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Abstract— In this paper we study a novel solvability no-
tion for discrete-time singular linear switched systems with
inputs. We consider the existence and uniqueness of a solution
on arbitrary finite time intervals with arbitrary inputs and
arbitrary switching signals, and furthermore, we pay special
attention to strict causality, i.e. the current state is only allowed
to depend on past values of the state and the input. A
necessary and sufficient condition for this solvability notion
is then established. Furthermore, a surrogate switched system
(an ordinary switched system that has equivalent input-output
behavior) is derived for any solvable system. By utilizing those
surrogate systems, we are able to characterize the reachability
and controllability properties of the original singular systems
using a geometric approach.

I. INTRODUCTION

We consider in this study a class of switched systems
where each mode is a discrete-time singular linear system
of the form

Eσ(k)x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k), (1)

where k ∈ N is the time instant/step, x(k) ∈ Rn is the
vector of states, u(k) ∈ Rm,m ∈ N is the vector of inputs,
σ : N → {0, 1, 2, ..., p} is the switching signal ruling which
mode σ(k) is active at time instant k, Ei, Ai ∈ Rn×n, and
Bi ∈ Rn×m. The matrices Ei are in general singular yet
may be nonsingular, and thus system (1) also covers ordinary
systems. The switching signal σ is triggered only by the time
and not by the state vectors or the input values. Furthermore,
the switching signal σ is assumed to have the following form

σ(k) = σj if k ∈ [ksj , k
s
j+1), j = {0, 1, 2, ...}, (2)

where ksj ∈ N denote the switching times with ks0 = 0
and σj ∈ {0, 1, ..., p}. Assume that the switching times are
strictly increasing i.e. ksj+1 > ksj . This means that each mode
in the switched system is active for at least one time instant
every time it is active. The considered switching signal form
is illustrated in Fig. 1.

The pioneering study for the non-switched case of (1) was
established a few decades ago, which covers the solution
theory as well as the fundamental properties including con-
trollability, see e.g. [1], [2], [3], [4]. However, the consistency
set (the set containing all consistent initial values) lacks
studies until a geometric approach and a projector lemma
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Fig. 1. The mode sequence (2)

were utilized in [5] in establishing the consistency set.
Furthermore, in the same study, the one-step map was also
introduced, which was then used to formulate the surrogate
system, which is an ordinary system having the same input-
output behavior.

Meanwhile, switched systems deserve deep research both
in theory and practical applications as switching among di-
verse system structures is a fundamental component in many
systems such as power systems [6] and electronics [7]. In
particular, switched systems also arise naturally in sampled-
data systems [8], [9], [10]. If all Ei are nonsingular, systems
of the form (1) belong to (ordinary) linear switched systems,
which have been extensively studied for the solution theory
as well as its fundamental properties including observability,
determinability, reachability, controllability, and stability (see
e.g. [11], [12], [13], [14]). In particular, the matrices Ei

in system (1) may be singular in the applications in vari-
ous fields such as economic systems [15] and constrained
mechanical systems [16], [17]. The solution theory for the
switched system (1) is still limited in literature due to the
complexity of finding a condition for the existence and
uniqueness of a solution with the presence of singular Ei.
A recent study in [5] provides a solvability characterization
for system (1), and surrogate systems were also established;
however, the corresponding one-step map formula depends
on the mode at k = −1 which is not clear how it affects the
solution, and the solution at a time instant depends not only
on past states and inputs but also on the current input.

Besides the solution theory, reachability and controllability
properties are essential that need to be studied for analysis
and control design purposes. In the continuous time domain,
controllability of system class (1) has been extensively
studied, see e.g. [18], [19], however, systems in the discrete-
time domain still lack studies.

In this paper, the solution theory is studied for system (1)
in which the solution at any time instant depends only on
past information. The corresponding necessary and sufficient
conditions for this solvability notion are also established.
For solvable systems, surrogate systems are then introduced
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which can be used to derive the systems’ explicit solutions.
Moreover, by utilizing those surrogate systems, necessary
and sufficient conditions for reachability and controllability
characterizations are established.

In the following we let M−1X denote the preimage of
a (possibly) singular matrix M ∈ Rn×n over a set X ,
i.e. M−1X = {ξ ∈ Rn : Mξ ∈ X}. A generalized
inverse of M ∈ Rm×n is a matrix M+ ∈ Rn×m that
satisfies MM+M = M [20]; M+ is not unique, but one
possible choice is the well known Moore-Penrose inverse.
Furthermore, we have that

M−1{x} = {M+x}+ kerM ∀x ∈ Rm. (3)

The natural numbers (including zero) are denoted by N and
we also use the interval notation for integers, i.e. [k1, k2] :=
{k1, k1+1, . . . , k2−1, k2}. The symbol ⊕ denotes the direct
sum of subspaces, in particular, when writing V ⊕ W we
implicitly assume/require that V ∩W = {0}.

II. SOLUTION THEORY

A. Definition and Characterization

Recall the Inhomogeneous Singular Linear Switched
System (InhSLSS) (1). For each mode i, define Ŝi :=
A−1

i (im[Ei, Bi]) = {ξ ∈ Rn : Aiξ ∈ im[Ei, Bi]}. In this
study, we consider the following solvability notion in which
we want to have, for any arbitrary switching signal, a unique
solution on any finite discrete time interval [k0, k1], k0, k1 ∈
N, k0 < k1 with x(k0) = xk0

∈ Ŝσ(k0), and the state at any
k > k0, x(k), is determined by only x(k0) and past inputs
u(k0), u(k0 + 1), . . . , u(k− 1), i.e., the solution behavior is
strictly causal.

Definition 2.1 (Solvability of InhSLSSs) We call system
(1) locally strictly causally uniquely solvable (for short just
solvable) if, for all k0, k1 ∈ N, k1 > k0, all xk0

∈
Ŝσ(k0), all input sequences (u(k0), u(k0 + 1), ..., u(k1 − 1))
and all switching signals there exists a unique sequence
(x(k0), x(k0 + 1), . . . , x(k1)) with x(k0) = xk0 such that
(1) holds for all k ∈ [k0, k1] and for some u(k1).

Strict causality is required here in which the solution
at k1, x(k1), depends only on the past states and inputs.
Furthermore, a unique solution is required for the system
starting from any initial time.

We present a necessary and sufficient condition for the
InhSLSS (1) to become solvable in the following theorem.
Furthermore, the surrogate switched system is also intro-
duced in this theorem.

Theorem 2.2: The InhSLSS (1) is solvable in the sense of
Definition 2.1 if and only if

E+
j AjŜj +imE+

j Bj ⊆ kerEj ⊕Ŝi ∀i, j ∈ {0, 1, ..., p}. (4)

If solvable, its solution satisfies

x(k + 1) = Φ̂σ(k+1),σ(k)x(k) + Θ̂σ(k+1),σ(k)u(k), (5)

where Φ̂i,j = Π
kerEj

Ŝi
E+

j Aj , Θ̂i,j = Π
kerEj

Ŝi
E+

j Bj , the

matrix E+
j is a generalized inverse of Ej and Π

kerEj

Ŝi
is

the canonical projector from kerEj ⊕Ŝi to Ŝi. In particular,
x(k) ∈ Ŝσ(k) for all k ∈ N.

Proof: Part 1: the solvability condition
Necessity: For any solution x(k) at any time instant k of
any mode j, the solution x(k + 1) of any mode i satisfies
Ejx(k + 1) = Ajx(k) + Bju(k) which implies, by the
preimage property (3),

x(k + 1) ∈ E−1
j (AjŜj + imBj)

= E+
j AjŜj + imE+

j Bj + kerEj .

The solution x(k + 1) also satisfies Eiξ1 = Aix(k + 1) +
Biξ2 for some ξ1 ∈ Rn and ξ2 ∈ Rm. Again, by the same
preimage property, we have

x(k + 1) ∈ A−1
i (im[Ei, Bi]) = Ŝi. (6)

By applying U = E+
j AjŜj + imE+

j Bj , V = Ŝi and
W = kerEj to the projector lemma in [21, Lem. 2.3]1,
the uniqueness of x(k + 1) implies E+

j AjŜj + imE+
j Bj ⊆

kerEi ⊕ Ŝi for all i, j ∈ {0, 1, ..., p}.
Sufficiency: The proof is done by induction. First, we will
show that for all x(0) = x0 ∈ Ŝσ(0), all u(0) ∈ Rm, and
all switching signals σ(0) = j and σ(1) = i, there exists a
unique x(1) which satisfies (1) at k = 0 and k = 1 i.e.

Ejx(1) = Ajx(0) +Bju(0)

Eiξ = Aix(1) +Biν

for some ξ ∈ Rn and ν ∈ Rm. Again, by the preimage
property (3), the latter is equivalent to

x(1) ∈ E−1
j (Ajx0 +Bju(0))

= {E+
j Ajx0 + E+

j Bju(0)}+ kerEj

x(1) ∈ A−1
i (im[Ei, Bi) = Ŝi.

The condition E+
j (Ajx(0)+Bju(0)) ⊆ Ŝi⊕kerEj implies

that
{E+

j Ajx0 + E+
j Bju(0)}+ kerEj ∩ Ŝi

is a singleton (be the projector lemma) for all x0 ∈ Ŝj and
all u(0) ∈ Rm. Thus, a vector x(1) ∈ Rn satisfying (1)
exists and is unique. Repeating the same argument, we can
show that for all k0, k1 ∈ N, k1 > k0, all x(k0) ∈ Ŝσ(k0), all
(u(0), u(1), ...) and all switching signals, a unique solution
(x(k0), x(k0 + 1), ..., x(k1)) exists and is determined only
by past states and inputs.
Part 2: the surrogate system (5)
For every time instant k, switching signal σ, solution
x(k) ∈ Ŝσ(k), and input u(k) ∈ Rm, the intersection
E+

σ(k)(Aσ(k)x(k) + Bσ(k)u(k)) + kerEσ(k) ∩ Ŝσ(k+1) pro-
vides x(k+1). Putting U = E+

σ(k)(Aσ(k)x(k)+Bσ(k)u(k)),
V = Ŝσ(k+1) and W = kerEσ(k) into formula (7) in the

1For subspaces U ,V,W ⊆ Rn, V ∩ ({u} + W) is a singleton for all
u ∈ U if and only if U ⊆ V ⊕W . In that case

V ∩ ({u}+W) = {ΠW
V u}, (7)

where ΠW
V : V ⊕W → V is the canonical projector from V ⊕W to V .
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projector lemma proves that x(k + 1) satisfies (5). Finally,
the inclusion x(k) ∈ Ŝσ(k) is a direct consequence of x(k)
solving (1); this can also be seen from (6).

By utilizing the surrogate ordinary switched system (5),
the explicit solution of (1) can be written as

x(k) =Πk
j=1Φ̂σ(k+1−j),σ(k−j)x(0)

+ Πk−1
j=1 (Φ̂σ(j+1),σ(j))Θ̂σ(1),σ(0)u(0) + · · ·

+ Φ̂σ(k),σ(k−1)Θ̂σ(k−1),σ(k−2)u(k − 2)

+ Θ̂σ(k),σ(k−1)u(k − 1).

(8)

B. Discussion on Unswitched Systems

The results are also valid for unswitched systems of the
form

Ex(k + 1) = Ax(k) +Bu(k), k ∈ N, (9)

with Ŝ := A−1(im[E,B]) = {ξ ∈ Rn : Aξ ∈ im[E,B]}.
This is presented in the following corollary. For unswitched
systems, the solvability notion in Definition 2.1 is considered
with a constant switching signal where its mode corresponds
to (9).

Corollary 2.3 (Solvability of unswitched systems) System
(9) is solvable (in the sense of Definition 2.1) if, and only
if,

E+AŜ + imE+B ⊆ kerE ⊕ Ŝ. (10)

If solvable, its solution satisfies

x(k+1) = Φ̂x(k)+ Θ̂u(k), x(0) ∈ Ŝ, k = 0, 1, . . . , (11)

where Φ̂ = ΠkerE
Ŝ

E+A, Θ̂ = ΠkerE
Ŝ

E+B, E+ is a
generalized inverse of E and ΠkerE

Ŝ
is the canonical projector

from kerE ⊕ Ŝ to Ŝ. In particular, x(k) ∈ Ŝ for all k ≥ 0.
One crucial observation for the solvability of switched

systems related to unswitched systems is that solvability for
individual modes (as unswitched systems) is in general not
sufficient for switched systems composed of those modes
to become also solvable. This is already confirmed by the
system in Example 4.1 where a switched system composed
of solvable individual modes may be not solvable, we thus
have that the condition (10) satisfied by each mode is not
sufficient for switched systems to become solvable.

III. REACHABILITY AND CONTROLLABILITY: SINGLE
SWITCH CASE

The basic intuition for reachability is to find the set of
all final states reachable within finite time steps starting
from a given initial state. Meanwhile, controllability (to zero)
deals with finding initial values that can be brought to zero
within some finite time steps. Those two notions are in fact
equivalent when considering continuous-time non-switched
systems, see e.g. [22, Lem. 2.3]. However, they are not
equivalent in discrete time; this is already well-known in
ordinary systems, see e.g. [23]. In singular systems, this is
also true, see the forthcoming Remark 3.8.

We restrict our attention in this section to only single
switch switching signals considered on the finite time domain
[0,K], K ∈ N of the form (see also Fig. 2 for illustration)

σ(k) =

{
0, 0 ≤ k < ks,

1, ks ≤ k ≤ K.
(12)

Thus, in this section, we consider switched systems com-
posed of two modes; it starts from mode (E0, A0, B0)
with the corresponding consistency space Ŝ0 and switches
at the switching time ks to mode (E1, A1, B1) with the
corresponding consistency space Ŝ1.

k

σ(k)
(E0, A0, B0) (E1, A1, B1)

ks−1 ks K0

Fig. 2. Single switch switching signal for (1)

A. Definitions

The reachability and controllability notions considered in
this study are mathematically defined for the switched system
(1) as follows:

Definition 3.1 (Reachability from zero) A state xf ∈
Ŝ1 of the InhSLSS (1) is called reachable from zero on
[0,K],K > ks w.r.t. the single switch switching signal given
by (12) if with x(0) = 0, there exists an input sequence
(u(0), u(1), .., u(K − 1)) such that x(K) = xf .

Definition 3.2 (Reachable set and reachability) The reach-
able set from zero of system (1) on [0,K],K > ks w.r.t. σ
of the form (12) is the set of all final states xf ∈ Ŝ1 which
are reachable from zero on [0,K] and denoted by Rσ

[0,K]. In
particular, the InhSLSS (1) is called reachable from zero on
[0,K] if Rσ

[0,K] = Ŝ1.

Definition 3.3 (Controllability to zero) A consistent initial
state x0 ∈ Ŝ0 of (1) is called controllable to zero on
[0,K],K > ks w.r.t. the single switch switching signal of the
form (12) if with x(0) = x0, there exists an input sequence
(u(0), u(1), .., u(K − 1)) such that x(K) = 0.

Definition 3.4 (Controllable set and controllability) The
controllable set to zero of system (1) on [0,K],K > ks

is the set of all consistent initial states x0 ∈ Ŝ0 which
are controllable to zero on [0,K] and denoted by Cσ

[0,K].
In particular, the InhSLSS (1) is called controllable to zero
on [0,K] if Cσ

[0,K] = Ŝ0.

B. Characterizations

Let Ri(k) = imRi(k) = im
[
Θ̂i, Φ̂iΘ̂i, · · · , Φ̂k−1

i Θ̂i

]
for

mode i = 0, 1, and define the following subspaces

P0 =Ŝ0 ∩R0(k
s − 1),

P1 =Ŝ1 ∩
(
Φ̂K−ks

1 Φ̂1,0P0 + im Φ̂K−ks

1,0 Θ̂1,0

+R1(K − ks)
)
.

(13)
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We present the main result for the reachability character-
ization in the following theorem.

Theorem 3.5 (Reachability) Consider the solvable
InhSLSS (1). Let Rσ

[0,K] be its reachable set on [0,K] w.r.t.
the single switch switching signal (12). Then

P1 = Rσ
[0,K], (14)

where P1 is given by (13). In particular, the InhSLSS (1) is
reachable if, and only if, P1 = Ŝ1.

Proof: From the explicit solution formula (8), the
solution of (1) with x(0) = 0 at k = K > ks can be written
as

x(K) = R1(K − ks)

 u(K−1)
u(K−2)

...
u(ks)

+ Φ̂K−ks

1 Θ̂1,0u(k
s − 1)

+Φ̂K−ks

1 Φ̂1,0R0(k
s − 1)

 u(ks−2)
u(ks−3)

...
u(0)

 . (15)

Step 1: Reachable space
Step 1.a: Proof of P1 ⊇ Rσ

[0,K]. Pick any reachable state
x(K) ∈ Rσ

[0,K]. Then, there exists an input sequence
(u(0), u(1), ..., u(K − 1)) such that (15) is satisfied i.e.
x(K) ∈ Φ̂K−ks

1 Φ̂1,0P0 + im Φ̂K−ks

1,0 Θ̂1,0 + R1(K − ks).
On the other hand, from the proof of Theorem 2.2, note
that x(k) ∈ Ŝ0 for all k ∈ [0, ks) and x(k) ∈ Ŝ1 for
all k ∈ [ks,K]. Thus, x(K) ∈ Ŝ1 ∩

(
Φ̂K−ks

1 Φ̂1,0P0 +

im Φ̂K−ks

1,0 Θ̂1,0 +R1(K − ks)
)
= P1, and hence Rσ

[0,K] ⊆
P1.
Step 1.b: Proof of P1 ⊆ Rσ

[0,K]. Pick any xf ∈ P1. Then,
there exists a vector ū ∈ R(K×m)×1 with the structure
ū =

[
ū1
ū2
ū3

]
with ū1 ∈ R(ks−1×m)×1, ū2 ∈ Rm×1, and

ū3 ∈ R(K−ks×m)×1 such that

R1(K − ks)ū1 + Φ̂K−ks

1 Θ̂1,0ū2+

Φ̂K−ks

1 Φ̂1,0R0(k
s − 1)ū3 = xf ,

i.e. xf is reachable (from zero) by considering ū as the input.
Thus, xf ∈ Rσ

[0,K], and hence P1 ⊆ Rσ
[0,K]. Altogether, we

get P1 = Rσ
[0,K].

Step 2: reachability
This is the direct consequence of its definition and the first
part of this theorem.

Remark 3.6: Note that reachable from zero on [0,K] is
equivalent to reachable on [0,K] i.e. every xf ∈ Rσ

[0,K] is
reachable from any consistent initial value x0 ∈ Ŝ0. This can
be seen from the fact that putting the term of the solution
that contains the nonzero initial value, Φ̂K−ks

1 Φ̂1,0Φ̂
ks−1
0 x0,

into (15) yields the same reachable set.
We now present the main result for the controllability

characterization. First, define the subspaces

Q1 = Ŝ1 ∩
[
Φ̂K−ks

1

]−1

R1(K − ks),

Q0 = Ŝ0 ∩
[
Φ̂1,0Φ̂

ks−1
0

]−1 [
Q1 + Φ̂1,0R0(k

s − 1)

+ im Θ̂1,0

]
.

(16)

Theorem 3.7: Consider the solvable InhSLSS (1). Let
Cσ
[0,K] be its controllable set to zero on [0,K] w.r.t. the single

switch switching signal given by (12). Then

Cσ
[0,K] = Q0, (17)

where Q0 is defined in (16). In particular, the InhSLSS (1)
is controllable if, and only if, Q0 = Ŝ0.

Proof: Setting the solution at k = K > ks of (1) under
the single switch switching signal (12) with x(0) = x0 ∈ Ŝ0

as zero gives us

0 = x(K) = Φ̂K−ks

1 x(ks)

[Θ̂1, Φ̂1Θ̂1, · · · , Φ̂K−ks−1
1 Θ̂1]

 u(K−1)
u(K−2)

...
u(ks)

 ,
(18)

i.e. x(ks) ∈
[
Φ̂K−ks

1

]−1

R1(K−ks). The solution at k = ks

can be written as

x(ks) = Φ̂1,0Φ̂
ks−1
0 x0 + Φ̂1,0R0(k

s − 1)

 u(ks−2)
u(ks−3)

...
u(0)


+Θ̂1,0u(k

s − 1),

(19)

i.e. x0 ∈
[
Φ̂1,0Φ̂

ks−1
0

]−1 [
{x(ks)}+ Φ̂1,0R0(k

s − 1)

+ im Θ̂1,0

]
. Pick any controllable to zero state x0 ∈ Cσ

[0,K].
Then, there exists an input sequence (u(0), u(1), ..., u(K −
1)) such that (18) holds. Together with the knowledge of
x(ks) ∈ Ŝ1, it implies that

x0 ∈
[
Φ̂1,0Φ̂

ks−1
0

]−1 [
Q1 + Φ̂1,0R0(k

s − 1) + im Θ̂1,0

]
.

Now, since x0 ∈ Ŝ0 we have x0 ∈ Ŝ1 ∩[
Φ̂1,0Φ̂

ks−1
0

]−1 [
Q1 + Φ̂1,0R0(k

s − 1) + im Θ̂1,0

]
. Hence

Cσ
[0,K] ⊆ Q0.

Now, pick any ξ ∈ Q0. Then, Φ̂1,0Φ̂
ks−1
0 ξ =[

ς + Φ̂1,0R0(k
s − 1)ū1 + Θ̂1,0ū2

]
, for some ς ∈ Q1, ū1 ∈

R(ks×m)×1 and ū2 ∈ Rm×1. Vector ς ∈ Q1 implies
that there exists a vector ū3 ∈ R(K−ks)×m×1 such that
Φ̂K−ks

1 ς = R1(K−ks)ū3. Now, take ū ∈ R(K×m)×n of the
form ū =

[
ū1
ū2
ū3

]
. Then with this input, x(0) = ξ is brought

to zero on [0,K] i.e. x(0) = ξ is controllable to zero. Thus,
ξ ∈ Cσ

[0,K], and hence Q0 ⊆ C[0,K].
Finally, the controllability part is the direct consequence of
its definition and the result from the first part of this proof.
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Remark 3.8 (Reachability vs Controllability) In ordinary
systems, there are three important observations regarding the
relationship between reachability and controllability i.e. (1)
reachability implies controllability to zero, (2) controllability
to zero does not always imply reachability, and (3) they are
equivalent when the state’s coefficient matrix is nonsingular
[24]. For solvable singular systems, with singular matrix E,
the first two statements are still true, however, in contrast,
the equivalency between reachability and controllability to
zero never happens as the matrix Φ̂ in (11) is always
singular. The proof for the first statement is obvious since,
in reachability, the zero (final) state is also reachable from
any consistent initial value i.e. it is controllable to zero. The
second statement is illustrated by the forthcoming Example
4.3 as a counter-example.

C. Discussion on Unswitched Systems

As the solvability results, the reachability and control-
lability characterizations derived above are also valid for
the unswitched system (9). This is stated in the following
corollary where the reachability and controllability notions
for unswitched systems are the same as in Definitions 3.1-
3.4.

Corollary 3.9: Consider the solvable InhSLS (9), and let
R[0,K] be its reachable set from zero on [0,K] and C[0,K]

be its controllable set to zero on [0,K]. Then.

R[0,K] = Ŝ ∩ imR(K) (20)

and
C[0,K] = Ŝ ∩

[
Φ̂K

]−1

(imR(K)) , (21)

where R(k) = [Θ̂, Φ̂Θ̂, · · · , Φ̂k−1Θ̂], and the matrices Φ̂ and
Θ̂ are as in (11). In particular, the system is reachable from
zero if, and only if, Ŝ ∩ imR(K) = Ŝ, or equivalently, Ŝ ⊆
imR(K), and the system is controllable to zero if, and only

if, C[0,K] = Ŝ, or equivalently, Ŝ ⊆
[
Φ̂K

]−1

(imR(K)).

IV. ILLUSTRATIVE EXAMPLES

The following examples illustrate nonsolvable and solv-
able InhSLSSs.

Example 4.1: Consider system (1) composed of two
modes represented by the matrix triplets

(E0, A0, B0) = ([ 1 0
0 0 ] , [

1 0
0 1 ] , [

1
0 ]) ,

(E1, A1, B1) = ([ 0 0
0 1 ] , [

1 0
0 1 ] , [

0
1 ]) .

Geometric computations provide that

kerE0 = span ( 01 ) , kerE1 =span ( 10 ) ,

Ŝ0 = span ( 10 ) , Ŝ1 =span ( 01 ) .

The condition E+
i AiŜi + im[E+

i Bi] ⊆ kerEi ⊕ Ŝi, ∀i =

0, 1 is satisfied, however, Ŝ1 ∩ kerE0 ̸= {0} and also Ŝ0 ∩
kerE1 ̸= {0}, thus, switched systems composed of those
two modes are not solvable.

Example 4.2: Consider system (1) composed of

(E0, A0, B0) =
([−1 1 0

1 −1 −1
0 0 0

]
,
[
1 −1 1
0 1 1
0 −1 0

]
,
[−1

0
0

])
,

(E1, A1, B1) =
([−1 0 1

1 −1 0
0 0 0

]
,
[
0 0 −1
0 −1 0
1 1 −1

]
,
[

1
−1
0

])
.

with

kerE0 = span{(1, 1, 0)⊤},
kerE1 = span{(1, 1, 1)⊤},

Ŝ0 = span{(1, 0, 0)⊤, (0, 0, 1)⊤},
Ŝ1 = span{(1, 0, 1)⊤, (0, 1, 1)⊤}.

The solvability condition (4) is satisfied, and thus switched
systems composed of those modes are solvable. With

E+
0 =

[
−1/2 0 0
1/2 0 0
−1 −1 0

]
, E+

1 =

[
−1/3 1/3 0
−1/3 −2/3 0
2/3 1/3 0

]
,

ΠkerE0

Ŝ0
=

[
1 −1 0
0 0 0
0 0 1

]
, ΠkerE1

Ŝ1
=

[
0 −1 1
−1 0 1
−1 −1 2

]
,

ΠkerE0

Ŝ1
=

[
1/2 −1/2 1/2
−1/2 1/2 1/2
0 0 1

]
, ΠkerE1

Ŝ0
=

[
1 −1 0
0 0 0
0 −1 1

]
,

we have the surrogate system (5) with

Φ̂0,0 =
[−1 1 −1

0 0 0
−1 0 −2

]
, Φ̂1,0 =

[
−1 1/2 −3/2
0 −1/2 −1/2
−1 0 −2

]
,

Φ̂0,1 =
[
0 −1 0
0 0 0
0 −1 −1

]
, Φ̂1,1 =

[
0 −1 −1
0 0 −1
0 −1 −2

]
,

Θ̂0,0 =
[
1
0
1

]
, Θ̂1,0 =

[
1
0
1

]
,

Θ̂0,1 =
[−1

0
0

]
, Θ̂1,1 =

[
0
1
1

]
.

With the switching signal σ(k) = 0 for k < 5 and σ(k) = 1
for k ≥ 5, the solution of the switched system is given in
Fig. 3

0 2 4 6 8
-1

0

1

0 1 2 3 4 5 6 7 8 9

-400
-200

0
200

x_1 x_2 x_3

Fig. 3. Solution of the switched system in Example 4.2

The following example illustrates a controllable
(unswitched) system that is not reachable. The system in
this example is also a counter-example for the observation
in Remark 3.8.

Example 4.3: Consider system (9) with

(E,A,B) =
([

1 0 0
0 0 0
0 0 0

]
,
[
1 1 1
1 1 0
0 0 1

]
,
[
0
0
0

])
.

Its consistency space is Ŝ = span
(

1
−1
0

)
. It is solvable

as (10) is satisfied, e.g. with E+ = E =
[
1 0 0
0 0 0
0 0 0

]
,

im[E+A,E+B] = im
[
1 1 1 0
0 0 0 0
0 0 0 0

]
= span

(
1
0
0

)
⊂ kerE⊕Ŝ =

R3. With ΠkerE
Ŝ

=
[

1 0 0
−1 0 0
0 0 0

]
, we have its surrogate system
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(11) with (Φ̂, Θ̂) =
([

1 1 1
−1 −1 −1
0 0 0

]
,
[
0
0
0

])
. Since for all K >

0, imR(K) = span
(

0
0
0

)
, R[0,K] = Ŝ ∩ imR(K) = {0} i.e.

it is unreachable on [0,K] for any K ≥ 0. However, it is
controllable to zero on [0,K] for any K > 0; this can be

seen from the fact that C[0,K] = Ŝ ∩
[
Φ̂K

]−1

(imR(K)) =

span
(

1
−1
0

)
= Ŝ. //

This part is closed by the reachability and controllability
analysis of the system in Example 4.2.

Example 4.4: Recall the system in Example 4.2. Each
mode as an individual system is not reachable on [0,K] for
all K > 0 since

∀K, R0
[0,K] = {0} ≠ S0 = span

{(
1
0
0

)
,
(

0
0
1

)}
,

R1
[0,1] = {0} ≠ S1 = span

{(
1
0
1

)
,
(

0
1
1

)}
, and

for K > 1, R1
[0,K] = span

(
1
−1
0

)
̸= S1,

where Ri
[0,K] and Ci

[0,K] for i = 0, 1 are reachable set and
controllable set on [0,K] for mode 0 and 1 respectively.

On the time domain [0,K] with K = 1, mode 0 is control-
lable (C0

[0,1] = S0), however, mode 1 is uncontrollable since

C1
[0,1] = span

(
1

−1/2
1/2

)
̸= S1. For longer time observations,

both modes are always controllable since for all K > 1,

C0
[0,K] = span

{(
1
0
0

)
,
(

0
0
1

)}
= S0 and

C0
[0,K] = span

{(
1
0
1

)
,
(

0
1
1

)}
= S1.

Consider now switched systems with the mode sequence
(0, 1) on the time domain [0,K] with K = 10 and with
the switching time ks = 1, 2, . . . , 9. The switched system
is unreachable but controllable for all ks since for all ks =
1, 2, . . . , 9,

Rσ
[0,10] = {0} ≠ S1 and Cσ

[0,10] = span
{(

1
0
0

)
,
(

0
0
1

)}
= S0.

With the mode sequence (1, 0), the characterization results
are the same, i.e., the switched system is unreachable
but controllable on [0, 10] for all switching times ks =
1, 2, . . . , 9.

V. SUMMARY

Solution theory for discrete-time singular linear switched
systems has been investigated for which strict causality is
required for the solutions. Moreover, surrogate ordinary sys-
tems have been introduced for solvable systems, and are then
utilized for reachability and controllability characterizations
for the original singular systems. Geometric criteria have
been derived with single switch switching signals.

Future work will focus on the case of multiple switches
and also on studying how reachability and controllability
depend on the switching times. Furthermore, an extension of
the solution theory to the nonlinear case will be investigated.
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