the

conditional second moments, we define the σ-algebra Fk
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for k ≥ 1 as the history up to iteration k as Fk = Fk−1 ∪{
{ṽ`k−1,0}

N0−1
`=0 , · · · , {ṽ`k−1,Nk−1−1}

Nk−1−1
j=0

}
, where F0 =

{x0, λ0} and ṽj,`k ,
{
F̃ (xjk, ξ

`
k,j)} ∪ {G̃(xjk, ξ

`
k,j)
}

. More-
over, the σ-algebra Fk,j at inner iteration j ≥ 1 is defined
as Fk,j , Fk−1 ∪

{
{ṽ`0,k}

N0−1
`=0 , · · · , {ṽ`j−1,k}

Nj−1−1
`=0

}
.

Lemma 3. (Bounds on wj
k,G and wj

k,h) Suppose wj
k,G and

wj
k,h are defined as (21) and (22), respectively. Suppose

E
[
‖G(xjk, ξ)‖ |Fk,j

]
≤ M2

G and |F̃ (x, ξ)| ≤ MF for any

x ∈ X , ξ ∈ Ξ. Suppose εj = N
− 1

4
j and F (x) ≥ εF̃ for any

x ∈ X . Then for any k, j,

E
[
‖wj

k,G‖
2 | Fk,j

]
≤ ν2

G√
Nj

and E
[
‖wj

k,h‖
2 | Fk,j

]
≤ ν2

h√
Nj

hold almost surely, where ν2
g ,

C2K(2π)nEp̃[‖ξ‖2]
e , ν2

h =
ν2
F̃

ε2
F̃

+

1
ε4
F̃

, ν2
F̃
, 2(C2

K(2π)n + 1), and ν2
G ,

3ν2
g

ε2h
+ M2

G
24ν2

h

ε4
F̃

+

6(M2
F+1)ν2

f

ε4
F̃

+
M2
G

ε8
F̃

. �

Lemma 4. Consider v̄jk as defined in (18). Then there exist
positive scalars Cv, Dv such that for any k, j ≥ 1,

E
[
‖v̄jk‖

2 | Fk,j
]
≤ Cv‖yjk‖

2 +Dv, a.s. � (23)

Suppose y∗k denotes a solution of VI(Fk(•, zk),Z). Then
we may derive the following conditional bounds on ‖ũjk‖2
and ‖y∗k − zk‖2, respectively for any k, j ≥ 1.

Lemma 5. Consider ũjk and ‖y∗k − zk‖2 for any k, j ≥ 1.
Then the following hold almost surely.

E
[
‖ũjk‖

2 | Fk,j
]
≤
(

6Cv + 3
α2
k

+
24ν2

G√
Nj

)∥∥∥yjk − zk

∥∥∥2

(24)

+

(
6Cv +

24ν2
G√
Nj

)
‖zk‖2 +

18ν2
G√
Nj
‖y∗k‖2 + 3Dv + 3

ν2
h√
Nj
,

E
[
‖y∗k − zk‖2 | Fk

]
≤ 8‖zk‖2 + 8‖z∗‖2. � (25)

We now derive a recursion for E[ ‖yjk − y∗k‖2 | Fk ],
allowing us to obtain an error bound for the resolvent.

Proposition 1. Consider a sequence {yjk} generated for
computing an approximate solution of VI(Z, Fk(•, zk)) with
εj = N

−1/4
j and Nj = dγ−2

j e for any j. Then for any j, the
following holds a.s. .

E
[ ∥∥∥yj+1

k − y∗k

∥∥∥2

| Fk
]
≤ (1− βj)E

[
‖yjk − y∗k‖2 | Fk

]
+ (8δj + εj)‖zk‖2 + ϕj + 8δj‖z∗‖2,

where βj , δj , εj , and ϕj are defined as (27)–(32). �

Proof. By definition of the update rule (10)–(11), we

may derive a bound on
∥∥∥yj+1

k − y∗k

∥∥∥2

by invoking non-
expansivity of the projection operator, strong monotonicity,

and the property that y∗k is a solution of VI(Z, Fk(•, zk)).∥∥∥yj+1
k − y∗k

∥∥∥2

=
∥∥∥ΠY

[
yjk − γjũ

j
k

]
− y∗k

∥∥∥2

≤
∥∥∥yjk − γjũjk − y∗k

∥∥∥2

≤ ‖yjk − y∗k‖2 + γ2
j ‖ũ

j
k‖

2

− 2γj (yjk − y∗k)>(ūjk − u∗k)︸ ︷︷ ︸
≥ 1
αk
‖yjk−y

∗
k‖2

−2γj (yjk − y∗k)>u∗k︸ ︷︷ ︸
≥ 0

+
γj
αk
‖yjk − y∗k‖2 + αkγj‖wj

k‖
2.

=⇒
∥∥∥yj+1

k − y∗k

∥∥∥2 (20)
≤
(

1− 2γj
αk

+
γj
αk

)
‖yjk − y∗k‖2

+ γ2
j ‖ũ

j
k‖

2 + αkγj‖yjk‖
2‖wj

k,G‖
2 + αkγj‖wj

k,h‖
2

≤
(

1− γj
αk

)
‖yjk − y∗k‖2 + γ2

j ‖ũ
j
k‖

2 + 2αkγj‖yjk − y∗k‖2

× ‖wj
k,G‖

2 + 2αkγj‖y∗k‖2‖w
j
k,G‖

2 + αkγj‖wj
k,h‖

2

where ũjk = ūjk + wj
k. By taking conditional expectations

with respect to Fk,j , we obtain the following sequence of
inequalities.

E
[ ∥∥∥yj+1

k − y∗k

∥∥∥2

| Fk,j
]
≤
(

1− γj
αk

)
‖yjk − y∗k‖2

+ γ2
jE
[
‖ũjk‖

2 | Fk,j
]

+ αkγjE
[
‖wj

k,h‖
2 | Fk,j

]
+ 2αkγj

(
‖yjk − y∗k‖2 + ‖y∗k‖2

)
E
[
‖wj

k,G‖
2 | Fk,j

]
Lemma 3
≤

(
1− γj

αk

)
‖yjk − y∗k‖2 + γ2

jE
[
‖ũjk‖

2 | Fk,j
]

+
2αkγjν

2
G√

Nj
‖yjk − y∗k‖2 +

2αkγjν
2
G√

Nj
‖y∗k‖2 +

αkγjν
2
h√

Nj

=

(
1− γj

αk
+

2αkγjν
2
G√

Nj

)
‖yjk − y∗k‖2

+ γ2
jE
[
‖ũjk‖

2 | Fk,j
]

+
2αkγjν

2
G√

Nj
‖y∗k‖2 +

αkγjν
2
h√

Nj
. (26)

Consequently, we have the following bound.

E
[ ∥∥∥yj+1

k − y∗k

∥∥∥2

| Fk,j
]

(26),(24)
≤

(
1− γj

αk
+

2αkγjν
2
G√

Nj
+ 2γ2

j

(
6Cv + 3

α2
k

+
24ν2

G√
Nj

))
× ‖yjk − y∗k‖2 +

αkγjν
2
h√

Nj
+γ2

j

(
3Dv + 3

ν2
h√
Nj

)
+

(
2γ2
j

(
6Cv + 3

α2
k

+
24ν2

G√
Nj

)
+ 2

(
2αkγjν

2
G√

Nj
+

18γ2
j ν

2
G√

Nj

))
× ‖y∗k − zk‖2

+

(
γ2
j

(
6Cv +

24ν2
G√
Nj

)
+ 2

(
2αkγjν

2
G√

Nj
+

18γ2
j ν

2
G√

Nj

))
‖zk‖2

≤ (1− βj)‖yjk − y∗k‖2 + δj‖y∗k − zk‖2 + εj‖zk‖2 + ϕj ,

where the last inequality follows from Nj = dγ−2
j e, αk = α

for all k, and defining βj , δj , ϕj , and εj as

βj ,
γj
α − 2γ2

j

(
αν2

G + 6Cv + 3
α2 + 24ν2

Gγj
)

(27)

δj , 2γ2
j

((
6Cv + 3

α2 + 24γjν
2
G

)
+ (2α+ 18γj) ν

2
G

)
(28)

+
2αkγjν

2
G√

Nj
‖y∗k‖2 + γ2

j

(
6Cv +

24ν2
G√
Nj

)
‖zk‖2 (29)
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+ γ2
j

(
18ν2

G√
Nj
‖y∗k‖2

)
+ γ2

j

(
3Dv +

3ν2
h√
Nj

)
+

αkγjν
2
h√

Nj
(30)

εj, 2γ2
j

((
6Cv + 24γjν

2
G

)
+ 2 (2α+ 18γj) ν

2
G

)
(31)

ϕj , γ
2
j

(
3Dv + 3ν2

hγj
)

+ αγ2
j ν

2
h, (32)

respectively. Consequently, we have that

E
[∥∥∥yj+1

k − y∗k

∥∥∥2

| Fk
]

= E
[
E
[∥∥∥yj+1

k − y∗k

∥∥∥2

| Fk,j
]
| Fk

]
≤ (1− βj)E

[
‖yjk − y∗k‖2 | Fk

]
+ δjE

[
‖y∗k − zk‖2 | Fk

]
+ εj‖zk‖2 + ϕj

(25)
≤ (1− βj)E

[
‖yjk − y∗k‖2 | Fk

]
+ (8δj + εj)‖zk‖2 + ϕj + 8δj‖z∗‖2.

We now derive a rate statement for E[ ‖yjk − y∗k‖2 |
Fk ] using the above recursion under the caveat that the
solution set of the original inclusion is bounded. Note that
boundedness of the solution set of a monotone inclusion with
a maximal monotone operator has been examined in [14].

Proposition 2. Suppose {yjk} generated for computing an
approximate solution of VI(Z, Fk(•, zk)). Suppose γj = θ

j ,

Nj = dγ−2
j e, and εj = N

−1/4
j for j ≥ 0. Suppose ‖z∗‖ ≤

B for any solution z∗ of (SMI). Then there exist positive
scalars ν1, ν2 such that for any sufficiently large j and k ≥ 0,

E
[ ∥∥∥yjk − y∗k

∥∥∥2

| Fk
]
≤ ν2

1+ν2
2‖zk‖

2

2j holds a.s. �

By the above error bound, we may now claim a.s. con-
vergence for the sequence {zk} generated by (VR-SPP) by
appealing to a result proven in our prior work [13, Prop. 6].

Theorem 4. Consider a sequence {zk} generated by Algo-
rithm 1. Suppose Mk = d(k + 1)2ae, γj = θ

j , Nj = dγ−2
j e,

εj = N
−1/4
j for j, k ≥ 1. Furthermore, α > 0, θ > α/2, and

a > 1. For any z0 ∈ Z , zk
a.s.−−−−→
k→∞

z∗. �

We now provide some properties of JTα and Tα.

Lemma 6 (Properties of Tα and JTα ). [12], [15] For a
set-valued maximal monotone operator T : Rn → Rn and
for α > 0, the Yosida approximation operator is defined as
Tα , 1

α (I − JTλ ). Then the following hold.
(a) 0 ∈ T (x) ⇐⇒ Tα(x) = 0.
(b) Tα is a single-valued and 1

α -Lipschitz continuous map.
(c) JTα is a single-valued and non-expansive map. �

We now derive rate and complexity guarantees associated
with computing an ε-solution of Tα.

Proposition 3 (Rate of convergence of (VR-SPP) under
maximal monotonicity). Consider a sequence {zk} gener-
ated by (VR-SPP). Suppose Mk = d(k + 1)2ae, γj = θ

j ,

Nj = dγ−2
j e, εj = N

−1/4
j for j, k ≥ 1. Furthermore, α > 0,

θ > α/2, and a > 1.

(a) For any k ≥ 0, we have that E[‖Tα(zk)‖2] = O
(

1
k+1

)
.

(b) Suppose xK+1 satisfies E[‖Tα(zK+1)‖2] ≤ ε. Then
the oracle complexity of computing such an zK+1 satisfies∑K
k=0

∑Mk

j=1Nj ≤
C̃

ε6a+1 . �

V. CONCLUDING REMARKS

Chance-constrained optimization problems assume rele-
vance in decision and control settings. Yet, there is a glar-
ing lacuna in terms of providing non-asymptotic rate and
complexity guarantees for even subclasses of such problems.
Under a log-concavity assumption on the density, we show
that the chance-constrained problem with a prescribed prob-
abilistic constraint is equivalent to a convex optimization
problem with a compositional expectation-valued constraint.
We then present amongst the first methods equipped with
rate and complexity guarantees for such a problem in the
form of a variance-reduced proximal-point method.
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