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Abstract—The evaluation of time-varying states furnishes
critical data for the control design, reliability analysis, and
intelligent decision-making in the operation of robotic manipula-
tors. The presence of limited test conditions along with various
uncertainties in the system presents significant challenges to
the effectiveness of such evaluations. In response, this study
introduces a pioneering approach for state assessment that
adeptly manages hybrid uncertainties and states that cannot
be directly measured. Within this framework, an extended
state observer is integrated into the controller. This observer
goes beyond merely monitoring Unmeasurable states; it actively
compensates for disturbances, enhancing control precision.
By employing Bayesian optimization algorithms and kernel
density estimation techniques, the study achieves a nuanced
state assessment. The resultant evaluation not only encapsulates
interval and probability outcomes but does so in a manner that
is seamlessly integrated, offering a detailed portrayal of the
dynamic responses and probability distributions at individual
time points. This approach substantially enriches our capacity
to understand and monitor the complex behaviors of dynamic
systems, marking a significant leap forward in the field. Finally,
the simulation results significantly validate the algorithm’s
effectiveness.

Index Terms—Time-varying state evaluation, extended state
observer, hybrid uncertainty, Bayesian optimization, kernel
density estimation.

I. INTRODUCTION

System time-varying state estimation plays a crucial role
in various fields, such as control systems, robotics, and
signal processing, where accurate knowledge of the system’s
internal variables is essential for effective decision-making,
reliable analysis, and optimization [1]–[3]. However, this
task encounters substantial challenges, first and foremost
because of the existence of various uncertainties [4], [5].
These uncertainties manifest as a combination of interval
and probability uncertainties, intertwining in a manner that
traditional state assessment methodologies struggle to handle
adequately. The coexistence of these uncertainties introduces

intricacies in modeling and prediction, impacting the accu-
racy and reliability of state evaluations.

In many practical problems, obtaining the exact values
of parameters is challenging, yet establishing upper and
lower bounds for these parameters might be feasible. Interval
representation allows us to handle uncertainty in a more
tolerant manner by considering a range of potential values for
the parameters [6], [7]. However, interval representation may
introduce information loss as it only offers a broad estimation
of the parameter range without providing specific details
about the internal distribution of the parameters. Utilizing
probability distributions to characterize potential values of
parameters enables a more comprehensive understanding of
uncertainties [8], [9]. There are different uncertainties in real
systems. The mixed uncertainty approach, combining both in-
terval and probability methods, serves as an excellent choice
by leveraging the strengths of each [10], [11]. This integrated
method offers a broad parameter range estimate in the
absence of sufficient data while considering the uncertainty
of internal distributions through probability distributions.

Moreover, some states in the system may not be directly
measurable due to practical limitations or sensor constraints.
This study aims to bridge this gap by introducing an innova-
tive approach to state assessment within controlled dynamic
systems [12], [13]. The extended state observer (ESO) can
not only observe the measurable state of the system, but
also estimate the external disturbance of the system [14]–
[16]. In our work, the state information estimated by ESO
not only serves as the feedback signal of the controller,
but also provides the basis for the dynamic performance
evaluation of the system. By providing a mechanism for
predicting unmeasurable states, the proposed approach not
only enhances the overall observability of the system but
also opens avenues for more informed decision-making in
the face of uncertainties.

In the process of estimating a system’s response or state
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uncertainty, computational complexity poses a significant
challenge, particularly when considering multiple parameters,
time-varying state variables, and various uncertainties. While
Monte Carlo simulation remains the most commonly used
and accurate analytical method, it involves multiple sam-
plings of potential values for system parameters and extensive
simulation computations [17], [18]. This can lead to sub-
stantial computational overhead, especially when the system
model is extensive or simulation costs are high. To enhance
efficiency, various methods have been proposed, harnessing
the capabilities of parallel computing to meet computational
demands. The extreme response surface method was inves-
tigated for mechanical dynamic assembly reliability analysis
[19]. A polynomial chaos expansion method was proposed to
estimate the dynamic response bounds of nonlinear systems
[20]. The radial basis functions were used to analyze static
response considering interval uncertainty [21]. A recurrent
neural network was proposed to predict the dynamic response
of robotic systems [22]. However, constructing surrogate
models also requires an ample amount of sample data.
The above study estimated the range of system responses
without delving into the distribution within that interval.
Further investigation and analysis are required to understand
the specific distribution characteristics of system responses
within the mentioned range.

The main contributions are highlighted as follows: (i)
Introduces a state observer within the controller, enabling the
prediction of traditionally unmeasurable states and enhancing
the system’s overall observability. (ii) Bayesian optimization
and kernel density estimation provide a practical and effective
solution for real-time state evaluation in uncertain environ-
ments.

The paper is organized as follows. Section II delineates
the research problems addressed in this paper. Subsequently,
Section III details the design of a feedback controller tailored
to the system’s characteristics. In Section IV, the system state
boundaries are estimated using Bayesian optimization, while
the KDE method is employed to estimate the distribution of
the system state at specific time points. A simulation example
is presented to validate the efficacy of the proposed method
in Section V. Section VI offers a comprehensive summary of
the entire paper.

II. PROBLEM DESCRIPTION

Consider the following dynamic equation for n degree of
freedom (n-DOF) robotic systems:

M(q)q̈ +C(q, q̇)q̇ +G(q) + Tf + τd = τ (1)

where, q ∈ Rn, q̇ ∈ Rn, and q̈ ∈ Rn are position, velocity,
and acceleration vectors, respectively; M(q) denotes sym-
metric and positive definite matrix of inertia; C(q, q̇) denotes
the Coriolis and Centrifugal term matrix; G(q) denotes
the gravity term; Tf is the friction vector; τd represents
unmodeled functions and external disturbances, τ is the
control input.

Due to machining errors, assembly errors, environmental
changes and other factors, the system has various uncer-

tain parameters. Define the uncertain parameters as u =
[u1, u2, ..., un]

T . It is difficult to obtain the distribution law
of some parameters, but it is possible to know the variation
interval. These parameters are expressed in the form of
uniformly distributed intervals, ui ∈ ui

I = [ui, ui]. The
superscript I represents the interval, ui and ui are the lower
boundary and upper boundary of the interval.

If a uncertainty parameter uj following a normal distri-
bution with a mean µ and a standard deviation σ, denoted
as uj ∼ N (µ, σ2). In theory, the normal distribution is
defined over the entire real number line and does not have
boundaries. However, in practical situations, variables may
have physical or practical constraints, leading to bounded
distributions. For instance, certain measured quantities cannot
be negative, or they may have an upper limit. In such cases,
a truncated normal distribution is considered. A truncated
normal distribution is a normal distribution that is restricted
to a specific interval. The variable uj is truncated within
the interval [uj , uj ], its probability density function can be
expressed as:

f(uj ;µ, σ, uj , uj) =

{
1
ωϕ

(
uj−µ

σ

)
, if uj ≤ uj ≤ uj

0, otherwise
(2)

where ϕ is the probability density function of the standard
normal distribution, and ω is the normalization factor ensur-
ing that the probability density function integrates to 1 within
the specified interval. For a truncated normal distribution,
the normalization factor is usually calculated by integrating
the probability density function over a given interval. In this
context, the normal distribution has zero probability density
outside the interval [uj , uj ], and within the interval, it follows
the standard normal distribution pattern, albeit scaled and
shifted. Using this approach helps convey the information
about the distribution parameters in a clear and precise
manner.

Under the influence of uncertain parameters u, the state of
the system is within ranges and there is a distribution feature
within that range. In a motion time, the system dynamic states
can be presented as Fig. 1.

Fig. 1: Dynamic state uncertainty over motion time.

In the process of system dynamic state evaluation, one
challenge is how to get the state of the system. In engineering
practice, some system states can be measured by sensors,
while some states are difficult to obtain due to structural
complexity, environmental badness and cost problems. To
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deal with this problem, a state observer is introduced into
the control system. The output of the state observer can
provide more data support for system dynamic performance
evaluation. Another challenge is how to calculate the interval
and distribution of states.

The research content and research process block diagram
are shown in Fig. 2, which mainly consists two parts. The
first part aims to design a controller, and another part is
to calculate the uncertain states with Bayesian optimization
method and kernel density estimator.

Fig. 2: Block diagram of the research content.

III. FEEDBACK ADAPTIVE CONTROLLER DESIGN

In this section a feedback adaptive control method is pro-
posed for the nonlinear robotic manipulator, which involves
three characteristics as shown in Fig. 1. Firstly, it uses the
known information of the system, secondly, the unknown
nonlinear terms are compensated by means of data-driven
method, finally, an extended state observer is introduced to
monitor system states and deal with disturbances.

Before designing the controller, some assumptions are
provided here.

Assumption 1: The function f(x1,x2) is locally Lipschitz
continuous functions with respect to x2 in its practical range.

According to Assumption 1, there exists a constant c1 that
satisfies the following conditions∣∣∣f̃ ∣∣∣ = |f(x1,x2)− f(x1, x̂2)| ≤ c1 |x̃2| (3)

Based on the center of the interval uncertainty parameter
uc = (u + u)/2 or the mean value of the probabilistic
uncertainty parameter, the nominal values of the matrix M ,
C and G can be calculated. This nominal value can provide
a part of the system prior information for the controller
design. The matrix M , C, and vector G can be formulated
as M = M0 + δM , C = C0 + δC , and G = G0 + δG.
Parameters δM , δC , and δG are unknown terms, and param-
eters M0, C0, and G0 are nominal terms.

Define system states as x1 = q ∈ Rn and x2 = q̇ ∈ Rn.
Then, the dynamic model can be represented in the state
space form as ẋ1 = x2

ẋ2 = H0τ + f(x1,x2) +H0φ+ τd0
y = x1

(4)

where 
H0 = (M0)

−1

f(x1,x2) = (M0)
−1(−C0x2 −G0)

φ = −δM ẋ2 − δCx2 − δG
τd0 = (M0)

−1τd

(5)

In the above equation, the terms H0 and f(x1,x2)
can be calculated. Fuzzy logic system (FLS) is adopted to
approximate the unknown function φ ∈ Rn, which can be
expressed as follows.

φ(x̄) = θTϕ(x̄) + ε (6)

where x̄ is the input of the FLS, θ = diag(θ1,θ2, ...,θn) ∈
Rmn×n is a weight vector of FLSs, θi ∈ Rm is the weight
vector of every FLS, ϕ(x̄) = [ϕ(x̄1),ϕ(x̄2), ...,ϕ(x̄n)]

T ∈
Rmn×1 is the basis function vector, ε ∈ Rn is the approxi-
mation error. The optimal weight is given by

θ∗ = argmin

[
sup
x∈Ωx

|φ(x |θ)−φ(x) |
]

(7)

The estimation errors of FLSs and the lumped disturbance
in (6) are expended to a state x3 ∈ Rn, which is formulated
as x3 = H0ε+ τd0.

Assumption 3: The derivative δ ∈ Rn of the state x3 is
to be bounded, i.e., ∥δ(t)∥∞ ≤ δ̄, where δ̄ is a unknown
positive constant.

Inspired by Ref. [16], an nonlinear ESO is designed as:
˙̂x1 = x̂2 + κ1g(x̃1, λ1)

˙̂x2 = H0τ + f(x1, x̂2) +H0θ̂
T
ϕ+ x̂3(t) + κ2g(x̃1, λ2)

˙̂x3 = κ3g(x̃1, λ3)
y = x1

(8)
where κ1, κ2, and κ3 are design parameters. In order to
reduce adjustable parameters in the controller, there are the
following parameter settings: κ1 = 3κ0, κ2 = 3κ0

2, and
κ3 = κ0

3. In addition, λ1 = λ2 = λ3 = λ. The term x̂2 is
the estimation of x2 and the term x̂3 is the estimation of x3.
The parameter θ̂ is the estimated value of the optimal value
θ∗. The nonlinear function g ∈ Rn is defined as follows

g(x̃1, λ) =

{
x̃1 + |x̃1|λsign(x̃1), ∥x̃1∥∞ > εx
x̃1, otherwise

(9)

where 0 < λ < 1 is a constant, sign(·) is a symbolic function.
Define the tracking errors as follows:

e1 = x1 − xd

e2 = x2 −α1
(10)

where xd is the desire trajectory. The virtual control α1 is
designed as

α1 = −K1e1 + ẋd (11)

where K1 ∈ Rn×n is a designed positive definite matrix, ẋd

is the desire velocity.
The control input is introduced as

τ = −e1 −K2ê2 +C0(x1, x̂2)α1 +G0(x1)

+M0(α̇1 − x̂3)−M0
−1θ̂

T
ϕ

(12)
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where K2 ∈ Rn×n is a designed positive definite matrix,
ê2 = x̂2 −α1, α̇1 = −K1x̂2 + ẍd.

Furthermore, the adaptive law of weight vector in FLS is
proposed as :

˙̂θi = Γi

(
ηiϕi + γiθ̂i

)
(13)

where Γi = Γi
−1 is a positive definite matrix, η =

[η1, η2, ..., ηn]
T , and γi is positive designed parameters.

Theorem 1: Considering the extended state observer (8)
designed for the nonlinear system (1), the state estimation
errors are bounded in finite time with appropriate constant
parameters κ1, κ2, and κ3.

Theorem 2: For the nonlinear robotic system (1) subject
to uncertainties and disturbances, the FLSs are designed as
(6) and (7). The adaptation laws of FLS weight vector θi are
chosen as (13). Under the adaptive feedback control scheme
proposed as (12), the semiglobal stability of the closed-loop
system is guaranteed.

Considering the length of the paper, the proofs of Theorem
1 and Theorem 2 are omitted.

IV. UNCERTAINTY EVALUATION OF DYNAMIC
SYSTEM STATS

A. Interval Calculation based on BO Algorithm

The interval boundary of a dynamic state is essentially the
extreme value of the solution of a dynamic equation at every
integral. In general, the Monte Carlo (MC) method is the
simplest, most commonly used, and most accurate method.
Due to its high computational cost, it is usually only used to
generate reference solutions. Define the system state vector as
z(t) = [z1, z2] = [x1,x2]. In order to obtain the dynamic
state boundary quickly and accurately, this paper presents
a method based on Bayesian optimization (BO) to obtain
the system state boundary. Uncertainty parameters u is the
design parameter to be optimized, and the minimization or
maximization of state z(t) is the optimization goal.

The time range t ∈ [t0, te] is discretized into a set of
interpolation points (t0, t1, ..., tk, ..., te) and then the solution
at each time node is computed in turn. Fig. 3 shows the
procedure for calculating the dynamic boundary of state z1.

Method BO is a probabilistic model-based optimization
technique that aims to efficiently find the maximum or
minimum of an objective function. It combines a probabilistic
surrogate model with an acquisition function to guide the
search for optimal solutions [23], [24]. This process can be
described in three steps.
Step 1: A Gaussian process model is constructed according
to the current sample points at each time.
Step 2: Based on joint probability density function, the
probability density function, and Bayesian theory P (AB) =
P (A) ∗P (B |A) , calculate the posterior probability distribu-
tion.
Step 3: Design an acquisition function. Then, Maximizing
or minimizing the acquisition function can obtain the next
sampling point. The response of the new sample points is
then calculated and the sample set is updated.

Fig. 3: The boundary calculation process for state over time
[t0, te].

Remark 1: It needs to be pointed out that Gaussian
processes at all times share a sample set, and new sample
points obtained by Bayesian optimization at each time are
added to the total sample set.

Remark 2: In Step 3, the problem of maximizing or
minimizing the acquisition function is solved by particle
swarm optimization algorithm [25].

B. Time-depended Probability distribution of system states

Kernel Density Estimation (KDE) is a non-parametric
statistical technique used to estimate the probability density
function of a random variable. It works by placing a kernel
(a smooth, symmetric, and non-negative function) at each
data point and summing them to create a continuous density
estimate. The KDE method provides a flexible way to visu-
alize the underlying distribution of data, helping to identify
patterns, modes, and overall shape.

The definition of kernel density estimation is provided as
follows

p(x) =
1

nσ

n∑
i=1

K

(
x− xi

σ

)
(14)

where {xi}ni=1 is a given set of data points, n is the number
of points, K denotes the kernel function, σ is a bandwidth
parameter. The common kernel functions include uniform
kernel, Quadric kernel, and Epanechnikov kernel. Epanech-
nikov kernel functions have some advantages over other
kernel functions, such as their relatively small bandwidth
and therefore low sensitivity to noise. The expression of the
Epanechnikov kernel function is as follows:

K(z) =
3

4
(1− z2), for |z| ≤ 1 (15)
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Here, z is the standardized variable representing the relative
distance from a particular observation point. The Epanech-
nikov kernel has the shape of a smooth parabola with a
width of 2, exhibiting non-zero values within its core region
[−1, 1] and zero values outside the core. This configuration
ensures that data points farther away from the observation
point contribute less to the probability density estimation
during the process, providing a certain level of smoothing
effect.

In order to evaluate the time-depended probability distri-
bution of system states, probability distribution at every time
point is calculated. This detailed computation allows for a nu-
anced understanding of how the likelihood of various system
states changes over time, providing insights into the system’s
dynamic behavior under different conditions. The approach
is particularly useful in systems characterized by inherent
uncertainties or those subjected to external perturbations, as
it provides a framework for quantifying the impact of such
variables on the system’s performance over time. It facilitates
the identification of potential risks, thereby contributing to
more robust and reliable system design and operation.

V. SIMULATION RESULTS

In the simulation section of our research, we explored the
capability of our proposed approach to assess time-varying
states in the context of controlled robotic manipulators. The
results of these simulations provided a nuanced understand-
ing of how the system’s dynamic responses and probability
distributions evolve over time, illustrating the potential of our
innovative approach to significantly improve the precision of
state assessment under conditions of hybrid uncertainties.

In order to demonstrate the validity of the present method,
a simulation example on a two-DOF robot manipulator is
performed and analyzed. The dynamic model of the system is
described as equ.(1). The terms M , C, and G are calculated
as Ref. [22]. The friction force is modeled by Gauss exponent
model which takes Stribeck phenomenon into account

Tf =
2

π
arctan(Asq̇)

[
Mfc + (Mfs −Mfc)e

−(q̇/q̇s)
2
]

(16)
where Mfc is Coulomb friction, Mfs is the maximum
static friction, As is the shape correction factor, q̇s is the
Stribeck velocity. These four parameters are regarded as
interval uncertainty parameters. In addition, the external
disturbance is modeled as τd = [sin(t) cos(t); sin(2t) cos(t)].
The desired trajectory is given by xdi = sin(2πt), i = 1, 2.
The initial conditions for the simulation study are selected as
x1 = [0; 0], x2 = [2π; 2π].

The uncertain parameters in the system are denoted as u =
[m1,m2, l1, l2, As,Mfc,Mfs, qs]

T , and their characteristic
condition are provided in Table I. The structural parameters
m1, m2, l1, and l2 of the system follow a truncated normal
distribution, while the parameters As, Mfc, Mfs, and q̇s in
the friction model are treated as interval uniformly distributed
parameters. In the simulation, the user input parameters are
set as κ0 = 15, λ = 0.5, K1 = diag(60, 60), K2 =
diag(60, 60), Γi = diag(5, 5), γi = 3.

TABLE I: Characteristics of uncertain variables

Uncertain
variable

Uncertainty
type

lower
bound

upper
bound

mean
value

variance
value

m1 interval-probability 1.2 1.4 1.3 0.06
m2 interval-probability 1.4 1.6 1.5 0.05
l1 interval-probability 0.40 0.44 0.42 0.01
l2 interval-probability 0.32 0.36 0.33 0.01
As interval 90 120 - -
Mfc interval 2 6 - -
Mfs interval 8 12 - -
q̇s interval 0.8 1.2 - -

The simulation results are analyzed below to illustrate the
effectiveness of the proposed method. Initially, the tracking
error boundary is estimated using the BO algorithm flow
depicted in Fig. 3. The simulation spans from time 0 to
3 seconds. The tracking error interval is computed every
0.05 seconds throughout the 3-second simulation, and the
corresponding boundaries are determined. Fig. 4 presents the
simulation results for state tracking errors, including position
tracking errors and velocity tracking errors. Additionally,
results obtained using the Monte Carlo (MC) method are
provided for comparison, which based on 10000 simulations.
It can be seen from the figures that the boundary obtained
through BO is almost the same as the boundary obtained
through MC.
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Fig. 4: Comparison of interval boundary prediction between
method BO and method MC.

In addition, the state output distribution at a specific time
point is estimated by KDE method. The results obtained by
MC method are used as comparison group. Fig. 5 shows
the distribution of the state tracking error of two degrees
of freedom at three time points t = 1.0 s, 2.0 s, 3.0 s,
respectively. We can observe that the PDF curves obtained
by the two methods almost coincide.

VI. CONCLUSION

This paper introduces a novel approach for evaluating
the uncertainty in system states, incorporating the effects of
both interval and probability uncertainties while addressing
scenarios where certain states are unmeasurable. The pro-
posed state observer design enhances overall system observ-
ability, predicting traditionally unmeasurable states. Coupled
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Fig. 5: Comparison of distribution prediction between KDE
method and MC method.

interval-probability analysis provides a comprehensive eval-
uation of time-dependent state variations. The utilization of
advanced techniques, including Bayesian optimization and
kernel density estimation, improves computational efficiency
for decision-making in uncertain environments. Simulation
results affirm the effectiveness of the proposed methodolo-
gies, offering accurate state predictions and reliable informa-
tion support. These contributions advance dynamic system
analysis, providing valuable insights for developing robust
systems capable of handling complex and uncertain dynamics
across various applications in engineering and beyond.
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