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Abstract— The internal combustion engine faces a severe
energy conservation and emission reduction challenge. In this
regard, low-temperature combustion technology is a profitable
solution, allowing for pollutant emission reduction while im-
proving engine efficiency. However, the process is complex,
and the cycles are mutually coupled, making it a huge chal-
lenge to stabilize the entire process behavior. Also, the model
mismatch and the inherent stochasticity of the process bring
considerable difficulties to the application of control technology.
In this work, we propose a deep learning-based generative
model to learn the distribution of system uncertainties. The
uncertainty information is considered in the model predictive
control (MPC) strategy design. We adopt the disturbance-affine
stochastic MPC (sMPC) and transform the chance-constrained
MPC problem into some tractable optimization problems. The
results show better closed-loop performance with smaller output
variance, given the prior knowledge of uncertainty realization
from the proposed generative model.

I. INTRODUCTION

Gasoline controlled auto-ignition (GCAI), a form of low-
temperature combustion technology, can potentially reduce
CO2 emissions and significantly lower NOx raw emissions
[1]. The combustion process is driven by chemical chain
reactions and characterized by a homogeneous mixture.
Various techniques have been developed to actively influence
the combustion process, such as adjusting the air intake quan-
tity, mixing fuels with different reactants, and recirculating
the burnt residual mixture. One of the most common and
practical strategies is exhaust gas recirculation, achieved by
closing the exhaust valve early [2].

Since GCAI combustion induced by compression cannot
be directly controlled as ignition in spark ignition engines
or injection in compression ignition engines, the process is
highly dependent on the thermodynamic state and composi-
tion of the combustion mixture, which limits the operating
range of GCAI combustion [3]. Near the stable operating
boundary, stochastic cycles with irregular combustion, which
cannot be accurately predicted, might occur. When the
residual gas of the combustion outlier transfers into the
subsequent cycle by gas recirculation, a strong coupling
between the combustion cycles will be caused, leading to
unstable operating stages and strong cyclic variations. Thus,
controlling GCAI combustion is a challenging task [4].

Over the past decades, many combustion models for
simulation purposes and controller design have been the
focus of research. Among them, physics-based modeling has
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made significant progress, such as zero-dimensional single-
zone combustion and multi-zone models [5]. However, most
are physically detailed and overly complex, which increases
development costs and computational requirements. It leads
to difficulties in real-time implementation.

Recently, with the development in hardware capabilities
and the availability of large experimental data, machine
learning (ML)-based methods have been developed [6]–
[8]. These models can quickly learn the hidden mappings
between inputs and measurements, considerably simplify
the interactions between physical variables and provide the
possibility of real-time implementation for model-based con-
trollers. However, ML-based models trained with a large
amount of data are robust to outliers in the training set,
which makes it difficult to predict the stochastic combustion
irregularities that might occur. Besides, predicting irregular
combustions is also a big challenge for white-box models.

To handle the combustion outliers and other uncertain-
ties (model mismatch, unknown disturbances, measurement
noise, etc.), we propose a deep learning (DL)-based genera-
tive model method. Specifically, a DL-based nominal model
is deployed to describe the system dynamics, and an addi-
tional model is utilized to approximate the uncertainty dis-
tribution. Unlike the previous methods using discriminative
ML-based models, which can not fit the distribution as it is
an unsupervised learning problem, we use generative models
[9], [10] to learn the approximate uncertainty distribution
and generate new uncertainty samples with certain variations.
The generative models adopted in this work are flow-based
models [11], [12], aiming to explicitly learn the probability
distribution of the uncertainty by transforming the defined
latent random variables. The parametrized generative model
then generates the uncertainty samples. Given the uncertainty
information, we apply sMPC to ensure the robustness to
uncertainty in closed-loop performance. This work considers
the MPC strategy with affine dependence on disturbance
[13]–[15] and uses time-varying feedback gains instead of
the fixed gains in the open-loop optimization strategy. Ad-
ditionally, we transform the original optimization problem
with chance constraints into some tractable problems.

The remainder of this work is organized as follows.
Section 2 describes the experimental setup and the overview
of the GCAI process. In Section 3, the flow-based generative
model structures and the sMPC strategy are introduced.
Section 4 presents the simulative results of the generative
model and controller implementation. Finally, Section 5
concludes with the performance of the proposed method and
future research directions.
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II. EXPERIMENTAL SETUP

The size and quality of the training datasets are crucial
factors in determining the performance of deep neural net-
works. Generally, larger datasets can effectively reduce the
generalization error of models. For this study, we collected
experimental data using the Single Cylinder Research Engine
with a fully variable Electro-Magnetic Valve Train (EMVT).

The pressure trace concerning the crank angle in Fig. 1
depicts the typical GCAI process with the intermediate
compression and the main combustion. The EMVT allows
various valve strategies to operate the engine. In this work,
we use the symmetric Negative Valve Overlap (NVO) strat-
egy [18], which ensures that no intake or exhaust rebreathing
occurs by varying Exhaust Valve Closing (EVC) and In-
take Valve Opening (IVO) evenly around Top Dead Center
(TDC). We can modify the NVO duration in every cycle
for control purposes while Exhaust Valve Opening (EVO)
and Intake Valve Closing (IVC) are constants. Besides, the
amount of injected fuel and water significantly impacts the
entire process. Therefore, in addition to NVO, we utilize
the durations of fuel and water injection as control inputs,
yielding three control inputs of the system.

As system outputs, we choose surrogate parameters that
represent the cyclic combustion performance, namely com-
bustion phasing (CA50), indicated mean effective pressure
(IMEP), and maximum pressure rise rate (MPRR). CA50
represents the angle at which 50% of the heat is released.
It is related to combustion efficiency and stability. IMEP
is associated with the load, and MPRR is related to noise
and mechanical stress. In this work, the primary uncertainty
considerations concern CA50 and IMEP. For MPRR, we
limit it below its upper limit with 5 bar/°CA. In addition, the
experimental dataset was collected with various manipulated
variables (NVO and injection durations) at the specified
speed operating point of 1500 rpm.

III. METHODOLOGY

The GCAI combustion process is complicated, and the
irregularity of combustion makes it difficult for the model to
accurately predict the states of the next cycle. In this work,
we assume that uncertainty is a random variable that follows
a specific probability distribution. Then, we can consider the
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Fig. 1. GCAI pressure trace at CA50 = 6 °CA aTDC and IMEP = 2.9
bar.

following discrete-time nonlinear system:

xk+1 = f(xk, uk) + g(xk, wk) (1)

where xk ∈ Rnx is the state vector at the time instant
k, uk ∈ Rnu is the control input vector and wk ∈ Rnw

is the disturbance vector. The mapping f : Rnx × Rnu →
Rnx denotes the nominal nonlinear system, and g : Rnx ×
Rnw → Rnx denotes the uncertainty model that describes
the uncertainty realization. Here, we assume that wk follows
a standard normal distribution, which means that elements
are mutually independent.

A. Flow-based model structure

The uncertainty model g in (1) is related to the current
states and disturbances, and its outputs, the uncertainties, are
the observed variables. We aim to learn the distribution of
the uncertainties based on a flow-based model [11], [12].

By introducing latent variables Z, which follow a standard
normal distribution with the same dimensions as the observed
variables (uncertainties) Y , and a fixed model structure with
parameter θ, we can find the approximate marginal distribu-
tion of Y through the model parameterization. Specifically,
we can find an approximate distribution qθ (briefly q) to fit
the real distribution pY and obtain samples of Y by sampling
from the latent distribution of Z. The goal is to maximize
the following objective function:

Ey∼pY (y) [log q(y)] (2)

Generally, we need to consider solving the following inte-
gration:

q(y) =

∫
z

q(z)q(y|z)dz (3)

In other words, we need to solve the maximum log-likelihood
problem with latent variables given in (2) and (3).

Commonly used generative models, like Variational Au-
toencoder (VAE) [9] and Generative Adversarial Networks
(GAN) [10], use different strategies to tackle such problems.
VAE utilizes an encoder-decoder structure to approximate
the posterior probability of latent variables and optimize the
lower bound of the likelihood. GANs solve the above prob-
lem through the adversarial interaction between a generator
and a discriminator.

Unlike previously mentioned generative models, flow-
based models used in this work avoid the integration in
(3) by explicitly transferring the latent variables. The main
idea of the models is to find a mapping h from observed
variables to latent variables. In our hypothesis, mapping h
additionally requires decoupling the effects of the system
states on observed variables and ultimately transforming
them into independent latent variables. Thus, our goal is
to find the conditional probability distribution of observed
variables given the current states.

We first focus on the latent variables Z and the observed
variables Y . Specifically, we search for a variable transfor-
mation that ensures a bijective mapping h between two linear
spaces with the same dimensions. In particular, if Y follows a
zero-mean normal distribution, we can find an isomorphism
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between these two spaces, i.e., g in (1) can be presented
as Dwk with D ∈ Rnx×nw . The transformation for general
cases can be written as:

pY (y) = pZ(h(y))

∣∣∣∣det ∂h(y)∂y

∣∣∣∣ (4)

where pY is the probability density function (pdf) of Y , pZ
is the pdf of Z. The latter is the determinant of the Jacobian
matrix, which can be the ratio of the differential volume
element before and after the transformation. The transfor-
mation in (4) is a change of variable method obtained by
differentiating the cumulative distribution functions on both
sides. Meanwhile, the requirement on non-negativity and
normalization of probability distributions is ensured. In this
case, we obtain samples from the target variable distribution
by changing the latent variable samples. Subsequently, we
can find the corresponding mapping by maximizing the log-
likelihood function below:

log pY (y) = log pZ(h(y)) + log

∣∣∣∣det ∂h(y)∂y

∣∣∣∣ (5)

The question is how to define the mapping h or how to design
the model so that h is bijective and the computation of the
Jacobian matrix is easy. Here, we adopt a model similar to the
structure in [11], which transforms the latent variables to the
observed variables using a combination of coupling layers
h−1
0 ◦ h−1

1 ◦ · · · ◦ h−1
n−1. The number of layers n depends on

the complexity of the distribution. The Jacobian determinant
of the entire transformation can be obtained as the product
of the Jacobian determinants of each layer. The definition of
the i-th coupling layer is given by:

z
(i+1)
I1

= z
(i)
I1

(6)

z
(i+1)
I2

= g̃
(
z
(i)
I2

,m
(
z
(i)
I1

))
(7)

where the input z(i) ∈ Rd1+d2 is divided into z
(i)
I1

∈ Rd1 and
z
(i)
I2

∈ Rd2 , m : Rd1 → Rnm is a nonlinear function of z
(i)
I1

,
g̃ : Rd2 ×Rnm → Rd2 is the coupling function, and z(i+1) is
the i-th layer output. We use a simple neural network as the
structure of m, which will be parameterized during training.
Moreover, we choose the identity mapping in (6) and adopt
an additive coupling in (7), which can also be other coupling
schemes, such as multiplication coupling and affine coupling.
In this case, (7) can be written as:

z
(i+1)
I2

= z
(i)
I2

+m
(
z
(i)
I1

)
(8)

and the Jacobian matrix of the coupling layer is given by:

∂z(i+1)

∂z(i)
=

 Id1 0
∂z

(i+1)
I2

∂z
(i)
I1

Id2

 (9)

The determinant of this Jacobian matrix is simply one.
However, this is the determinant of the inverse transforma-
tion, and we still need to invert it to keep consistent with
the determinant in (5). Besides, we can obtain the inverse
function of the coupling as:

z
(i)
I1

= z
(i+1)
I1

(10)

z
(i)
I2

= z
(i+1)
I2

−m
(
z
(i+1)
I1

)
(11)

However, it is not sufficient to define a single layer with
(6) and (8) for transformation due to identity mapping.
We also need to exchange the order of coupling, i.e., (8)
undergoes identity mapping, and (6) undergoes nonlinear
mapping. According to this, more complex fitting effects can
be achieved with increasing coupling layers.

Here, another issue is that the determinant of the Jacobian
matrix for the entire model is always one, meaning that the
differential volume element has not been changed. It may
limit the network’s capacity to some extent. To address this
issue, we increase the degrees of freedom by introducing
trainable scaling parameters to each coupling layer. Mean-
while, we also consider the influence of the current states
on the nonlinear mapping mi for each layer i. The final
proposed model is shown in Fig. 2, where αi denotes the
trainable scaling in the layer i.

Fig. 2. The proposed flow-based model with three coupling layers. At each
time instant k, zk and xk form the model inputs. In each layer i, nonlinear
mapping mi and scaling parameter αi are applied, and z

(i+1)
k is the layer

output. The final output of the model is yk .

By training the model with experimental datasets, includ-
ing the current states and the prediction uncertainties, we can
approximate the conditional distribution of the uncertainty
vector given the states. In this case, g in (1) describes the
proposed uncertainty model, and w is the latent variable
following a standard normal distribution.

B. Stochastic model predictive control

In this subsection, we discuss the application of the
generative model with sMPC for each combustion cycle. At
the end of each cycle, we obtain the corresponding states,
and the generative model provides prior knowledge about
uncertainties to the MPC. In addition, we assume that a
linearization of the model around the operation point is a
sufficient good approximation. For convenient and effective
use of control, we linearize the nominal model around the
operating point for each cycle and the generative model
around the current states and mean value of the latent
variables. The linearized model is given by:

xk+1 = Axk +Buk + D̃(w̄)xk +Dwk (12)
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where A ∈ Rnx×nx and B ∈ Rnx×nu are the state and
input matrix obtained by linearizing the nominal model, D̃ ∈
Rnx×nx is the Jacobian matrix of g in (1) with respect to xk,
and D ∈ Rnx×nw is the Jacobian matrix of g with respect
to wk. Besides, w̄ is the mean value of wk.

As the disturbance vector wk is a random variable and the
parameters of D̃ change with the latent variable wk, we can
further linearize the matrix parameters to:

xk+1 = A(0)xk +Buk +

nw∑
i=1

w
(i)
k A(i)xk +Dwk (13)

where A(0) = A + D̃, the scalar w
(i)
k represents the i-th

element of wk, and A(i) ∈ Rnx×nx is the uncertainty matrix
concerning w

(i)
k . Then, (13) presents a system with mixed

additive and multiplicative uncertainty. The bias produced
by the generative model will be additionally added to the
absolute prediction value. For simplicity, we only consider
the linear system with additive uncertainty as shown in (12).
Note that the additive uncertainty depends on the current
states and changes as the state variables vary.

Now we consider the discrete-time linear system:

xk+1 = Axk +Buk +Dwk (14)

which is subject to the linear state constraints:

X = {x ∈ Rnx |Fx ≤ f} (15)

where F ∈ Rnf×nx , f ∈ Rnf , and the inequality operation
here is element-wise. The system is also subject to the linear
input constraints:

U = {u ∈ Rnu |Gu ≤ g} (16)

where G ∈ Rng×nu , g ∈ Rng . Next, we can minimize the
following MPC problem:

J(xk,uk,wk) =
N−1∑
i=0

(∥∥ϕi|k(xk,uk,0)− xref

∥∥2
Q
+
∥∥ui|k(xk,0)

∥∥2
R

)
+
∥∥ϕN |k(xk,uk,0)

∥∥2
W

s.t. P (Fϕi|k(xk,uk,wk) ≤ f) > p ∀i ∈ {0, ..., N}
P (Gui|k(xk,wk) ≤ g) > p ∀i ∈ {0, ..., N − 1}
wk ∼ N (0nwN , InwN×nwN )

(17)

where xk is the given state vector at the instant k, xref

is the setpoint, uk =
[
uT
0|k . . . u

T
N−1|k

]T
is the predicted

input sequence, wk =
[
wT

0|k . . . w
T
N−1|k

]T
is the predicted

disturbance sequence, N is the prediction horizon, p is the
probability of the constraint satisfaction, and ϕi|k is the
solution to (14) at predicted time instant i. Here, we adopt the
nominal cost without disturbance. As wk follows a normal
distribution, i.e., its support is unbounded, the state and input
constraints must be represented as chance constraints.

Instead of commonly used open-loop control strategies
with deterministic pre-stabilization feedback, we adopt a

less restrictive control strategy, i.e., we utilize time-varying
linear feedback combined with feedforward control. Here,
the feedback gain Kk also depends on the evolution of the
states, which can be written as:

uk = Kkxk + vk (18)

Kk =


K0,0|k 0 · · · 0 0
K0,1|k K1,1|k · · · 0 0

...
...

. . .
...

...
K0,N−1|k K1,N−1|k · · · KN−1,N−1|k 0


(19)

where xk =
[
xT
0|k . . . x

T
N |k

]T
is the predicted state sequence

with x0|k = xk, vk =
[
vT0|k . . . v

T
N−1|k

]T
is the feedforward

control sequence over the prediction horizon. Besides, we
can write xk in terms of xk, uk and wk as:

xk = Hxxk +Huuk +Hwwk (20)

with matrices Hx, Hu and Hw, which can be found in the
appendix. By substituting (20) into (18), we can obtain the
equation of uk with respect to xk, wk, vk, and Kk, where
vk and Kk are optimization variables, and xk is given at
each time instant.

However, it is not a linear equation with respect to the
optimization variables, which leads to a non-convex opti-
mization problem. The good news is that we can convert the
original formula into a linear equation through a bijective
variable transformation via Youla parameterization [16]:

uk = Vkwk + hk (21)

with

hk = (I −KkHu)
−1KkHxxk + (I −KkHu)

−1vk (22)

Vk = (I −KkHu)
−1KkHw

=


0 0 · · · 0 0

V0,1|k 0 · · · 0 0
V0,2|k V1,2|k · · · 0 0

...
...

. . .
...

...
V0,N−1|k V1,N−1|k · · · VN−2,N−1|k 0


(23)

It is equivalent to (18) but with new variables hk and Vk.
Both the new and old optimization variables can be converted
into each other. Then, the predicted state sequence in (20)
can be rewritten with the new variables as:

xk = Hxxk +Huhk +HuVkwk +Hwwk (24)

Next, we consider the expression of the chance constraints.
The state chance constraints can be written in terms of (15)
as:

P (Ω) =

∫
W

1Ω(wk)dP =

∫
Ω

p(wk)dwk > 1− ϵ (25)

where P is a probability measure defined on the space W of
wk and the σ-algebra on W, and p is the pdf of wk. Besides,
the function 1 is the indicator function concerning the set Ω,
while Ω is the feasible set where the constraints hold and is
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a measurable set. Moreover, ϵ is the probability of accepting
constraint violations. The feasible set Ω is defined as:

Ω = {wk|Fxk − f ≤ 0} (26)

where F = IN+1×N+1 ⊗ F , f = 1N+1×1 ⊗ f , and ⊗ is
Kronecker product.

In (25), the joint probability of all constraints over the
prediction horizon should be greater than the value of 1− ϵ.
It is easier to handle each constraint probability separately.
Thus, we consider that the probability of being in the feasible
set is 1− ϵ0 for each constraint, as follows:

P ({wk|Fjxk − fj ≤ 0}) > 1− ϵ0 (27)

where j denotes the j-th row of the matrix. Analog to the
state constraints, we obtain the constraints for inputs as:

P ({wk|Gjuk − gj ≤ 0}) > 1− ϵ1 (28)

where ϵ1 is the probability of the input constraint violation.
Meanwhile, we transform the optimization variables into

vector form. Further explanations can be found in the ap-
pendix. Then, the state constraint inequality is written as:

Fxjxk + Fujhk + sTk T
T
j wk + Fwjwk − fj ≤ 0 (29)

where Fxj = FjHx, Fuj = FjHu, Fwj = FjHw,
Tj ∈ RnwN×nwnu

N(N−1)
2 , hk and sk ∈ Rnwnu

N(N−1)
2 are

optimization variables.
To address the chance-constrained problem, we need to

further transform the chance constraints. From (27), for any
wk that satisfies the normal distribution, we can find a
feasible neighborhood ball B(0; r) around the mean point
with radius r in the space of wk so that the measure on this
ball is a predefined value less than one. This allows us to
obtain an uncertainty boundary for disturbance wk, which
can be determined by the chi-square distribution. The chi-
squared distribution represents the sum of squares of n inde-
pendent standard normal random variables. For instance, the
probability of a two-dimensional standard normal distribution
within a circle B(0; r) can be expressed by this distribution.
The degree of freedom n of the distribution is two. Then,
the corresponding boundary r of the circle with a cumulative
probability of 95%, as an example, is 2.45.

For any feasible optimization variables, the left side of
the inequality in (29) is an affine function of wk, and
the constraint forms a half-space with respect to wk, so
the neighborhood ball B(0; r) must lie in this half-space.
Then, the feasible set of optimization variables comprises
the feasible optimization variables described above.

Besides, another two aspects need to be noted: 1. Only
considering the measure on the neighborhood ball might be
conservative. In any feasible half-space with fixed optimiza-
tion variables, not just the ball, there exists a half-space
passing through the mean point with a probability measure
of 0.5. We should take the measures of both into account;
2. The constraint is only related to the realizations of the
previous i disturbances at the i-th step of the prediction.

So far, we have transformed the chance constraint problem
into a strict boundary problem. For simplicity, we consider

expressing the boundary as the inscribed cube of the hy-
persphere. For instance, the unit circle in a two-dimensional
space is expressed as the convex hull of the vertices of the
inscribed square, i.e., conv({(0, 1), (0,−1), (1, 0), (−1, 0)}).
In the region where the circle and the square do not inter-
sect, the probability density is low, which is a reasonable
assumption in low-dimensional space. But strictly consid-
ered, when the dimension is extremely high, the volume
of the inscribed hypercube will decrease to zero as the
dimension increases. Therefore, the assumption in extremely
high-dimensional space is not a rational choice. This work
focuses on incorporating flow-based models to learn the
distribution of uncertainty. The purpose of sMPC is currently
for convenience of application.

The simplified uncertainty set can be represented by a
convex hull of the vertices, which we denote as W . Then,
(27) combined with (29) can be reformulated as:

Fxjxk + Fujhk + max
wk∈W

sTk T
T
j wk + Fwjwk − fj ≤ 0 (30)

If all vertices in set W satisfy the inequality condition in
(30), the convex combination of the vertices will satisfy the
condition. Thus, the constraints can be transformed into the
following inequality constraints:

Fxjxk +Fujhk + sTk T
T
j w

(n)
k +Fwjw

(n)
k − fj ≤ 0 ∀n ∈ N

(31)
where w

(n)
k is the vertex of W , and N is the index set

of vertices of W . Besides, the handling of input chance
constraints is similar. As a result, the sMPC problem in
(17) is transformed into a quadratic program optimization
problem with constraints in (31). Note that the number
of inequality constraints increases exponentially with the
prediction horizon. When the prediction horizon is large,
other effective methods need to be considered.

In addition, we can also directly consider the ball boundary
problem. For the defined neighborhood ball set B(0; r), the
support function with respect to the set is given by:

hB(x) = max
wk∈B(0;r)

xTwk (32)

Meanwhile, we can simplify (29) as:

ΓTwk +Υ ≤ 0 (33)

where Γ and Υ are both affine functions of the optimization
variables. Comparing these two equations, we obtain the
following inequality constraint:

hB(Γ) ≤ −Υ (34)

It is easy to prove that for the ball set B(0; r), the value
of the function hB(Γ) is r ∥Γ∥2. Therefore, the original
MPC problem can be transformed into a conic program
optimization problem with second-order cone constraints.

IV. RESULTS

In this section, we first introduce the nominal model and
compare it with the model in [17]. Then, we compare the
distribution generated by the proposed flow-based model to
the real uncertainty samples. Finally, we apply a standard
and stochastic MPC to the GCAI control problem.
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A. Nominal Model
A simple three-layer fully connected neural network with

skip connections in each layer is used as a nominal model.
The model inputs (NVO, fuel, and water injection durations)
and outputs (CA50, IMEP, and MPRR) have been described
in Section II. The dataset consists of 53, 000 combustion
cycles, divided into training, validation, and test datasets
with 40, 000, 10, 000, and 3000 samples, respectively. All
samples are shuffled to ensure sample independence. The
performance results are compared to those of an experimental
model in [17] with an LSTM structure.
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Fig. 3. Qualitative comparison of the nominal and baseline models in [17].
The prediction results of CA50 and IMEP by two methods are depicted in
the first and second rows. The horizontal axis represents the predicted values
in each subfigure, while the vertical axis represents the ground truth.

The comparison of the nominal model and the baseline
model is shown in Fig. 3. As we focus on the fitting capacity
of CA50 and IMEP, Fig. 3 shows the prediction of these two
engine parameters. The closer the sample points are to the
red line, the better the model fits the variable. We can see the
points of the nominal model are clustered closer to the red
line, showing a better prediction on both CA50 and IMEP
compared to the LSTM model.

In Table I, the coefficient of determination (R2) and
normalized root mean squared error (NRMSE) with the
interquartile range as normalization are displayed.

TABLE I
QUANTITATIVE COMPARISON OF ENGINE PARAMETERS.

nominal model baseline model (LSTM)
CA50 (R2) 0.755 0.528
IMEP (R2) 0.971 0.945

CA50 (NRMSE) 0.484 0.673
IMEP (NRMSE) 0.105 0.144

Taking a closer look at the quantitative results, we can
conclude that the nominal model shows a better fitting ability

for both CA50 and IMEP compared to the LSTM model.
It is notable that the nominal model significantly improves
the prediction performance of CA50. Although both models
perform well in predicting IMEP in quantitative analysis, we
can see in Fig. 3 that the LSTM model has a clear barrier
in predicting low IMEP values.

B. Generative model

The previous subsection demonstrates that the nominal
model can fit complex systems well. Based on the previous
findings, the residuals between the predicted data of the
nominal model and the ground truth are used as training
and validation datasets for the flow-based generative model.
In addition, 10, 000 data pairs, including the states and
residuals, are used for testing. As introduced before, the
generative model is fed with samples from a standard normal
distribution and the current states to generate the approxi-
mated residual samples.

Fig. 4. Comparison among (a) the real uncertainty distribution, (b) the
generated distribution, and (c) the fitted normal distribution.

The generated data and the real residuals are shown
in Fig 4. To provide a detailed comparison of different
distributions, we additionally use a fitted normal distribution.
The normalization parameters for CA50 and IMEP are 2.96
°CA and 0.51 bar, respectively.

As shown in Fig 4, the real residual uncertainty shows
a non-standard distribution, which is asymmetric about the
mean, meaning that the skewness is not equal to zero.
It can also be seen that the kurtosis of the residuals is
higher than that of a normal distribution, indicating a sharper
peak and a steeper shape. Estimating the first and second
moments of the distribution is not sufficient to accurately
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describe the details of the real uncertainty distribution. For
example, there are more outliers in the bottom right of the
real distribution, but the probability density compared to the
center is relatively low. These points attract more concerns
as they may be caused by combustion irregularities, which
are hard to predict. Thus, it is impractical to use a simple
normal distribution to reflect the complex fact.

However, the generative model fits the real uncertainty
distribution well. The distribution shape of the generated
samples is similar to the ground truth. Therefore, we can
quickly obtain samples of the target distributions through the
generative model. Nevertheless, the training of the model
is sensitive to hyperparameters. Thus, we expect a more
proper fitting of distribution by further fine-tuning. Currently,
this generative model only considers two variables: CA50
and IMEP. Therefore, uncertainties are added to these two
variables in the later subsection.

C. Stochastic MPC

So far, we have performed learning-based modeling of
the complete system, including the nominal model and the
generative model for uncertainty prediction. In this section,
we consider both of them in sMPC strategies.

We first linearize the models for each cycle. It is easy to
calculate the Jacobian matrices based on the backpropagation
rule of the neural network. We choose a prediction horizon
of N = 3, the confidence probability of 90% and 95%
for each state and input constraint, and the cost weights
as identity matrices concerning all the normalized variables.
For comparison, we use a standard MPC, which is also
applied to the linearized models and a setpoint of 7 °CA
aTDC for CA50 to ensure a stable combustion efficiency. The
reference of IMEP is variable, which is related to the torque
requirement. We perform 50 simulations for both MPCs, and
the results are shown in Fig 5 and Fig 6.
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Fig. 5. Performance comparison of CA50 and IMEP with sMPC and the
standard MPC. The blue lines and red lines represent the average value of
50 simulations for sMPC and MPC, respectively. The reference is marked
as brown lines.

Fig 5 depicts the average control performance of CA50
and IMEP in 50 simulations with the sMPC and the standard
MPC. In the first two-thirds of the cycles, the MPC per-
forms slightly better than sMPC concerning the mean values
with lower control deviations, where the engine operates
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Fig. 6. Qualitative variation comparison of CA50 with the sMPC and the
standard MPC in 50 simulations. The blue and red regions show the various
samples of the sMPC and MPC, respectively. The dark-colored lines present
the mean value of the samples.

at proper load conditions. At the same time, MPC has
better transient performance, with no significant variation in
CA50. However, in the remaining cycles, the proposed sMPC
outperforms MPC obviously in CA50 due to the influence of
the uncertainties at the boundary load condition. We can see
more details in Fig 6, which reports the variation of CA50
in 50 simulations with sMPC and MPC. The variation range
with the MPC is larger than the proposed sMPC, especially in
the remaining one-third of the cycles. As delayed combustion
could lead to irregular outliers in consecutive cycles, large
variations are undesirable. Similar results are reflected in the
quantitative statistics of CA50 in Table II.

TABLE II
QUANTITATIVE COMPARISON OF CA50 WITH THE SMPC AND MPC.

variance ratio (>11 °CA) ratio (<3 °CA)
sMPC 2.74 1.79% 0.38%
MPC 3.59 3.37% 0.73%

V. CONCLUSION

This work proposes a generative model to learn the
uncertainty distribution between the model and experimental
data. Based on this model, we implement a less restrictive
stochastic MPC strategy with affine disturbance feedback.
Meanwhile, we transform the original optimization problem
with chance constraints into tractable optimization prob-
lems. The proposed generative model is able to achieve the
performance that simple distribution approximation cannot,
such as fitting the skewness and kurtosis of the distribution.
Furthermore, the generative model provides prior knowledge
about uncertainties for controllers, improving the control per-
formance with smaller output variances. However, the current
work still has some limitations. We do not make full use of
the generative model’s capabilities as the current assumption
about the conditional distribution of uncertainties given the
states is a normal distribution due to the linearization. Next,
we will consider ways to utilize the nonlinear information
implied by the generative model. For instance, we can use
random samples to solve scenario optimization problem.
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VI. APPENDIX

The Matrices Hx, Hu and Hw are given as:

Hx =


I
A
A2

...
AN

 , Hu =


0 0 · · · 0
B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B

 ,

Hw =


0 0 · · · 0
D 0 · · · 0
AD D · · · 0

...
...

. . .
...

AN−1D AN−2D · · · D


(35)

Then, we consider the following inequality:

Fxjxk + Fujhk + FujVkwk + Fwjwk − fj ≤ 0 (36)

where Fxj = FjHx, Fuj = FjHu, Fwj = FjHw, hk and
Vk are optimization variables, and wk is the disturbance
sequence. Next, we consider each Vq,p|k in Vk and rewrite
FujVk as:

FujVk =

N−1∑
p=1

p−1∑
q=0

Fuj

(
Ep,q ⊗ Vq,p|k

)
(37)

with Fuj ∈ R1×nuN , Vq,p|k ∈ Rnu×nw , and Ep,q ∈ RN×N .
The matrix Ep,q has a value of one at (p+1, q+1) and zeros
elsewhere. Then, we can make the following transformation:(

Fuj

(
Ep,q ⊗ Vq,p|k

))T
=

(
ET

p,q ⊗ V T
q,p|k

)
FT
uj

= vec
(
V T
q,p|kF̃Ep,q

)
= vec(Inw×nw

V T
q,p|kT̃ )

= (T̃T ⊗ Inw×nw)vec(V
T
q,p|k) = Tp,qvec(V

T
q,p|k)

(38)

where vec(·) denotes the vectorization of the matrix into a
column vector, vec(F̃ ) = FT

uj with F̃ ∈ Rnu×N , T̃ = F̃Ep,q

with T̃ ∈ Rnu×N , and Tp,q = T̃T ⊗ Inw×nw
with Tp,q ∈

RnwN×nwnu . Then, (37) can be written as:

VT
k F

T
uj = [T1,0, T2,1, ..., TN−1,N−2][

row(V0,1|k), row(V1,2|k), ..., row(VN−2,N−1|k)
]T

= Tjsk
(39)

where row(·) is the row expansion function of a matrix,
Tj ∈ RnwN×nwnu

N(N−1)
2 , and sk ∈ Rnwnu

N(N−1)
2 is the

extended vector form of Vk.
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