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On Iterative Parameter Identification of FIR Systems With Batched Possibly
Incorrect Binary-valued Observations

Jian Guo, Wenchao Xue, Ting Wang, Ji-Feng Zhang and Yanjun Zhang

Abstract— This paper considers the problem of parameter
identification for a binary output finite impulse response (FIR)
system with measurement error, where the measurement error
makes the binary measurement values take opposite values with
a certain probability. First, the maximum likelihood estimation
(MLE) of the parameters is given and an iterative algorithm
with projection based on the Expectation-Maximization algo-
rithm is presented to calculate the MLE. Furthermore, the
necessary and sufficient condition for the likelihood function to
have a unique maximum point is obtained. It is proved that the
iterative estimation error converges to zero at an exponential
rate under persistently excitation input conditions. Finally, some
numerical simulation results based on a typical system show the
effectiveness of the proposed algorithm.

Index Terms— Binary-valued observation, maximum likeli-
hood estimate, strongly convex, system identification, exponen-
tial rate.

I. INTRODUCTION

With the development of information technology, set-
valued output systems [19] are more and more appearing
in many practical scenarios, in which set-valued output
refers to the output of the system can not be accurately
measured, and the information that can be measured only
indicate whether the output belongs to a certain set. This set-
valued output system has been widely used in the fields of
industrial production [1], biopharmaceutical technology [2],
and information industry [12], and has important research
significance, thus it has received wide-ranging attention. A
representative type of set-value output system is the binary
output system, whose output data are usually obtained by
binary sensors. For example, in communication systems such
as asynchronous transmission mode networks, the sensors
that measure bit rate, queue length and other traffic infor-
mation are binary [19]; in automotive systems, the exhaust
gas oxygen switch sensors are also binary [10]. In these
practical scenarios, due to the limited information, the set-
valued sensors lead to substantial difficulties, especially in
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the case of binary observation, and the system identification
problem is even more difficult to solve.

In recent years, research on the identification of set-
valued systems has constituted a large number of literatures
( [4], [6], [11], [17]). Ref. [19] proposed an empirical
measure method to study the identification error of linear
systems with binary-valued information. [15] proposed a
non-truncated empirical measure method for finite-impulse
response (FIR) systems and demonstrated its asymptotic
efficiency in the sense of Cramér-Rao lower bound. [7]
brought the expectation-maximization (EM) algorithm to
the identification of quantized systems and provided some
simulation results to justify the convergence. [20] proposed
an EM-type algorithm for FIR systems and demonstrated that
the algorithm has exponential convergence speed. Under a
fixed-threshold quantizer, [8] presented a recursive projection
algorithm for FIR models that was shown to be convergent,
[14] extended the algorithm to the case of matrix input and
vector output, and obtained a faster convergence rate O(1/k).
While, [16] introduced a unifying approach using a time-
varying threshold quantizers. In addition, [18] proves that
the Cramér-Rao lower bound can be reached asymptotically
with appropriate weight coefficients, which shows that their
algorithm is asymptotically efficient.

The above work is mainly based on accurate binary
observations. However, in some real-world problems, mea-
surements are often subject to errors caused by sensor
wildcards, packet loss, communication errors, etc., which
make it possible to obtain the opposite of the observed value
with a certain probability. For example, in a communication
system, O-1 bits of information may be transmitted or re-
ceived incorrectly. In addition, an important application of
set-value identification algorithms is the problem of target
classification [13]. However, there is a certain probability
that the labels of the training data will be misclassified at
the time of acquisition, which will affect the application of
the set-value identification algorithm and lead to an incorrect
classifier. Therefore, two issues need to be considered. One
is whether we can accomplish the identification objective
when there are incorrect observations? The other is how to
design the identification algorithm and prove its consistency.
Motivated by [20], we transform such set-valued system
identification problems into the corresponding maximum
likelihood (ML) problems.

The main contributions of this paper are as follows:

i) The ML based iterative parameter estimation algorithm
is proposed for the considered FIR systems. For the consid-
ered binary output FIR system with measurement error, based
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on the ML criterion, the MLE is given. To solve MLE, an
iterative solution algorithm with projection based on the EM
algorithm is proposed to adapt to more general measurement
error cases, which guarantees the boundedness of the iterative
estimation sequence.

ii) The existence and uniqueness of the MLE are rigor-
ously studied. For a given number of observations, by ana-
lyzing the properties of the likelihood function, the necessary
and sufficient condition is given for the likelihood function
to have a unique maximum point.

iii) The iterative algorithm are consistent. It is shown
that the iterative estimation error converges to zero at an
exponential rate under persistent excitation input conditions.
Numerical simulation results based on a typical system show
the effectiveness of the proposed algorithm.

The rest of the paper is organised as follows: Section II in-
troduces the identification problem and its corresponding ML
criterion, and constructs an iterative estimation algorithm.
Section III analyzes the likelihood function. The necessary
and sufficient condition for the existence and the uniqueness
of the likelihood function is given. Section IV derives the
convergence of the algorithm and obtains an exponential
convergence rate. Section V illustrates the results through
numerical simulations and compares them with methods that
do not take into account erroneous observations. Section VI
concludes the whole paper and discusses related future work.

II. PROBLEM STATEMENT AND ALGORITHM

In this section, we will first formulate the identification
problem with erroneous binary observations and then intro-
duce the algorithms for solving the problem.

A. Problem statement

Consider the parameter identification of the following
stochastic FIR systems:

{ Yk = ¢} 6o + ey,

gk:I[ykSC]a lngNa b

where 6, € © C RP is unknown but time invariant p-
dimensional parameter vector with p being known, ¢, € RP
is the regressor vector consisting current and past inputs,
yr € R and e, € R are the system output and noise,
respectively; 5 € {0,1} is the binary-valued observation
generated by the comparison between the system output and
a given sensor threshold C' € R; I is the indicator function
and N is the data length.

In practice, due to sensor wild values, data packet loss,
etc., the system’s binary output S; cannot be obtained
precisely and its opposite result may be observed with
a certain probability. Mathematically, the observed binary-
valued output can be represented by

s gka
k= ~
].—Sk,

where p; € (0,1) may be a function of 6y, C' and ¢, to
characterize the probability that the binary observation is
correct.

with probability py, )
with probability 1 — py,

The goal of this paper is to construct an identification
algorithm to estimate the unknown parameter vector 6y
based on the input data £y = {¢$1,¢2,...,¢n} and the
observation Oy = {si1,82,...,sn}. First, we give the
following assumptions.

Assumption 1: Matrix A = Zszl GrpL is positive def-
inite.

Assumption 2: For all £ < N, system noise &y =
{e1,ea,...,en} is independent with a zero-mean and vari-
ance 1 Gaussian distribution.

Remark 1: Assumption 1 is the mathematical description
of persistent excitation condition, which is a common as-
sumption in the research of system identification. Assump-
tion 2 is about the noise. For the general case where the error
{ex} obeys normal distribution with mean 0 and variance o2,
by transformation y} = yi /o, 0* =0/0, e = ex/o, C* =
C/o, system (1) is converted to satisfy Assumption 2.

B. Maximum likelihood criterion

In statistics, MLE is a method of estimating the parameters
of a hypothetical probability distribution given some obser-
vations. By maximizing the likelihood function, the observed
data are most probable under the assumed statistical model.
This maximum point is called the maximum likelihood
estimate. Now we consider systems (1) and (2). For any
1 < k < N, given the input data ¢, and the parameter 6, by
the law of total probability, the corresponding probabilities
of observation s = 1 and s = 0 are as follows.

P{si=1] ¢, 0}
=P{sp = 8} P{skx = 1| s = S, o1, 0}
+ P{sp=1—5}P{si, =18, =1— 3k, b, 0}
=[2px — 1JF(C — ¢}.60) + 1 — py,
P{spy=0| ¢, 0} =1—P{s =1 ¢,0}
=[1 = 2p]F(C — ¢ 6) + pr,

where F'(x) is the cumulative distribution function (CDF) of
the standard normal distribution. Denote

G(C - ¢ 0)=[2pr—1F(C—¢{0)+1—pr.  (3)

Using the conditional probabilities above, we can construct
the following likelihood function given the input data .#y,

Ly(0) = P{Ox | I, 0}

_ I cc-oto)- [ (-clo-olo).

{k:sp=1} {k:s,=0}

Since logz is a strictly increasing function and Ly (6)
can be assumed to be positive without loss of generality,
maximizing Ly () is equivalent to maximizing the log-
likelihood function:

N
In(0) =log Ln(0) = Y [log[G(C — ¢ 0)]]s, -
k=1

+log[l = G(C = ¢ ) js,—g)] . D)
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It is often more convenient to work with [y () and the
corresponding MLE is the point that maximizes the log-
likelihood function:

On = argmgmxlN(Q). 5)

Intuitively, this MLE will select the parameter values that
make the observations most probable.

Remark 2: MLE does not have optimal properties for
finite samples. However, as with other estimation methods,
MLE has many attractive limiting properties such as consis-
tency and asymptotic normality as the sample size increases
to infinity, i.e., under smoothness assumptions [9], the MLE
satisfies: limy_, o 0y = 6. Here, we focus on the estimation
problem from another perspective. With a fixed sample size,
how to solve (5) as accurate as possible.

C. Iterative estimate algorithm

We apply the idea of the EM algorithm to construct the
iterative estimate algorithm for solving (5). The EM algo-
rithm is an iterative method for finding the (local) maximum
likelihood of parameters in a model. Since we are concerned
with solving (5) for a given data .#y and Oy, for ease of
description, in this paper, the symbols [(6) are used in the
absence of conflicts. Given the estimate éN’t (abbreviated
as ét) at the ¢-th iteration, the EM algorithm constructs a
function 1(A|6;) that satisfies the following two properties:

(i) 1(0]0;) < 1(9) holds for all 6, (ii) 1(6,|0;) = 1(6;),
and then calculate ét+1 = arg maxp [(0 | ét). Thus, we have

l(ét+1) Z maxl(@ ‘ ét) Z l(ét | ét) = l(ét)

This ensures that the log-likelihood function is not reduced.
The construction process for the function 1(|6;) is the E-
step and the maximization process is the M-step. Although
the EM iterations do increase the likelihood function of the
observed data, there is usually no guarantee that the series
converge to the MLE. However, for the possibly incorrect
binary-valued model (1) and (2), under some effective con-
dition, we can construct a function [(6|0;) and the EM series
converges to the MLE. The function 1(0]6;) is defined as

N N
08 =~ Lo" (z mz) o+ (z mz) b
k=1 k=1

) 5 T
_ <2N: ¢k[9(0—¢£9t)1£sk:1] B 9(0—¢£9t)1[s,i:0} ]>] 9
= CGO-gf)  1-G(O-6[h)

+ ll(ét)v

where 1, (6,) is the part independent of 8, G(-) is defined in
(3) and g(-) = G'(-). To guarantee the boundedness of 6,
we introduce the following projection operator:

Definition 1. For a given convex compact set © C RP and a
positive definite matrix A, the projection operator ITg 4(-) is
defined as Il 4(z) = argmin (z — )T A(z —0), Yz € RP.

0co

Under Assumption 2, the iterative estimate for the batched
possibly incorrect binary-valued observations is provided in
Algorithm 1.

Algorithm 1 Iterative estimate for the batched possibly
incorrect binary-valued observations:

Input and Initialization: The input data 7y =
{b1,P2,...,¢n}, the Dbinary-valued observation
On = {s1,82,...,8N}, the probability of correct

observation Py = {p1,p2...,pn}, the threshold value
C, the initialization value él and the positive definite
matrix A = Z,Ile Lot

Iterative: Under assumption 2, the estimate ét+1 is iterated
by the following equation

N -1/ N
Br1=0; - (Z ¢>k¢>E> (Z on -9 (C-0ld)
k=1

k=1
Tow=t) M=) ©)
G(C—¢pby) 1-G(C—¢;0:)
or the projection version
ét+1 =Ilg a{arg meaxl(ﬂét)}. @)

Under some conditions on p, Algorithm 1 can be proved
to converge to MLE (5) with an exponential rate. Before that,
we discuss about the existence and uniqueness of (5).

III. EXISTENCE AND UNIQUENESS OF THE MLE

In this section, we investigated the properties of MLE by
analyzing the log-likelihood function (4). The concavity of
the likelihood functions with incorrect binary observations
is mainly investigated. In practice, both the communication
process and the FIR process cause measurement errors. In
the following, we give a functional form of the probability
of correct observation, py:

Pk = h(C7 007¢k); (8)

where the function h(C, 6y, ¢;) has a value range of (0,1).

Remark 3: When h(C, 6y, ¢r) = p*, p* € (0,1), it can
characterize the situation where the communication process
produces the error, which is independent of the system.
In addition, due to the sensitivity of the sensor, the FIR
process may also result in erroneous observations. Note that
in practice, the probability of a correct observation occurring
should be related to the error between the true value and
the threshold value. The function h(-) can be constrained
to be h(C, 0y, ¢x) = K(C — 6% ¢)) with K(-) being some
function, which describes the situation in which the FIR
process leads to errors.

We first consider the case pr = p* with 0 < p* < 1
being known. Denote f(z) = F’(z) as the probability dense
function of the standard normal distribution and we have
G(x) = 1—F(a)—p*+2p" F(x) and g(z) = G () = (2p"—
1) f(x). However, in this case, the existence and uniqueness
of the log-likelihood function (4) is only satisfied on a finite
set in the parameter space. The following lemma illustrate
this result.
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Lemma 1: Let py, = p* with 0 < p* < 1. Then, for
all £k < N, the log-likelihood function given in (4) is not
a concave function on RP. While, given a finite set O in

parameter space, if p* > inf 2| <C+LM % the

log-likelihood function given in (4) is concave on
L = suppee 10]] and M = supy, 6.

Proof: For any k < N, calculate the gradient vector
and Hessian matrix of log-likelihood function:

, Where

_ —g(C - ¢k g ¢k9 C)
Vi) = {Skz_:l}(c 579) Z GloTI—C) D,
| . ©)
G(z) + ¢*
VQ[(@) 72 |:<g(l')$ CE;()J)) g ( )|z:07¢56 . I[sk:1]
k=1
G(x)+g°
n g(z)z G(ZC()x) g°( )I, roc T 0]) ¢k¢k]
Defining p(x) = %ﬁ;gz(w), and noting that G(x) =

1 — G(—x) and g(z) = g(—z), we can rewrite the Hessian

matrix as
N
p(C— ) Is, =
Z:: 9% 0) Tisp=1] (10)
(¢40 = C) Iis,=0)] 1k
Thus, the concaveness of the log-likelihood function is

equivalent to the negative deﬁnlte property of the Hess1an
matrix V2[(0). Since A = S| drpL > 0, if V2I(0) <

for any 6 € RP, then we have p(z) > 0 for any = € R. It
follows that g(x)zG(x) + ¢g*(z) > 0 for ant x € R, that is

z(1-F(z)—p*+2p"F(z))+(2p"—1)f(z) >0, Vz > 0,
p*[2eF (x) + 2f(x) — x] > F(z) + f(x) — z, Vx (>1]0)

Since 2F(x) —1 > 0 for any > 0 and 2F(x) — 1 < 0 for
any z < 0, it follows that [2F(x) — 1]a > 0. By noting that
f(z) > 0 for any x € R, we have 22F(z) + 2f(z) —z =
[2F(x) — 1]z +2f(x) > 0 for any = € R. Therefore, if (11)
holds for any = € R, then p* satisfies

oo TF(@) + fz) -
b eral'szF(x)Jer(x)f

While, by use of L’Hopital’s rule [3], we can obtain
lim TROHE — 1, which implies that p* > 1. This
contradiction shows that the log-likelihood function cannot
be concave on RP as long as p* is not equal to 1. The
remainder of the Lemma is directly justified by (12). This
completes the proof. [ ]

Remark 4: Lemma 1 shows that the log-likelihood func-
tion cannot be concave on R? for the fixed probability case.
However if restricted to a finite set in the parameter space,
the Hessian matrix V2/(#) may still be negative definite and
Algorithm I will work. Simulations in Section V also verify
the validity of Algorithm 1 in this case. Furthermore, in
practice, the probability of the channel error can be estimated
through a large number of prior experiments.

12)

When h(C, 0y, ¢1) = K(C — 6% ¢4), the function G(-)
defined by the formula (3) and its derivative g(-) can be
computed as G(z) = (2K(z) — 1)F(z) + 1 — K(z) and
9(2) =G/ (2) =2K"(2)F(x) + (2K (2) — 1) f(2) - K'(). In
this case, the following theorem gives the condition that the
log-likelihood function has at most one maximum point.

Theorem 1: Consider the system (1)-(2) and the correct
observation probability function form (8) with h(C, 6, ¢x) =
K(C — 6T¢y), and assume that Assumptions 1-2 hold. If
K () satisfies inf|,<cqrnm %ﬂ:g?m > 0, where
L = supyco ||f]] and M = sup|éxl, then the log
likelihood function (@) given in (4) has at most one
maximum point.

Proof: Noting that inf|,<c 1y 2828EH" ()
if limited on the set ©, then for all £k > N, there exists € > 0
such that
minkSN( (C ¢T9 I[Sk 1] +pg\(ﬁ5k9 C I[Sk 0]) = €.
It follows that V2I(6) < —ezk L Pkdr = —€A. By
Assumption 2, it mfers the strongly concave property of
the function /() on the set ©. From the strongly concave
property on O, log-likelihood function (6) given in (4) has
at most one maximum point on ©. [ ]

To reveal the condition that MLE exists, following the
results in [20], we use the following condition.

Definition 2. Denote ¥ = [(251 (I[slzo] - 1[51:1])7 RN
&N (I1sy=0] — I[sy=1))]. Given input . and binary-valued
observations O, if there exists a non-zero vector v € R"
such that Ty > 0, then the data (S, Oy) is called
ineffective, otherwise it is called effective.

Remark 5: Definition 1 is given for observed and input
data. The existence of the nonzero vector ~ causes the
maximum likelihood function to increase in the direction
along 7, so that there is no maximum point. See the proof
of Theorem 2 for details.

The following theorem gives the sufficient and necessary
condition for the existence of a unique maximum point of
the log-likelihood function on the set of parameter ©.

Theorem 2: Consider the system (1)-(2) and the form
of the correct observation probability function (8) with
h(C, 8y, ¢1) = K(C — 0T ¢y;), and assume that Assumptions
1-2 hold . If K(x) satisfies the assumptions in Theorem
1 and V|z| < C + LM, we have G'(z) = 2K'(z)F(z) +
(2K (z) — 1)f(z)— K'(z) > 0 where L = supyce ||¢]| and
M = supy, ||¢k||, then there exists a unique maximum point
of the log-likelihood function (4) on © if and only if the
data set (Hy, On) is effective.

Proof: We prove the theorem from two directions.

Sufficiency. The proof is similar to that of Theorem 2 in
[20], and so, omitted here.

Necessity. If (Fn,Oy) is ineffective, then there exists
a non-zero vector ¥ € R™ such that Ty > 0. Since
woT = Zévzl gbkgzb;g, by Assumption 1 we have UTy >
0, which implies that there exists at least one positive
component for vector ¥T~. Given any parameter 6, define
a scalar function hg ~(r) as follows: hg (1) = (6 + ry) =

Soiey [log [G (=¢FAr + C — ¢10)] Ijs,—1
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+10g[G(¢pfvr + ¢F 0 — C)|Ijs,—0)| . Note that the k-th
component of T is (Ty), = —¢FyIj5, —1)+ O V1[5, =0]
which is consistent with the coefficient of r in hg (r).
This together with the assumption G’ (x) = 2K'(x)F(x) +
(2K(xz) — 1)f(x)— K'(x) > 0 and that log(-) is increas-
ing concludes that hgy ~(r) is a strictly increasing function.
Assume that there exists a maximum value point 6* of
1(6), which contradicts with that hg- () = (0 + r7) is
increasing. Then, [(f) does not have any maximum points.
This completes the proof. [ ]

IV. CONVERGENCE OF THE ESTIMATION ERROR

In this section, we will use the Lyapunov method to prove
the convergence of Algorithm 1 in the case of communication
process error and FIR process error.

As Theorem 2 shows, if data (#, O ) is ineffective, then
the log-likelihood function does not have any finite maximum
point. Hence, the following assumption is necessary.

Assumption 3: Data (#y, Oy) is effective.

The following theorem proves the convergence of the
Algorithm 1.

Theorem 3: Consider the system (1)-(2), the correct ob-
servation probability function form (8) where h(C, 6y, ¢x) =
K(C—06F¢r) or h(C, 0y, ¢1,) = p*, and the iterative solution
Algorithm 1, if it is assumed that Assumptions 1-3 holds,
then there exists ¢ € (0,1) such that the sequence {6;}
iteratively generated by (6) or (7) satisfies

Ql \/1*6

64| <

L mln 1 — E)
where 6 is the MLE given in (5); A = Zk:l [N mm(A)
is the minimal eigen value of A; Q1 = (1 — €)~1(fy —
01)TA(6; — 6,); and || - || is the Euclidean norm.

Before giving the proof of the theorem, the following
properties of the projection operator are given.

Lemma 2: [5] The projection operator given in Defi-
nition 1 satisfies Vz,y € RP, Alx) —Hea(y)ll, <
2 —ylla-

Proo]f' First, from eguation (J%), we convert eguation

(6) into Or11 = Mo a(: + (X4 ¢uds) ' VI(6:) =

He (0 + A=Y(VI(6;))). Iterating these equations and by
Lemma 2, we can get

16041 —04 4 <10, =61+ A(VI(6,) -

By the mean value theorem, we have

VI(0;) — VI(;_1) = V21(Brs1)(0: — 0, 1),

VI 1)|a. (13)

(14)

where 9“_1 between ét and ét_h 1.€., the{e exi§ts a
constant 0 < ¢ < 1 such that 6y, 1 = (1 — ¢)0; + cb;_;.
From (13) and (14), we have

041 =02l 4 < [|(T+ A (V201 e-1))) (0 —0r—1)]| 4. (15)

By Theorem 1, there exists e > 0 such that for any
t >1, —A < V2 (04-1) < < fezk | PrdF = —eA. Let

= —V2l (9” 1) s Lt = 9t+1 — 9t Then from (15) we
(I — A7'B;)(x4-1)|la. Let the Lyapunov

function Qt = (1 — e)tal Az, then we have Q; <
(1—e)~tal | (I, — A™'B))" - A(I, — A'B,) z,_,. The
rest of the proof is similar to Theorem 3 in [20], which we
omit here. [ ]

This theorem proves the convergence of the iterative
algorithm, while obtaining the convergence rate. This is
also with the same convergence rate as that of the iterative
algorithm obtained for the model without errors.

V. SIMULATION STUDY

In this section, we illustrate the main results with a number
of simulations.

A. Log-likelihood function curve

To show the log-likelihood function intuitively, we re-
strict the model dimension to p = 1. Consider the system
yr = Bodr + ex with true parameter 6y = 1.

Data Generate Process. Fix sample size N = 20. Then,
we generate the input ¢, and the noise e, with the following
Matlab codes: Phi = randn(1,N); E = randn(1,N).

Log-likelihood function curve. For the fixed probability
case, we set pr, = 0.99 and p; = 1, where the latter is indeed
the case without error. For the time-varying probablhty case
with pj, = K(C — 0¢) with K(z) = 1 — {5e7 /2", Log-
likelihood functions [(#) of these three cases where 6 €
(—4,4), are all shown in Fig. 1. The figure shows that for
the fixed probability case, the log-likelihood function is not
concave as long as there is a slight probability of the error,
while it is still concave in some finite set of the parameter
space. For some special time-varying probability case, the
log-likelihood function is indeed concave.

0

< o 7 — . = 0.99 T
= L L7 --p=1
-100 L’ K(z) =1-1/10e” />’
150 ‘ ‘ ‘ ‘ ‘ ‘ ‘
-4 -3 -2 -1 0 1 2 3 4
0

Fig. 1: Log-likelihood function for the fixed probability case.

B. Convergence of the proposed iterative algorithm

In this section, the convergence of the proposed iterative
algorithm (6) or (7) is demonstrated by numerical simula-
tions. The brief simulation procedure is as follows:

Step 1. Data generation. Fix the data length N = 1000, the
model dimension p = 3, the sensor threshold C' = 1, and
the model parameter § = (—1,0,1)". Error &y and input
data .#y are generated based on standard normal distribu-
tion. Matlab codes are: error = [randn(N,1)]; phi =
[randn(N, 3)]. The binary-valued observations &y are gen-
erated according to the model (1) and (2).

Step 2. Initial vector selection. To demonstrate that the
EM algorithm can converge to a unique MLE, with the same
effective data {#y, On}, we adopt a random vector as the
iterative initial vector él. él are generated by the Matlab
code: initial = randn(3,1).
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Step 3. Parameter estimate. Based on the initial value
él and iteration process (6), we can generate the iteration
estimates {f,,¢ > 1}.

The simulation results of the iterative estimation are shown
in Fig. 2 with K(z) = 1 —1/8¢™*" and p* = 0.8. With
different initial vectors, all the estimated components {0;}
converge to a unique ML estimate, which is fairly close
to the true parameters. Finally, we have also estimated this
case using the algorithm in [20] without considering the
possible incorrectness and the results are shown in Fig. 3
with K (z) = 1 — 1/10e~2/2*" The figure shows that the
algorithm in [20] will not converge to the true parameters
when there exists possible incorrectness.
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Fig. 2: The estimated components of {f;} with different
2
initial vectors for the case K (r) = 1—1/8e~% and p* = 0.8.
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Fig. 3: The estimated components {ét} using the algorithm
in [20] and Algorithm 1.

VI. CONCLUSION

In this paper, we consider the parameter identification
problem of a binary output FIR system with measurement
error, in which the measurement error makes the binary
measurement values have a certain probability of getting the
opposite values. Firstly, the likelihood function are calculated
and the MLE is given. Secondly, based on the EM algorithm,
the iterative solution algorithm of MLE is given. To ensure

the boundedness of the iterative estimation sequence, the
iterative algorithm with projection is proposed. In addition,
the necessary and sufficient conditions for the uniqueness
of the MLE are given and the iterative estimation error is
proved to converge to zero at an exponential rate. Finally,
numerical simulation results demonstrate the effectiveness
of the proposed method. Further consideration can be given
to applying the algorithm to the general case and designing
more robust algorithms.
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