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Abstract— This paper addresses the robust finite-time stabi-
lization (FTS) issue for stochastic parabolic PDE systems via
non-fragile spatial sampled-data control scheme. First, a class
of distributed parameter systems characterized by the delayed
stochastic parabolic partial differential equation is developed
for analyzing the effects of stochastic disturbance, structural
uncertainty, and discrete delay on the system performance.
Then, a non-fragile spatial sampled-data control scheme is
established by setting sampling points in the spatial domain,
which effectively saves communication resources and ensures
that the closed-loop system maintains good performance when
the controller is perturbed. Moreover, based on the partial
differential equation theory, stochastic analysis approach, and
the extended Wirtinger’s inequality technique, several criteria
are provided to ensure the robust FTS of stochastic parabolic
PDE systems in the mean square sense. Lastly, a numerical
example is provided to verify the feasibility of the suggested
stabilization criteria and control scheme.

Index Terms— Robust finite-time stabilization, parabolic PDE
systems, stochastic disturbance, structural uncertainty, non-
fragile spatial sampled-data control.

I. INTRODUCTION

In practice, many industrial processes are characterized
both by their time evolution and spatial distribution, such
as elastic vibration processes, chemical reaction processes,
and heat conduction processes [1]. As an important class of
distributed parameter systems, parabolic PDE systems, have
received much attention for describing industrial processes in
which the state space behaves as a spatiotemporal distribution
more accurately and efficiently [2]. It is to be noticed that
many practical systems are frequently perturbed by stochastic
factors from the external environment during operation,
while classical deterministic parabolic PDE systems cannot
inscribe stochastic objects [3], [4]. Accordingly, stochastic
parabolic PDE systems capable of describing stochastic
disturbance have gradually become a hot research topic.

It is well established that stability is a fundamental issue
in the performance analysis of stochastic parabolic PDE
systems and a prerequisite for application in practical en-
gineering [5]. In comparison to Lyapunov stability, which is
employed to characterize the steady-state performance of the
system, finite-time stability focuses on depicting the transient
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performance of the system [6], [7]. Finite-time stability,
as the name suggests, is the state of the system under
the given initial condition never exceeding a predetermined
region within a specific time range. Contrary to traditional
Lyapunov stability, finite-time stability has more practical
significance in scientific research and engineering applica-
tions such as missile launch and aircraft trajectory control
[8], [9]. Furthermore, uncertain parameters and discrete delay
are inevitable in stochastic parabolic PDE systems due to
factors such as measurement and modeling errors and the
inherent communication time of signal transmission [10].
Considering that this structural uncertainty and discrete delay
may cause the performance of the system to deteriorate or
even become unstable, this paper explores the robust finite-
time stabilization (FTS) of stochastic parabolic PDE systems
with uncertain parameters and discrete delay.

To implement the robust FTS of stochastic parabolic
PDE systems, a distributed controller was designed in [11].
Whereas, the suggested controller requires continuous updat-
ing of the control input. Different from continuous control,
sampled-data control is a control scheme that intermittently
updates the control input, effectively reducing the unnec-
essary waste of resources during signal transmission [12].
With the rapid development of information technology, many
scholars have gradually favored the employment of sampled-
data control to achieve the robust FTS of stochastic parabolic
PDE systems [13]. It is worth highlighting that in the
digital implementation of the controller, the control gain will
inevitably be disturbed or offset due to inherent errors and
equipment aging, thereby affecting the stable operation of
the closed-loop system [14]. Consequently, how establishing
a sampled-data control scheme that is insensitive to the
uncertainty of the control gain to achieve the robust FTS of
stochastic parabolic PDE systems is an essential and worthy
problem to be studied.

Driven by the mentioned analysis, this paper concerns
the problems of robust FTS and non-fragile control of
stochastic parabolic PDE systems with uncertain parameters
and discrete delay. The major work is listed below.
• A class of distributed parameter systems characterized

by the delayed stochastic parabolic partial differential
equation is constructed to handle the effects of practical
factors such as stochastic disturbance, structural uncer-
tainty, and discrete delay in a reasonable approximation.
Different from [4], [7], [11], [13], this paper simul-
taneously considers the disturbances from the external
environment and the internal system, and the established
model is more universal and practical.
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• Compared with the controller designed in [3], [4], [7],
[11], [13], a non-fragile spatial sampled-data controller
is presented, which effectively saves communication re-
sources and reduces control costs in the spatial domain.
Moreover, the closed-loop system has good resilience
to external perturbation and parameter deviation. When
the control gain changes within the allowable range,
the non-fragile spatial sampled-data control scheme still
maintains the robust FTS of stochastic parabolic PDE
systems.

• In contrast to [3], [4], [7], [11], [13], an extended vector-
valued Wirtinger’s inequality is employed to address
the second-order partial derivative term in stochastic
parabolic PDE systems to further relax the constraints
on the spatial domain. Then, a more general Lyapunov
functional is developed that do not require the decision
variable P to be a diagonal matrix. Additionally, several
less conservative robust FTS conditions are derived by
taking full advantage of the nonlinear function informa-
tion.

Notations: Throughout this paper, R~ and R~1×~2 mean
the ~-dimensional Euclidean space and the set of real ma-
trices of order ~1 × ~2, respectively. λmax(·) and λmin(·)
are the maximum and minimum eigenvalues of the matrix
respectively. Tr(·) indicates the trace of the matrix. Ξ(·)
is the mathematical expectation. In addition, ‖$(·, ε)‖2 =∫ σ̌
σ̂
ωT (σ, ε)ω(σ, ε)dσ.

II. PRELIMINARIES

Consider the stochastic parabolic PDE systems with pa-
rameter uncertainties and discrete delay as follows

d$(σ, ε) =
[
D̃$σσ(σ, ε) + Ã$(σ, ε) + B̃ζ($(σ, ε))

+C̃ζ($(σ, ε− ϕ(ε))) + u(σ, ε)
]

dε

+ Λ(ε,$(σ, ε), $(σ, ε− ϕ(ε)))dϑ(ε), (1)

where $(σ, ε) ∈ Rm means the state of the system, in
which σ ∈ [σ̂, σ̌] and ε ∈ [−ϕ̂,+∞) denote the spatial
and temporal variables, respectively. Then, $σσ(σ, ε) =
∂2$(σ,ε)
∂σ2 . ϕ(ε) stands for the transmission delay meeting

0 ≤ ϕ(ε) ≤ ϕ̂ and ϕ̇(ε) ≤ ϕ̌ < 1. ϑ(ε) means the
ν-dimensional standard Brownian motion. The boundary
conditions and initial value are $(σ̂, ε) = $(σ̌, ε) = 0 and
$(σ, s) = ψ(σ, s), (σ, s) ∈ [σ̂, σ̌] × [−ϕ̂, 0), respectively.
ζ($) = (ζ1($1), ζ2($2), . . . , ζm($m))T ∈ Rm is the
nonlinear function. Λ(ε,$(σ, ε), $(σ, ε − ϕ(ε))) ∈ Rm×ν
denotes the noise intensity matrix. D̃ = D+ ∆D(σ, ε), Ã =
A+ ∆A(σ, ε), B̃ = B+ ∆B(σ, ε), and C̃ = C + ∆C(σ, ε),
in which D, A, B, C ∈ Rm×m, and ∆D(σ, ε), ∆A(σ, ε),
∆B(σ, ε), and ∆C(σ, ε) indicate unknown matrices express-
ing spatiotemporal uncertainty. u(σ, ε) is the controller to be
designed. Besides, system (1) satisfies the assumptions as
follows.

Assumption 1: For any µ1, µ2 ∈ R with µ1 6= µ2, there

are o−i and o+
i such that ζi(·), i = 1, 2, · · · ,m, satisfy

o−i ≤
ζi(µ1)− ζi(µ2)

µ1 − µ2
≤ o+

i . (2)

Assumption 2: There are constants %1 > 0 and %2 > 0
such that noise intensity matrix Λ(ε, η1, η2) meets

Tr(ΛT (ε, η1, η2)Λ(ε, η1, η2)) ≤ %1η
T
1 η1 + %2η

T
2 η2. (3)

Assumption 3: There exist constant matrices M ∈ Rm×m1 ,
N1, N2, N3 ∈ Rm2×m, and unknown spatiotemporal func-
tion matrix F (σ, ε) ∈ Rm1×m2 satisfying FT (σ, ε)F (σ, ε) ≤
I , such that

[∆D,∆A,∆B,∆C] = MF (σ, ε)[N1, N2, N3, N4]. (4)

In the following, we divide [σ̂, σ̌] into n intervals by
inserting n − 1 points with σ̂ = σ0 < σ1 < . . . < σn = σ̌.
Then, there exists α > 0 such that the sampling intervals
satisfy σι+1 − σι ≤ α, ι = 0, 1, . . . , n − 1. The non-fragile
spatial sampled-data control scheme is provided below

u(σ, ε) = (K + ∆K(σι, ε))$(σι, ε), (5)

where K expresses the control gain matrix. Additionally,
∆K(σι, ε) = EG(σι, ε)H indicates the gain perturbation
matrix, in which E ∈ Rm×m3 , H ∈ Rm4×m, and G(σι, ε) ∈
Rm3×m4 means the unknown spatiotemporal function matrix
meeting GT (σι, ε)G(σι, ε) ≤ I .

Then, we provide the necessary definition and lemma.
Definition 1: Given constants 0 < δ1 < δ2 and T > 0,

system (1) realizes robust FTS in the mean square sense with
respect to (δ1, δ2, T ), if there is a suitable control scheme
u(σ, ε) such that for any ε ∈ [0, T ],

Ξ

(
sup

s∈[−ϕ̂,0)

‖$(·, s)‖2
)
≤ δ1 ⇒ Ξ

(
‖$(·, ε)‖2

)
≤ δ2. (6)

Lemma 1 [15]: Let χ(·) ∈ Rm be an absolutely continuous
function with a square-integrable derivative of order 1 and
satisfy χ(σ̂) = 0 or χ(σ̌) = 0. Then, for any Z ≥ 0,∫ σ̌

σ̂

χT (σ)Zχ(σ)dσ ≤ 4(σ̌ − σ̂)2

π2

∫ σ̌

σ̂

dχT (σ)

dσ
Z
dχ(σ)

dσ
dσ.

(7)

III. MAIN RESULTS

We provide some conditions to ensure the robust FTS of
the system in this section.

Theorem 1: Assume that Assumptions 1-3 hold, system (1)
is robust FTS via controller (5) in the mean square sense with
respect to (δ1, δ2, T ) if there exist positive definite matrices
P , Q, R ∈ Rm×m, m-dimensional positive definite diagonal
matrices i1, i2, i3, an identity matrix I with appropriate
dimensions, and positive numbers β and γ such that

P ≤ βI, εδ1eγT ≤ δ2λmin(P ), (8)
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Φ1 =


Σ11 k12 k13 k14 3PM 2PE
∗ k22 k23 k24 0 0
∗ ∗ k33 k34 0 0
∗ ∗ ∗ k44 0 0
∗ ∗ ∗ ∗ −3I 0
∗ ∗ ∗ ∗ ∗ −2I

 < 0,

(9)

Φ2 =

 Υ11 PM 2α
π ΓT

∗ −I 0
∗ ∗ −I

 < 0, (10)

where Σ11 = Sym{PA+ Γ−ΠT
1 (i1 +i3)Π2}+NT

2 N2 +
HTH + (%1β + 1)I +Q− γP , k11 = Σ11 + 3PMMTP +
2PEETP , k12 = 2ΠT

1 i3Π2, k13 = PB+(Π1+Π2)T (i1+
i3), k14 = PC − (Π1 + Π2)Ti3, k22 = %2βI − ϕ̄Q −
Sym{ΠT

1 (i2 + i3)Π2}, k23 = −(Π1 + Π2)Ti3, k24 =
(Π1 + Π2)T (i2 + i3), k33 = NT

3 N3 + R − 2i1 − 2i3,
k34 = 2i3, k44 = NT

4 N4 − ϕ̄R − 2i2 − 2i3, Υ11 =
4α2

π2 H
TH+NT

1 N1−Sym{PD}, Γ = PK, ϕ̄ = 1−ϕ̌, Π1 =
diag{o−1 , o

−
2 , . . . , o

−
m}, Π2 = diag{o+

1 , o
+
2 , . . . , o

+
m}, and

ε = λmax(P ) + ϕ̂eγϕ̂(λmax(Q) + λmax(R)λmax(ΠT
2 Π2)).

Proof: Construct the Lyapunov functional as below

V (ε) =

3∑
`=1

V`(ε), (11)

where

V1(ε) =

∫ σ̌

σ̂

$T (σ, ε)P$(σ, ε)dσ,

V2(ε) =

∫ σ̌

σ̂

∫ ε

ε−ϕ(ε)

eγ(ε−r)$T (σ, r)Q$(σ, r)drdσ,

V3(ε) =

∫ σ̌

σ̂

∫ ε

ε−ϕ(ε)

eγ(ε−r)ζT ($(σ, r))Rζ($(σ, r))drdσ.

By utilizing the Itô’s formula,

LV1(ε) = 2

∫ σ̌

σ̂

$T (σ, ε)P
[
D̃$σσ(σ, ε) + (Ã+ K̃)$(σ, ε)

+ B̃ζ($(σ, ε)) + C̃ζ($(σ, ε− ϕ(ε)))
]
dσ

+

∫ σ̌

σ̂

Tr
(

ΛT (ε,$(σ, ε), $(σ, ε− ϕ(ε)))P

× Λ(ε,$(σ, ε), $(σ, ε− ϕ(ε)))
)
dσ

+ 2

n−1∑
ι=0

∫ σι+1

σι

$T (σ, ε)PK̃$̄(σ, ε)dσ, (12)

where K̃ = K + ∆K(σι, ε) and $̄(σ, ε) = $(σι, ε) −
$(σ, ε).

Furthermore, we easily get

LV2(ε) ≤ γV2(ε) +

∫ σ̌

σ̂

$T (σ, ε)Q$(σ, ε)dσ

− ϕ̄
∫ σ̌

σ̂

$T (σ, ε− ϕ(ε))Q$(σ, ε− ϕ(ε))dσ,

(13)

and

LV3(ε) ≤ γV3(ε) +

∫ σ̌

σ̂

ζT ($(σ, ε))Rζ($(σ, t))dσ

− ϕ̄
∫ σ̌

σ̂

ζT ($(σ, ε− ϕ(ε)))R

× ζ($(σ, ε− ϕ(ε)))dσ. (14)

It follows from the boundary conditions of system (1) that

2

∫ σ̌

σ̂

$T (σ, ε)PD̃$σσ(σ, ε)dσ

= 2$T (σ, ε)PD̃$σ(σ, ε)
∣∣σ=σ̌

σ=σ̂

− 2

∫ σ̌

σ̂

$T
σ (σ, ε)PD̃$σ(σ, ε)dσ

≤
∫ σ̌

σ̂

$T
σ (σ, ε)(PMMTP +NT

1 N1 − 2PD)$σ(σ, ε)dσ.

(15)

Considering that LT1 L2 + LT2 L1 ≤ LT1 L1 + LT2 L2 holds
for any suitable dimensional matrices L1 and L2, we derive

2

∫ σ̌

σ̂

$T (σ, ε)P
[
(Ã+ K̃)$(σ, ε) + B̃ζ($(σ, ε))

]
dσ

≤ 2

∫ σ̌

σ̂

$T (σ, ε)P
[
(A+K)$(σ, ε) +Bζ($(σ, ε))

]
dσ

+

∫ σ̌

σ̂

$T (σ, ε)
[
2PMMTP + PEETP

]
$(σ, ε)dσ

+

∫ σ̌

σ̂

$T (σ, ε)
[
NT

2 N2 +HTH
]
$(σ, ε)dσ

+

∫ σ̌

σ̂

ζT ($(σ, ε))NT
3 N3ζ($(σ, ε))dσ. (16)

Similarly,

2

∫ σ̌

σ̂

$T (σ, ε)PC̃ζ($(σ, ε− ϕ(ε)))dσ

≤ 2

∫ σ̌

σ̂

$T (σ, ε)PCζ($(σ, ε− ϕ(ε)))dσ

+

∫ σ̌

σ̂

$T (σ, ε)PMMTP$(σ, ε)dσ

+

∫ σ̌

σ̂

ζT ($(σ, ε− ϕ(ε)))NT
4 N4ζ($(σ, ε− ϕ(ε)))dσ.

(17)

From Assumption 2, we have∫ σ̌

σ̂

Tr
(

ΛT (ε,$(σ, ε), $(σ, ε− ϕ(ε)))P

× Λ(ε,$(σ, ε), $(σ, ε− ϕ(ε)))
)
dσ

≤ %1β$
T (σ, ε)$(σ, ε)

+ %2β$
T (σ, ε− ϕ(ε)))$(σ, ε− ϕ(ε))). (18)
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According to Lemma 1, we have

2

n−1∑
ι=0

∫ σι+1

σι

$T (σ, ε)PK̃$̄(σ, ε)dσ

≤
∫ σ̌

σ̂

$T (σ, ε)(I + PEETP )$(σ, ε)dσ

+

n−1∑
ι=0

∫ σι+1

σι

$̄T (σ, ε)(KTPPK +HTH)$̄(σ, ε)dσ

≤
∫ σ̌

σ̂

$T (σ, ε)(I + PEETP )$(σ, ε)dσ

+
4α2

π2

∫ σ̌

σ̂

$T
σ (σ, ε)(KTPPK +HTH)$σ(σ, ε)dσ.

(19)

Then, we let Ω1(σ, z) = ζ($(σ, z)) − Π1$(σ, z),
Ω2(σ, z) = Π2$(σ, z) − ζ($(σ, z)), Ω3(σ, z1, z2) =
(ζ($(σ, z1))−ζ($(σ, z2)))−Π1($(σ, z1)−$(σ, z2)), and
Ω4(σ, z1, z2) = Π2($(σ, z1) − $(σ, z2)) − (ζ($(σ, z1)) −
ζ($(σ, z2))). From Assumption 1, for any diagonal matrices
i` ≥ 0, ` = 1, 2, 3, we obtain

2

∫ σ̌

σ̂

Ω1(σ, ε)i1Ω2(σ, ε)dσ ≥ 0, (20)

2

∫ σ̌

σ̂

Ω1(σ, ε− ϕ(ε))i2Ω2(σ, ε− ϕ(ε))dσ ≥ 0, (21)

2

∫ σ̌

σ̂

Ω3(σ, ε, ε− ϕ(ε))i3Ω4(σ, ε, ε− ϕ(ε))dσ ≥ 0. (22)

Combining (12) to (22) gives

LV (ε) ≤γV (ε) +

∫ σ̌

σ̂

ξT (σ, ε)Ψ1ξ(σ, ε)dσ

+

∫ σ̌

σ̂

$T
σ (σ, ε)Ψ2$σ(σ, ε)dσ, (23)

where Ψ1 = (kı)4×4, Ψ2 = 4α2

π2 (HTH + ΓTΓ) +
PMMTP + NT

1 N1 − Sym{PD}, and ξ(σ, ε) =
[$T (σ, ε), $T (σ, ε − ϕ(ε)), ζT ($(σ, ε)), ζT ($(σ, ε −
ϕ(ε)))]T .

By virtue of the Schur complement, Φ1 < 0 and Φ2 < 0
are equivalent to Ψ1 < 0 and Ψ2 < 0, respectively. Besides,
integrating (17) from 0 to ε deduces

Ξ(V (ε)) ≤ Ξ(V (0)) + γ

∫ ε

0

Ξ(V (r))dr. (24)

Based on the Gronwall inequality, we derive

Ξ(V (ε)) ≤eγεΞ(V (0)) ≤ εeγεΞ

(
sup

s∈[−ϕ̂,0)

‖$(·, s)‖2
)
,

(25)

where ε = λmax(P ) + ϕ̂eγϕ̂(λmax(Q) + λmax(ΠT
2 RΠ2)).

Obviously, it can be gained from (25) that

Ξ
(
‖$(·, ε)‖2

)
≤ Ξ(V (ε))

λmin(P )
≤ εδ1e

γT

λmin(P )
≤ δ2. (26)

Thence, according to Definition 1, system (1) is robust
FTS in the mean square sense with respect to (δ1, δ2, T ).

Moreover, when the structural uncertainty and trans-
mission delay of the system and the non-fragility of the
controller are not taken into account, ζ(·) = 0, and
Λ(ε,$(σ, ε), $(σ, ε− ϕ(ε))) = Y $(σ, ε) with Y ∈ Rm×m,
system (1) becomes the stochastic parabolic PDE systems
studied in [13] as follows

d$(σ, ε) = [D$σσ(σ, ε) +A$(σ, ε) +K$(σι, ε)] dε

+ Y $(σ, ε)dϑ(ε). (27)

By utilizing Theorem 1, the following criterion can be
easily derived to ensure the FTS of system (27) in the mean
square sense.

Corollary 1: System (27) is FTS in the mean square sense
with respect to (δ1, δ2, T ) if there is a matrix P > 0, an
identity matrix I ∈ Rm×m, and a number γ > 0 such that

ε1δ1e
γT ≤ δ2λmin(P ), (28)[

−PD +DTP 2α
π ΓT

∗ −I

]
< 0, (29)

CTPC + Sym{PA+ Γ}+ I − γP < 0, (30)

where Γ = PK and ε1 = λmax(P ).
Remark 1: In [3], [4], [7], [11], [13], several criteria

were deduced to guarantee the stabilization of stochastic
parabolic PDE systems. Notably, these results were derived
by exploiting the vector-valued Wirtinger’s inequality, which
requires that the spatial variable of stochastic parabolic PDE
systems be restricted to the interval [0, σ̄], where σ̄ is a
positive number. This paper adopts an extended vector-
valued Wirtinger’s inequality to loosen the interval restriction
on the spatial variable from [0, σ̄] to [σ̂, σ̌].

Remark 2: The exponential stabilization issue of stochastic
parabolic PDE systems was researched in [3], [4]. In con-
trast to [3], [4], this paper establishes the FTS results for
stochastic parabolic PDE systems with uncertain parameters
and discrete delay. In fact, if we let ϕ̄ = (1 − ϕ̌)eγϕ̂, then
Ξ(V (ε)) ≤ eγεΞ(V (0)) in formula (25) still holds when γ is
negative. Apparently, the approach developed in this paper is
also appropriate for the research of exponential stabilization
of stochastic parabolic PDE systems. Furthermore, contrary
to the spatial sampled-data control scheme in [3] and the
continuous control scheme in [4], this paper further proposes
a non-fragile spatial sampled-data control scheme to enhance
the reliability of the controller.

Remark 3: In practice, the time delay is common. The time
delay often causes system oscillation or instability, which
can degrade the control performance of the system. Whereas,
the impact of time delay on the FTS of stochastic parabolic
PDE systems was neglected in [7], [11], [13]. This paper
incorporates the influence of discrete delay in the system.
On the other hand, this paper constructs a more general
Lyapunov functional to obtain lower conservative results.
When P = I and Q = R = 0, V (ε) degenerates to the
Lyapunov functional established in [11], [13]. Moreover, the
information on the nonlinear function is fully utilized in
this paper to introduce inequalities (20)-(22) to increase the
coupling relationship between system states.
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Fig. 1. Evolution of system (1) without control.

Fig. 2. Trajectory of Ξ
(
‖$(·, ε)‖2

)
without control.

IV. NUMERICAL SIMULATIONS

We give an example to show the feasibility of the obtained
results in this section.

Example 1: Consider system (1) with parameters as below:
D = diag{0.3, 0.3}, A = diag{−1,−1}, B = (bı)2×2,
C = (cı)2×2, where b11 = 2, b12 = −0.1, b21 = −5, b22 =
3, c11 = −1.5, c12 = −0.1, c21 = −0.2, and c22 = −2.5.
Besides, M = diag{0.1, 0.5}, N1 = diag{0.3, 0.1}, N2 =
diag{0.3, 0.2}, N3 = diag{0.3, 0.3}, N4 = diag{0.3, 0.4},
E = diag{0.2, 0.1}, H = diag{0.1, 0.3}, and F (σ, ε) =
diag{e−|σ| sin(ε), e−|σ| sin(ε)}, σ ∈ [−5, 5]. Let ϕ(ε) =
eε

1+eε , ζ($(σ, ε)) = tanh($(σ, ε)), Λ(ε,$(σ, ε), $(σ, ε −
ϕ(ε))) = 0.15$(σ, ε)+0.2$(σ, ε−ϕ(ε)). Then, we can get
ϕ̂ = 1, ϕ̌ = 0.25, %1 = 0.045, %2 = 0.08, Π1 = diag{0, 0},
and Π2 = diag{1, 1}. The spatiotemporal evolution of sys-
tem (1) without control and the trajectory of Ξ

(
‖$(·, ε)‖2

)
are depicted in Figs. 1 and 2 respectively, where the initial
value is ψ(σ, s) = (0.2,−0.2)T . Let δ1 = 0.9, δ2 = 35, and
T = 5. From Fig. 2, it is easy to get that system (1) without
control is not robust finite-time stable in the mean square
sense with respect to (0.9, 35, 5).

To achieve the robust FTS of system (1) with the above
parameters, we design the non-fragile spatial sampled-data
control scheme as u(σ, ε) = (K + ∆K(σι, ε))$(σι, ε),

Fig. 3. Evolution of system (1) with control.

Fig. 4. Trajectory of Ξ
(
‖$(·, ε)‖2

)
with control.

where E = diag{0.2, 0.1}, H = diag{0.1, 0.3}, G(σι, ε) =
diag{e−|σι| cos(ε), e−|σι| cos(ε)}, and σι+1 − σι = 0.2 with
ι = 0, 1, . . . , 49. Selecting γ = 0.01 and solving with the
LMI toolbox yields

P =

[
2.7234 0.1903
0.1903 0.3069

]
, Q =

[
5.3059 0.1680
0.1680 1.5637

]
,

R =

[
2.3998 0.5460
0.5460 0.5168

]
, Γ =

[
−9.1294 0.4227
−0.7112 −2.8551

]
.

Easily, we have

K = P−1Γ =

[
−3.3348 0.8420
−0.2489 −9.8256

]
.

Moreover, we can get λmin(P ) = 0.2920, λmax(P ) =
2.7383, λmax(Q) = 5.3134, and λmax(R) = 2.5466. The
conditions of Theorem 1 can be easily checked to hold by
calculation. To visualize the correctness of the theoretical
results, we depict the spatiotemporal evolution of system (1)
with control and the trajectory of Ξ

(
‖$(·, ε)‖2

)
in Figs. 3

and 4, respectively. As can be seen in Fig. 4, system (1) can
achieve robust FTS in the mean square sense with respect to
(0.9, 35, 5).
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V. CONCLUSIONS

Stochastic disturbance, structural uncertainty, and time
delay typically impact the normal operation of the system and
lead to performance degradation. The perturbation of these
three practical factors have been considered simultaneously
in this paper to construct the stochastic parabolic PDE
systems with parameter uncertainty and discrete delay. In
fact, in addition to the parameter uncertainty of the controlled
system, the non-fragile problem in the controller cannot be
ignored. To improve the reliability of the controller and
further lower control costs, this paper has designed a non-
fragile spatial sampled-data control scheme. Then, the robust
FTS of stochastic parabolic PDE systems has been realized
via the suggested control scheme, and the corresponding
stabilization conditions have been obtained. At last, the
correctness of the established results has been clarified by
utilizing a numerical example.
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