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Abstract— This paper introduces a distributed parallel Alter-
nating Direction Method of Multipliers (ADMM) algorithm for
solving the distributed constrained optimization problem over
directed graphs. To effectively handle the effect of asymmetric
information communication on the convergence of the optimiza-
tion algorithm, a surplus-based averaging consensus algorithm
is integrated into the ADMM-based optimization algorithm.
Unlike existing distributed ADMM algorithms over directed
graphs that focus on the case with solely local constraints,
the proposed algorithm can deal with both local constraints
and coupling constraints. Under the assumption that the objec-
tive function is convex and the underlying graph is strongly
connected, the convergence of the surplus-based ADMM to
an optimal solution of the distributed constrained problem is
proved. Finally, numerical simulations are conducted to validate
the effectiveness of the proposed algorithm.

I. INTRODUCTION

Distributed optimization has garnered increasing attention
from various scientific communities, partly due to its wide-
ranging applications in areas such as smart grid [1], intelli-
gent transportation systems [2], industrial systems [3], among
others. In tackling distributed optimization problems, existing
approaches can be generally categorized into two classes:
primal [4] and dual-based methods [2]. It is worth noting
that dual-based algorithms are particularly well-suited for
solving optimization problems with constraints. As one of
the most widely used dual-based methods, the Alternating
Direction Method of Multipliers (ADMM) has been exten-
sively studied in the literature due to its notable advantages
in implementation, convergence, and flexibility [5], [6].

Recently, various distributed ADMM algorithms have been
proposed in the literature, see e.g., [7]–[10] and some refer-
ences therein. For instance, a distributed ADMM algorithm
was developed in [7] for solving optimization problems
with local polyhedron constraints. Subsequently, a parallel
ADMM was designed in [8] to address distributed opti-
mization problems with a global linear constraint and lo-
cal box constraints over undirected graphs. Furthermore, a
kind of parallel ADMM algorithms incorporating a tracking
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mechanism was introduced in [9] tailored for constraint-
coupled convex optimization problems. Building upon this,
the tracking-ADMM method was further employed in [10]
to address distributed optimization problems with various
constraints, including equality constraints, unbounded local
constraint sets, and nonlinear inequality coupling constraints.
These advancements have significantly contributed to our
understanding of utilizing ADMM algorithms for solving
distributed constrained optimization problems. However, it is
noteworthy that the aforementioned distributed ADMM al-
gorithms are specifically tailored for distributed-constrained
optimization over undirected graphs.

In practical scenarios, communication between networking
systems often exhibits directed characteristics. For instance,
due to resource constraints, sensors typically collect data
and transmit it to specific nodes in networks rather than
engaging in undirected communication [11]. Additionally,
factors like packet loss and communication interference
unavoidably lead to directed communication [12]. Partly
motivated by the above observation, much effort has been
dedicated to developing distributed ADMM algorithms for
solving distributed optimization problems over digraphs.
Specifically, the distributed ADMM algorithms were pro-
posed in [13] and [14] for strongly convex and smooth ob-
jective functions, respectively, where the balancing weights
and dynamic average consensus strategy are utilized. A
new kind of ADMM algorithm was presented in [15] for
general distributed convex optimization problems, which
incorporates the push-sum technique to accommodate the
effect of directed communication links on the convergence
of the algorithm. The approach developed in [15] was
further extended in [16] to handle distributed optimization
problems with local constraints. Nevertheless, it should be
noted that the above-mentioned ADMM-based algorithms
over digraphs cannot be directly employed to address the
distributed optimization problems with coupled constraints.
Constraint-coupled optimization problems are prevalent in
practical applications, such as resource allocation constraints
[17] and collaboration constraints. Thus, it is crucial to
develop distributed ADMM-based algorithms for constraint-
coupled optimization over digraphs.

Motivated by the aforementioned discussions, this paper
aims to devise a parallel ADMM algorithm for tackling
distributed optimization problems with both local and cou-
pling constraints over digraphs. The main contributions are
delineated as follows. This paper proposes a new kind
of surplus-based ADMM algorithms for solving distributed
constrained optimization problems over digraphs. Herein, a
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surplus-based consensus method is successfully integrated
into the proposed parallel ADMM algorithm, which ef-
fectively overcomes the impact of asymmetric information
communication over digraphs on the convergence of the
algorithm. In contrast to existing algorithms in [13]–[16],
which primarily address distributed optimization problems
with local constraints, the approach developed in the present
paper demonstrates proficiency in addressing distributed op-
timization with local constraints and global coupling con-
straints over digraphs.

The rest of this paper is organized as follows. Section II
introduces the constrained optimization problem. Section III
presents the surplus-based ADMM algorithm. The conver-
gence analysis of the present algorithm is provided in Section
IV. A simulation example is presented in Section V. Section
VI concludes the paper.

II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Graph Theory

A directed graph (digraph) is described as G = (V, E),
where V = {ν1, ν2, . . . , νN} is a nonempty set of nodes
and E ⊆ V × V is the set of directed edges. The sets of
out-neighbours and in-neighbours of node νi are denoted
by N−i = {νj ∈ V |(νi, νj) ∈ E , j 6= i} and N+

i =
{νj ∈ V |(νj , νi) ∈ E , j 6= i}, respectively. The digraph G
is strongly connected if there is a directed path between any
two nodes.

B. Parallel ADMM Algorithm

The parallel ADMM is an advanced variant of the ADMM
algorithm, which is designed for multi-block convex prob-
lems [18]. Specifically, a concise review of the parallel
ADMM is provided as follows:

minimize
x∈C1,z∈C2

G1 (x) +G2 (z)

subject to : Bx = z,
(1)

where x ∈ Rm1 , z ∈ Rm2 , B ∈ Rm2×m1 , G1 : Rm1 → R
and G2 : Rm2 → R are convex functions, C1 and C2

are convex sets. The augmented Lagrangian function is
defined as Lc (x, z, λ) = G1 (x) +G2 (z) + λT (Bx− z) +
(c/2) ‖Bx− z‖22, where λ ∈ Rm2 is a Lagrange multiplier
vector. The parallel ADMM is as follows:

xt+1 = arg min
x∈C1

Lc (x, zt, λt) , (2)

zt+1 = arg min
z∈C2

Lc (xt+1, z, λt) , (3)

λt+1 = λt + c (Bxt+1 − zt+1) , (4)

where c > 0 is a penalty parameter.

C. Problem Formulation

Consider a multi-agent system consisting of N agents and
the communication topology of the agents is depicted as

a digraph G. The agents aim to collaboratively tackle the
following constraint-coupled optimization problem:

minimize
x1,...,xN

N∑
i=1

fi (xi)

subject to : xi ∈ χi,
N∑
i=1

Aixi = b,

(5)

where for all i = 1, . . . , N , xi ∈ Rn are decision variables
and fi : Rn → R are the objective functions. The variable xi
is subject to a local set constraint χi ⊆ Rn and a coupling
constraint

∑N
i=1Aixi = b with AT

i ∈ Rn and b ∈ R.
To solve the problem (5) using ADMM method, the

additional variables zi ∈ R are introduced, i = 1, . . . , N .
Through an indicator function I(xi), the local constraint
xi ∈ χi can be integrated into the objective function. Then
the problem (5) can be equivalently transformed as:

minimize
xi∈Rn,zi∈R

N∑
i=1

Fi (xi)

subject to : Aixi = zi,
N∑
i=1

zi = b,

(6)

where Fi (xi) = fi (xi) + I (xi) and the indicator function
I(xi) is defined as

I (xi) =

{
0 if xi ∈ χi,
∞ otherwise.

(7)

Let x =
[
xT1 , . . . , x

T
N

]T
, z = [z1, . . . , zN ]

T, and A =
diag{A1, . . . , AN}. The Lagrangian function associated with
problem (6) is established as follows:

L (x, z,ρ) =

N∑
i=1

Fi (xi) + ρT (Ax− z) , (8)

where ρ = [ρ1, . . . , ρN ]
T ∈ RN is the Lagrange multiplier

vector.
To make problem (5) well-posed, the following assump-

tions are made.

Assumption 1. The digraph G is strongly connected.

Assumption 2. For any i = 1, . . . , N , the function fi is
convex. Moreover, the set χi is convex and compact.

Assumption 3. The saddle point (x∗, z∗,ρ∗) for the La-
grangian function L defined in (8) exists.

III. SURPLUS-BASED ADMM ALGORITHM
A. Distributed Computation Framework

Regarding x and z as two blocks, let G1 (x) =∑N
i=1 Fi (xi), G2 (z) = 0, C1 = RNn, and C2 =

{z
∣∣∣∑N

i=1 zi = b}. The augmented Lagrangian function cor-
related with (6) is

Lc (x, z,ρ) = G1 (x)+ρT (Ax− z)+
c

2
‖Ax− z‖22 . (9)
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Based on the parallel ADMM method (2)-(4), the algorithm
is presented as follows:

xt+1 = arg min
x∈C1

{
G1 (x) + ρTt Ax+

c

2
‖Ax− zt‖22

}
,

(10)

zt+1 = arg min
z∈C2

{
−ρTt z +

c

2
‖Axt+1 − z‖22

}
, (11)

ρt+1 = ρt + c (Axt+1 − zt+1) . (12)

Note that the minimization with respect to z in (11)
involves a separable quadratic term and an equality con-
straint. To simplify this update, an optimal solution is derived
analytically in [18] as

z̄i,t+1 = Aixi,t+1 − h̄t+1, (13)

where h̄t+1 is the average violation of coupling constraints
at iteration t+ 1 defined as

h̄t+1 =
1

N

N∑
i=1

(Aixi,t+1 − bi), (14)

with
∑N
i=1 bi = b. It is worth mentioning that the compu-

tation of h̄t+1 needs to receive quantities Aixi,t − bi from
all agents over the network. To address this challenge and
facilitate the distributed implementation of the algorithm, a
surplus-based consensus technique is successfully integrated
into the variant ADMM algorithm.

Specifically, given initial values yi,0 = Aixi,t+1−bi−si,0
with si,0 ≥ 1, each agent i estimates the average h̄t+1 at the
iteration t ∈ Z as[

yk+1

sk+1

]
=

[
IN − L(k) E
L(k) S − E

] [
yk
sk

]
, (15)

where yk+1 = [y1,k+1, . . . , yN,k+1] denotes the estimation
of h̄t+1, sk+1 = [s1,k+1, . . . , sN,k+1]

T ∈ RN represents
the surplus variable, and E = diag{ε1, . . . , εN} with the
constant parameter εi ∈ (0, 1), i = 1, . . . , N , respectively.
Moreover, L(k) is a matrix with zero row sums and S is a
column stochastic matrix. Then, it can be straightforward to
obtain that

1T
2N

[
yk+1

sk+1

]
= 1T

2N

[
y0
s0

]
= Nh̄t+1, (16)

which implies that 1T
2N

[
yT
k sTk

]T
is time-invariant for all k.

According to [19], the above surplus-based algorithm ensures
that the estimates yi,k+1, i = 1, . . . , N , converge to the
average h̄t+1 as k → ∞ under Assumption 1. Moreover,
the following lemma holds.

Lemma 1 [19]. Suppose that Assumption 1 holds. Define
the minimum state m(yk) = mini∈V yi,k, then the non-
decreasing state m(yk) ≤ h̄t+1, ∀k ∈ Z+, ∀t ≥ 0.
Moreover, m(yk) = h̄t+1 implies that yi,k = h̄t+1 and
the nonnegative surplus si,k = 0, ∀i ∈ V , i.e., an average
consensus is achieved.

Denote the estimation of h̄t+1 as hi,t+1 for agent i. Then,
the approximation of z̄i,t+1 can be defined as

zi,t+1 = Aixi,t+1 − hi,t+1. (17)

With the matrices defined in (15), it can be observed that the
estimation zi,t+1 is achieved through a distributed algorithm,
where each agent only requires local knowledge from itself
and its neighbors rather than global information.

The update of xt+1 in (10) is naturally decomposable
across xi when the iteration of zi,t is implemented in a
distributed scheme. Thus, each agent computes a minimizer
of the following optimization problem in parallel as

xi,t+1 = arg min
xi∈Rn

{
Fi (xi) + ρi,tAixi +

c

2
‖Aixi − zi,t‖22

}
.

(18)
Then, each agent can also update the dual variable by
utilizing its own variable xi,t+1 and the estimation zi,t+1

as
ρi,t+1 = ρi,t + c (Aixi,t+1 − zi,t+1) . (19)

B. Algorithm Description

The proposed surplus-based ADMM algorithm is summa-
rized in Algorithm 1.

Algorithm 1: Surplus-based ADMM algorithm
Initialization: Set xi,0 ∈ χi, hi,0 = Aixi,0 − bi,
ρi,0 = 0.

Repeat for t = 0, 1, 2, . . . do
for i = 1, . . . , N do

Update xi,t+1 based on (18);
Let yi,0 = Aixi,t+1 − bi − si,0, si,0 ≥ 1,
Di,0 = 0, flagi,0 = 0, m = 1;

repeat for k = 0, 1, 2, . . . do
Update yi,k+1 and si,k+1 based on (15);
Di,k+1 = max

j∈N+
i

{|yi,k+1 − yj,k|+Dj,k};

if k = md, m = 1, 2, . . . then
if Di,k+1 ≤ 1

2σt+1, si,k+1 ≤ 1
2σt+1

then
flagi,k+1 = 1;

else
Di,k+1 = 0;

end
end

until flagi,md+1 = 1
Let hi,t+1 = yi,k+1, update zi,t+1 using (17);
Update ρi,t+1 based on (19);

end
Until the stopping criterion is satisfied

In Algorithm 1, to obtain the estimation of z̄i,t+1, agents
execute an inner loop where they exchange information and
update their estimate yi,k+1 of h̄t+1, ∀t ≥ 0. Subsequently,
the vector zt+1 is updated in a distributed manner using (17).
Moreover, the variable Di,k represents the radius of the
smallest ball enclosing all agent states. It is devised for
the purpose of monitoring the convergence of system states.
According to Lemma 1, m(yk) = h̄t+1, as k →∞, ∀t ≥ 0,
which indicates Di,k = 0. At k = md, m ∈ Z, each agent
generates a signal flagi,k+1 utilized for consensus detection,
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where d denotes the diameter of G. Define a prescribed
tolerance σt satisfying σt+1 ≤ σt with

∞∑
t=1

tσt <∞. (20)

If Di,md+1 ≤ (1/2)σt+1 and si,md+1 ≤ (1/2)σt+1, then
flagi,md+1 = 1 which indicates consensus with tolerance
is achieved and flagi,md+1 = 0, otherwise. Without loss
of generality, we assume that there exists a finite K such
that |yi,K − yj,K | ≤ (1/2)σt+1, ∀i, j ∈ V , due to Di,K ≤
(1/2)σt+1, si,K ≤ (1/2)σt+1, and flagi,K = 1. Then, from
(16), the maximum state m̄(yK) ≥ h̄t+1 − (1/2)σt+1 can
be obtained, where m̄(yK) = maxi∈V yi,K . Furthermore, as
|yi,K − yj,K | ≤ (1/2)σt+1, ∀i, j ∈ V , it follows that

m(yK) ≥ m̄(yK)− 1

2
σt+1 ≥ h̄t+1 − σt+1, (21)

Then, from Lemma 1, one has

yj,K ≤ Nh̄t+1 − (N − 1)m(yK)

≤ h̄t+1 + (N − 1)σt+1,∀j ∈ V (22)

Hence,
∣∣h̄t+1 − yi,K

∣∣ ≤ (N − 1)σt+1. Let hi,t+1 = yi,K .
Then, the obtained vector ht+1 = [h1,t+1, . . . , hN,t+1]

T ∈
RN is an inexact solution to the update (11) satisfying∥∥ht+1 − h̄t+11N

∥∥ ≤ √N(N − 1)σt+1. Furthermore, it can
be yielded from (17) that

z̄t+1 = zt+1 − et+1, (23)

where z̄t+1 = [z̄1,t+1, . . . , z̄N,t+1]T, zt+1 =
[z1,t+1, . . . , zN,t+1]T, and ‖et+1‖ ≤

√
N(N − 1)σt+1.

IV. CONVERGENCE ANALYSIS
Before presenting the convergence result and analysis for

Algorithm 1, the following lemma is introduced.

Lemma 2. Let φ be a convex function. Given θ̃ and ε > 0,
if θ̂ = arg min

θ
φ (θ) + ε

2‖θ − θ̃‖
2, there holds that

2

ε

[
φ(θ̂)− φ(θ)

]
≤
∥∥∥θ − θ̃∥∥∥2−∥∥∥θ̂ − θ̃∥∥∥2−∥∥∥θ − θ̂∥∥∥2. (24)

Proof. Define ψ (θ) := φ (θ) + (ε/2)
∥∥∥θ − θ̂∥∥∥2 to be ε-

strongly convex. From the strongly convex property of
objective functions, it can be easily deduced that ψ (θ) ≥
ψ(θ̂) + (ε/2) ‖θ − θ̂‖2. According to the definition of ψ (θ),
it is straightforward to obtain that (2/ε) [φ(θ̂) − φ (θ)] ≤
‖θ − θ̃‖2 − ‖θ̂ − θ̃‖2 − ‖θ − θ̂‖2.

Theorem 1. If the consensus tolerance sequence {σt}t≥1
satisfies (20), the sequence {(xt, zt)}t≥1 generated by Algo-
rithm 1 can converge to an optimal solution (x∗, z∗) of (6),
and the sequence {ρt}t≥1 converges to the dual optimal
point ρ∗ under Assumptions 1-3.

Proof. From Lemma 4.1 in [18] and (10) , (11), for ∀x ∈ C1

and ∀z̄ ∈ C2, one obtains

G1 (xt+1) + [ρt + c (Axt+1 − zt)]TAxt+1

≤ G1 (x) + [ρt + c (Axt+1 − zt)]TAx, (25)

and

− [ρt + c (Axt+1 − z̄t+1)]
T
z̄t+1

≤− [ρt + c (Axt+1 − z̄t+1)]
T
z̄. (26)

Combining (19) and replacing x with x∗ in (25) yields

G1 (xt+1) + ρTt+1Axt+1 + c (zt+1 − zt)TAxt+1

≤G1 (x∗) + ρTt+1Ax
∗ + c (zt+1 − zt)TAx∗. (27)

Substituting z̄ with z∗ in (26) produces

−ρ̄Tt+1z̄t+1 ≤ −ρ̄Tt+1z
∗, (28)

where

ρ̄t+1 = ρt + c (Axt+1 − z̄t+1) = ρt+1 + cet+1. (29)

According to (27) and (28), it follows that

G1 (xt+1) + ρTt+1 (Axt+1 −Ax∗)− ρ̄Tt+1 (z̄t+1 − z∗)
≤G1 (x∗)− c (zt+1 − zt)T (Axt+1 −Ax∗) . (30)

Through Assumption 3 and the saddle point theorem in [18],
one has

G1 (x∗) ≤ G1 (xt+1) + ρ∗T (Axt+1 − z̄t+1) . (31)

According to (31) and the fact Ax∗ = z∗, (30) can be
rewritten as

(ρt+1 − ρ∗)T (Axt+1 −Ax∗)− (ρ̄t+1 − ρ∗)T (z̄t+1 − z∗)
+ c (zt+1 − zt)T (Axt+1 −Ax∗) ≤ 0. (32)

Substituting (23) and (29) into (32) yields

(ρt+1 − ρ∗)T (Axt+1 − zt+1)− ceTt+1 (zt+1 − et+1 − z∗)
+ c (zt+1 − zt)T (Axt+1 −Ax∗) + eTt+1 (ρt+1 − ρ∗) ≤ 0.

(33)

According to (19) and the fact Ax∗ = z∗, one attains that
Axt+1 − zt+1 = (ρt+1 − ρt)/c and Axt+1 − Ax∗ =
(ρt+1 − ρt)/c + (zt+1 − z∗). Then it follows from (33),
(23), and (29) that
1

c
(ρt+1 − ρ∗)T (ρt+1 − ρt) + c (zt+1 − zt)T (zt+1 − z∗)

− (et+1 − et)T(czt+1 − czt − ρt+1 + ρt) + c‖et − et+1‖2

+ (z̄t+1 − z̄t)T (ρ̄t+1 − ρ̄t) + eTt+1 (ρt+1 − ρ∗)
− ceTt+1 (zt+1 − z∗) ≤ 0. (34)

Furthermore, by substituting z̄ = z̄t into (26) and setting
z̄ = z̄t+1 at t, one obtains −ρ̄Tt+1z̄t+1 ≤ −ρ̄Tt+1z̄t and
−ρ̄Tt z̄t ≤ −ρ̄Tt z̄t+1. Combining these inequalities yields
(z̄t+1 − z̄t)T (ρ̄t+1 − ρ̄t) ≥ 0. Thus, from (34) one obtains

1

2c
‖ρt+1 − ρ∗‖2 +

c

2
‖zt+1 − z∗‖2

≤ 1

2c
‖ρt − ρ∗‖2 +

c

2
‖zt − z∗‖2 −

1

2c
‖ρt+1 − ρt‖2

− c

2
‖zt+1 − zt‖2 + ‖et+1‖ ‖czt+1 − czt − ρt+1 + ρt‖

+ ‖et‖ ‖czt+1 − czt − ρt+1 + ρt‖+ ‖et+1‖ ‖ρt+1 − ρ∗‖
+ c ‖et+1‖ ‖zt+1 − z∗‖ , (35)
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where the relation 2(b1 − b2)
T

(b1 − b3) = ‖b1 − b2‖2 +
‖b1 − b3‖2 − ‖b2 − b3‖2 is employed. With at =
1
2c‖ρt − ρ

∗‖2 + c
2‖zt − z

∗‖2, it follows that

at+1 ≤at + 3c ‖et‖ ‖zt+1‖+ 2c ‖et‖ ‖zt‖+ 3 ‖et‖ ‖ρt+1‖
+ 2 ‖et‖ ‖ρt‖+ c ‖et‖ ‖z∗‖+ ‖et‖ ‖ρ∗‖ . (36)

Under Assumption 2, one can easily know that xi,t ∈
χi is bounded for all t. Then one knows that

{
h̄t
}
t≥1

is also bounded from (14). Based on the inequality∥∥ht+1 − h̄t+11N
∥∥ ≤ √N(N − 1)σt+1, it is evident that

{ht}t≥1 is bounded as well. Moreover, since zt = Axt−ht,
the sequence {zt}t≥1 is bounded with an upper bound zmax.
Additionally, noting the initialization ρ0 = 0 in Algorithm
1, ρt+1 = ρt + cht+1 = c

∑t
τ=0 hτ+1 can be derived

from (19). Thus, define ‖ρt+1‖ ≤ (t+ 1)Q, where the
constant Q is relevant to the bound of xt, the maximum
of et, and constant b given in (6). Then, (36) can be further
simplified as

at+1 ≤ a0 +R

t∑
τ=0

στ + 5Q
√
N(N − 1)

t∑
τ=0

τστ ,

where R =
√
N(N −1)(5czmax+ c ‖z∗‖+‖ρ∗‖+ 3Q). By

virtue of (20), one knows that at is bounded. Based on (37),
(35) can be reformulated as

1

2c
‖ρt+1 − ρt‖2 +

c

2
‖zt+1 − zt‖2

≤ at − at+1 +Rσt + 5Q
√
N(N − 1)tσt. (37)

Summing (37) from t = 0 to t, one attains
t∑

τ=0

(
1

2c
‖ρτ+1 − ρτ‖2 +

c

2
‖zτ+1 − zτ‖2

)
≤ a0 − at+1

+R

t∑
τ=0

στ + 5Q
√
N(N − 1)

t∑
τ=0

τστ . (38)

As t→∞ for (20) along with the boundedness of at, it is
easy to get
∞∑
τ=0

(
1

2c
‖ρτ+1 − ρτ‖2 +

c

2
‖zτ+1 − zτ‖2

)
<∞, (39)

which implies limt→∞ ‖ρt+1 − ρt‖ = 0 and
limt→∞ ‖zt+1 − zt‖ = 0. Hence, based on (19) and (17),
limt→∞ ‖Axt − zt‖ = 0 and limt→∞ ‖ht‖ = 0 hold.
Moreover, ‖ρ̄t+1 − ρt‖ ≤ ‖ρ̄t+1 − ρt+1‖+ ‖ρt+1 − ρt‖ ≤
c
√
N(N − 1)σt+1 + ‖ρt+1 − ρt‖ → 0, ‖Axt+1 −Axt‖ ≤

‖Axt+1 − zt+1‖ + ‖zt+1 − zt‖ + ‖zt −Axt‖ → 0, and
‖Axt+1 − z̄t+1‖ ≤ ‖Axt+1 − zt+1‖ + ‖zt+1 − z̄t+1‖ ≤
‖Axt+1 − zt+1‖+

√
N(N − 1)σt+1 → 0 as t→∞. Thus,

it can be yielded from (13) that limt→∞
∥∥h̄t+1

∥∥ = 0.
With θ̂ = xt+1, θ̃ = zt, and θ = x, it follows from

Lemma 2 and (10) that

2γ

c

[
L (xt+1, zt,ρt)− L (x, zt,ρt)

]
≤ ‖Ax− zt‖2

− ‖Axt+1 − zt‖2 − ‖Ax−Axt+1‖2. (40)

where γ represents the largest eigenvalue of ATA. Similarly,
according to Lemma 2, one can derive that

2

c

[
L (xt+1, z̄t+1,ρt)− L (xt+1, z,ρt)

]
≤ ‖z −Axt+1‖2

− ‖z̄t+1 −Axt+1‖2 − ‖z − z̄t+1‖2. (41)

Summing the inequalities (40) and (41) yields

L (xt+1, z̄t+1,ρt)− L (x, z,ρt)

≤ c

2γ

(
‖Ax− zt‖2 − ‖Axt+1 − zt‖2 − ‖Ax−Axt+1‖2

)
+
c

2

(
‖z −Axt+1‖2 − ‖z̄t+1 −Axt+1‖2 − ‖z − z̄t+1‖2

)
.

(42)
Considering the limit on both sides of the above inequality,
it can be derived that

L (x∞, z∞,ρ∞) ≤ L (x, z,ρ∞) . (43)

Through Lemma 2 and the equality ρ̄i,t+1 = ρi,t +
c (Aixi,t+1 − z̄i,t+1), one has

2c
[
L (xt+1, z̄t+1,ρ)− L (xt+1, z̄t+1, ρ̄t+1)

]
≤ ‖ρ− ρt‖2 − ‖ρ̄t+1 − ρt‖2 − ‖ρ− ρ̄t+1‖2. (44)

As t→∞, it can be inferred that

L (x∞, z∞,ρ) ≤ L (x∞, z∞,ρ∞) . (45)

Under Assumption 3, by replacing x = x∗ and z = z∗ in
(43), and ρ = ρ∗ in (45), we have

L (x∗, z∗,ρ∗) ≤ L (x∞, z∞,ρ
∗) ≤ L (x∞, z∞,ρ∞)

≤ L (x∗, z∗,ρ∞) ≤ L (x∗, z∗,ρ∗) . (46)

Hence, one can attain L (x∗, z∗,ρ∗) = L (x∞, z∞,ρ∞),
which implies that G1 (x∞) = G1 (x∗).

V. NUMERICAL SIMULATIONS

In this section, consider the following constrained least
squares problem:

minimize
xi∈Rn

1

2

4∑
i=1

‖ωixi − δi‖2

subject to : xmin
i ≤ xi ≤ xmax

i ,∑4

i=1
Aixi = b,

(47)

where xi = [xi1, xi2]T ∈ R2 is the unknown quan-
tity to be estimated. The entries of the measurement ma-
trix ωi ∈ Rq×2 and the measured data δi ∈ Rq with
q = 5 are selected from i.i.d standard normal distribu-
tion N (0, 1). Set the upper and lower bounds of x as
xmin = [0.1, 0.2, 0.3, 0.1, 0.5, 0.1, 0.2, 0.3]T and xmax =
[1.1, 2, 1, 1, 1.5, 1.5, 1.3, 1.8]T, and the parameters as A1 =
[1, 1], A2 = [2, 2], A3 = [1, 2], A4 = [2, 1], and b = 4.
Moreover, the communication digraph between N = 4
agents is depicted in Fig. 1.
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Fig. 1. The digraph G between four agents.

Under the given parameter settings, the simulation results
are illustrated in Figs. 2 and 3. Specifically, from Fig. 2, it
can be observed that the states xi reach the optimal solution
[0.1, 0.2, 0.3, 0.1, 0.5, 0.49, 0.56, 0.3]T for all i = 1, · · · , 4
under Algorithm 1. Additionally, the states xi consistently
remain within the local set constraints. Moreover, from Fig.
3, it is evident that the coupling constraint

∑4
i=1Aixi = 4

is satisfied after approximately 30 iterations.
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Fig. 2. The evolution of states xi for i = 1, · · · , 4.
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Fig. 3. The evolution of the coupling constraint
∑4

i=1 Aixi = b.

VI. CONCLUSIONS

In this paper, a new kind of surplus-based ADMM algo-
rithm has been proposed to solve the distributed optimization
problems with both local constraints and coupling con-
straints. By integrating a surplus-based averaging consensus
algorithm into the newly designed ADMM-based algorithm,
the effect of the asymmetric information communication on
the convergence of the optimization algorithm has been effec-
tively eliminated. Moreover, the update of primal variables
with constraints can be implemented in a distributed manner

by only utilizing the local information. Furthermore, the
convergence to the optimal solution under the mild convex
assumption for the objective functions has been proved.
Future work will focus on designing a parallel ADMM
algorithm suitable for time-varying graphs.
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