
Fully Stochastic Distributed Convex Optimization on Time-Varying
Graph with Compression

Chung-Yiu Yau and Hoi-To Wai1

Abstract— This paper develops a fully stochastic proximal
primal-dual (FSPPD) algorithm for distributed convex opti-
mization. At each iteration, the distributed algorithm has
agents communicating on a randomly drawn graph and applies
random sparsification on the transmitted messages, while the
agents only have access to a stochastic gradient oracle. To our
best knowledge, this is the first compression-enabled distributed
stochastic gradient algorithm on random graphs utilizing the
primal-dual framework. With diminishing step size, we show
that the FSPPD algorithm converges almost surely to an optimal
solution of the strongly convex optimization problem. Numerical
experiments are provided to verify our results.

I. INTRODUCTION

Consider the optimization problem:

min
x1,...,xn∈Rd

1

n

n∑
i=1

fi(xi) s.t. xi = xj , ∀ i, j, (1)

where each of the function fi : Rd → R is strongly con-
vex and continuously differentiable. Distributed optimization
algorithms for (1) have become the major working horse
behind many applications ranging from wireless sensor net-
works [1] to large-scale machine learning [2]. The move from
traditional centralized to distributed computation has enabled
these applications to scale up through utilizing the compu-
tation or data resources available at the agents. Particularly
for algorithms that allow decentralized computation over a
network/graph, they remove the reliance on a centralized
server and allow the agents to participate dynamically in the
joint optimization process.

Distributed algorithms that blend gradient descent methods
with gossip (peer-to-peer) communication was first proposed
in [3] through extending [4]. They have been actively de-
veloped. A number of works have focused on improving the
theoretical properties of the algorithm: [5] extended the anal-
ysis for the algorithm to the stochastic optimization setting,
also see [6] for a recent treatment on the topic for large-scale
machine learning; [7], [8] considered incorporating gradient
tracking to accelerate convergence; [9] studied an extension
to directed graphs, also see [10], [11] for time varying graphs
and stochastic optimization, etc.

As distributed algorithms are deployed to optimize high-
dimensional models (e.g., weights of a deep neural net-
work, linear models with large number of features), the
delays caused by network overheads during the peer-to-peer

1Chung-Yiu Yau and Hoi-To Wai are with Department of SEEM,
The Chinese University of Hong Kong, Shatin, Hong Kong SAR.
Emails: cyyau@se.cuhk.edu.hk, htwai@se.cuhk.edu.hk. This
research is supported in part by project #MMT-p5-23 of the Shun Hing
Institute of Advanced Engineering, The Chinese University of Hong Kong.

communication steps can be a significant setback. Common
strategies include balancing the frequency of communica-
tion steps with the optimization step [12] or adapting the
algorithms to the constraints set by the network environ-
ment. The latter results in distributed algorithms that blend
with communication using either compression [13] or time-
varying/random topology [11], [14].

This paper aims at developing a communication efficient
stochastic algorithm that adapts simultaneously to random
topology and asynchronous computation at the agents, while
respecting the limited bandwidth on network through com-
pression. Recent works have proposed algorithms that par-
tially enjoy the above features: [15] treated the peer-to-peer
communication links as multi-layer graph for each coordinate
of the model but requires multiple gossip steps per iteration,
[16] used a two timescale updates scheme that may slow
down convergence. Moreover, their algorithms are limited
to exact gradient updates. We also remark that SwarmSGD
[17] allows for compressed stochastic optimization on time-
varying graph in a distributed setting, but it requires the local
loss functions to satisfy a similarity condition.

We depart from the prior works by developing a fully
stochastic primal-dual (FSPPD) algorithm solving a general
stochastic optimization problem while relying on random
compression and communication graph. Our development is
based on the general primal-dual framework that naturally
arises from (1), and has motivated the proximal primal-
dual algorithms [18], [19] that enjoy good convergence
properties in the deterministic computation setting. Notably
this framework may also include the algorithms in [7], [8]
as special cases. Our contributions can be summarized as:
• The FSPPD algorithm utilizes a new reformulation of the

consensus optimization problem (1) as one with a stochas-
tic linear equality constraint. This formulation enables
us to develop FSPPD through utilizing the recent results
from [20], [21] that study a class of forward-backward
algorithms with stochastic operators.

• To our best knowledge, the FSPPD algorithm is the first
algorithm that can simultaneously adapt to time varying
(random) communication graph, compression with ran-
dom sparsification, and stochastic gradient samples. Fur-
thermore, it features a natural single-loop, asynchronous
implementation where agents are not required to perform
multiple gossiping steps nor to participate in distributed
computation at each iteration.

• Under diminishing step sizes, we show that the FSPPD
algorithm converges almost surely to the optimal solution
of (1) and the agents local iterates attain consensus.

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 145

We remark that the single-loop nature of the FSPPD al-
gorithm gives a significant advantage over [15], [16] as
our algorithm does not enforce near-consensus intentionally
during the iterations. Instead, it relies on the stochastic
constraint to slowly drive the iterates to consensus. Lastly,
we provide numerical evidence to support our findings.
Notations. For matrix A, denote |A| as the element-wise
absolute value of A, Ai:j as the row-block from ith row
to jth row, diag(A) for the diagonal of A as a vector and
Diag(A) for a diagonal matrix of A. We use 1 as an all-
one vector, 1(·) ∈ {0, 1} as indicator function and Id as the
d-dimensional identity matrix. Operators ⊗ and ⊙ represent
Kronecker product and Hadamard product respectively. We
write [n] := {1, . . . , n} as the set of first n positive integers.

II. PROBLEM STATEMENT

We are concerned with the distributed optimization setting
for (1) where each fi is held by an agent in a network with n
agents. The network is described by a connected, undirected
graph G = (V, E) where V = [n] represents the set of
agents. The graph G is endowed with an incidence matrix
A ∈ RE×n where E = |E|. To describe the matrix A, we
define an ordering of the set E and index map ι : E → [E]
such that (i, j) ∈ E is the ι(i, j)-th element of E . For each
(i, j) ∈ E , i < j, the ι(i, j)-th row of A is

Aι(i,j),: = ei − ej , (2)

where ei is the ith canonical basis vector of Rn.
Define the concatenated solution x = (x1, ...,xn), we

observe that as G is connected, (1) is equivalent to

min
x∈Rnd

[
f(x) :=

1

n

n∑
i=1

fi(xi)

]
s.t. (A⊗ Id)x = 0, (3)

where each agent holds a local solution xi ∈ Rd. Notice
that solution methods to (3) have been studied extensively.
Existing approaches include primal-only algorithms that aim
at mimicking the (centralized) gradient method applied to
(1), this includes decentralized (stochastic) gradient descent
[3], [5], EXTRA [8], DIGing [11], gradient tracking [7], etc.
As an alternative, primal-dual algorithms that finds a saddle
point to the Lagrangian function of (3) are also popular, e.g.,
ADMM [18], Prox-PDA [19].

This paper aims at handling two challenges in solving
(3). First, we consider the case of stochastic optimization
where exact evaluation of fi(xi) or its gradient is intractable;
formally, we consider a probability space given by (Ω,F ,P)
and describe the objective function as

fi(xi) = Eξi∼Di
[fi(xi; ξi)] (4)

where ξ ∈ Ω. The algorithm only has access to a stochastic
gradient given by∇fi(xi; ξi) that is available locally at agent
i. Second, as practical communication networks are prone
to unstable connections and low bandwidth, we seek for
distributed algorithm that supports compression and asyn-
chronous communication. We hence model an architecture
such that the instantaneous agent-to-agent communication is

given by a random subgraph of G and the edge-wise consen-
sus requirement applies to a random subset of coordinates.
In other words, the linear constraint in (3) can be interpreted
as a stochastic linear equality:

Eξ[Ã(ξ)]x := Eξ [̃I(ξ)(A⊗ Id)]x = 0 (5)

where Ĩ(ξ) is a binary diagonal matrix controlling the instan-
taneous activation of the edges of G and the random choice of
coordinates. Note that with a slight abuse of notation, we use
the same state variable ξ ∈ Ω to represent the randomness
in ∇f(x̄; ξ) and Ã(ξ).

Eq. (4), (5) render (3) into a stochastic equality con-
strained stochastic optimization problem. In the sequel, we
will develop a fully stochastic proximal primal-dual (FSPPD)
algorithm that yields a distributed algorithm for the random-
ized computation and communication architecture.

III. ALGORITHM DEVELOPMENT

This section develops the FSPPD algorithm for solving (3)
using a primal-dual formulation. To this end, let us observe
the augmented Lagrangian function of (3). Denote the dual
variable λ = (λ1, ..., λE) ∈ REd, we have

L(x, λ) = f(x) + ⟨λ | (A⊗ Id)x⟩+
1

2
∥(A⊗ Id)x∥2. (6)

The aim of primal dual algorithms for (6) is to find the min-
max saddle point solution to the following:

min
x∈Rnd

max
λ∈REd

L(x, λ) (7)

by alternating between the updates of primal and dual
variables. For example, Prox-GPDA [19] used a properly de-
signed proximal primal-dual update that lead to a distributed
algorithm. Notice that as discussed in [2], this primal-
dual algorithm structure can be reduced to other popular
distributed algorithms such as EXTRA [8].

The first ingredient of the FSPPD algorithm is to treat
the stochastic objective function (4) and (consensus) con-
straint (5) via the following stochastic linearized augmented
Lagrangian function:

L̃(x, λ; x̄, ξ) =
〈
(C̃(ξ)⊗ Id)∇f(x̄; ξ)

∣∣∣ x− x̄
〉

+
〈
λ
∣∣∣ Ã(ξ)x

〉
+

γ

2
∥Ã(ξ)x∥2, (8)

where the matrix C̃(ξ) ∈ Rn×n is a diagonal matrix that
controls the activation of agent i to be defined in (16), and
γ > 0 stands for the consensus step size. The first term of
(8) is a linearized and sampled objective f(x; ξ), see (4);
while the last two terms pertain to sampled constraint (5).

The second ingredient of the FSPPD algorithm is a
stochastically weighted proximal primal-dual update. Notice
that applying plain proximal primal dual algorithms [22]
on (8) may result in a non-distributed algorithm due to the
quadratic coupling in the last term of (8). We are inspired by
Prox-GPDA [19] to design the following update scheme that

146

deploy a stochastically weighted proximal term. Let ξt+1 be
the global random state variable drawn at iteration t+ 1:

xt+1 = argmin
x∈Rnd

L̃(x, λt;xt, ξt+1) +
1

2
∥x− xt∥2B(ξt+1)

(9a)

λt+1 = λt + ηt+1∇λL̃(xt, λ;xt, ξt+1) (9b)

where B(ξt+1) := γ|L̃(ξt+1)| + η−1
t+1I with the random

graph’s Laplacian L̃(ξ) := Ã(ξ)⊤Ã(ξ), and ηt > 0, t ∈ N+

is a diminishing step size sequence. Importantly, the stochas-
tic weight matrix B(ξt+1) is chosen such that (9a) admits a
distributed solution since

L̃(ξt+1) + |L̃(ξt+1)| = 2 Diag(L̃(ξt+1)). (10)

We remark another subtle difference between (9) and Prox-
GPDA: (9) adopts a Jacobi type update that both primal
and dual variables are computed simultaneously, while Prox-
GPDA adopts a Gauss-Seidal type update.
Communication Efficient Implementation. We specify the
diagonal binary matrix Ĩ(ξ) in (5) and its implication on
the actual communication protocol used by FSPPD. To this
end, the diagonal elements of Ĩ(ξ) are binary variables that
control if consensus shall be enforced on a coordinate for the
variable of the two nodes incident to an edge. We illustrate
our design principle by incorporating random sparsification
and random graph.

A simple strategy to improve communication efficiency of
decentralized optimization is to apply random sparsification
to the transmitted messages in the communication step. In
particular, for each d-dimensional message x, we sample a
random subset S(ξ) ⊆ [d] and apply the compressor:

Q(x;S(ξ)) = 1S(ξ) ⊙ x, (11)

where [1S(ξ)]i = 1 if i ∈ S(ξ), otherwise [1S(ξ)]i = 0.
Observe that the output Q(x;S(ξ)) is a |S(ξ)|-sparse vector.
We also allow the agents to communicate on a random
subgraph of G, similar to the model in [14]. The set of active
edges, neighborhood of agent i are denoted as E(ξ),Ni(ξ),
respectively, such that E(ξ) ⊆ E ,Ni(ξ) ⊆ Ni.

Importantly, both random sparsification and random graph
topology can be incorporated simultaneously in FSPPD as
the consensus constraint can be replaced by any stochastic
linear equality satisfying (5). For the random diagonal matrix
Ĩ(ξ) ∈ REd×Ed, we set

diag(̃I(ξ)) = s̃(ξ)⊙ α̃(ξ) (12)

where for each (i, j) ∈ E , the ι(i, j)-th block for the binary
vectors is given by

[̃s(ξ)]ι(i,j) = 1Sι(i,j)(ξ), [α̃(ξ)]ι(i,j) = α̃ι(i,j)1[d] (13)

such that Sι(i,j)(ξ) ⊆ [d] is a set of random coordinates
sampled for the edge (i, j) and α̃ι(i,j) is Bernoulli random
variable such that

P[k ∈ Sι(i,j)(ξ)] = ωι(i,j), (14)

E[α̃ι(i,j)]= P[(i, j) ∈ E(ξ)] = αι(i,j), (15)

Algorithm 1 FSPPD Algorithm
1: input: x0

i for i ∈ [n], step size sequence ηt > 0 and
consensus step size γ > 0.

2: for t = 0, 1, ..., T − 1 do
3: Sample ξt+1 and compute ∇f(xt; ξt+1).
4: Agent i determine Sι(i,j)(ξt+1) if (i, j) ∈ E(ξt+1).
5: for each (i, j) ∈ E(ξt+1) do
6: Agent i sends sparse index-value pair

Sι(i,j)(ξt+1), (xt
i,k)k∈Sι(i,j)(ξt+1) to agent j.

7: Agent j responds with values (xt
j,k)k∈Sι(i,j)(ξt+1).

8: end for
9: for i = 1, ..., n do

10: x
t+ 1

2
,1

i =
∑

j∈Ni(ξt+1) sign(i < j) · Qt+1
ι(i,j)

(
λt
ι(i,j)

)
11: x

t+ 1
2
,2

i =
∑

j∈Ni(ξt+1) Q
t+1
ι(i,j)

(
xt
i

)
+Qt+1

ι(i,j)

(
xt
j

)
12: x

t+ 1
2

i = xt
i − ηt+1

[
[C̃(ξt+1)]i,i∇fi(x

t
i; ξ

t+1) + x
t+ 1

2
,1

i −
γx

t+ 1
2
,2

i

]
13: xt+1

i,k = x
t+ 1

2
i,k /(1 + 2γηt+1

∑
j∈Ni(ξt+1) 1(k ∈

Iι(i,j)(ξ
t+1)) for k = 1, ..., d

14: end for
15: for each (i, j) ∈ E(ξt+1) where i < j do
16: λt+1

ι(i,j) = λt
ι(i,j) + ηt+1[Qt+1

ι(i,j)(x
t
i)−Q

t+1
ι(i,j)(x

t
j)]

17: end for
18: end for
19: output: Weighted average (

∑T
k=0 ηk)

−1
∑T

k=0 ηkx
k

for any k ∈ [d], (i, j) ∈ E . Under (12), the random linear
equation Ĩ(ξ)(A ⊗ Id)x = 0 enforces consensus over the
randomly picked coordinates and edges of G. Define the i-th
diagonal element of the control matrix in (8) as

[C̃(ξ)]i,i =
1(|Ni(ξ)| > 0)

P(|Ni(ξ)| > 0)
, i ∈ [n]. (16)

Agent i is inactive if none of its incident edges are selected.
We next derive closed form updates for (9) and illustrate

that these updates can be implemented in a distributed
manner. Solving the optimality condition of (9a) leads to

0 = (C̃(ξt+1)⊗ Id)∇f(xt; ξt+1) + Ã(ξt+1)⊤λt (17)

+ γL̃(ξt+1)xt+1 + (γ|L̃(ξt+1)|+ η−1
t+1I)(x

t+1 − xt)

⇐⇒ (η−1
t+1I+ 2γ Diag(L̃(ξt+1)))xt+1 (18)

= (γ|L̃(ξt+1)|+ η−1
t+1I)x

t − (C̃(ξt+1)⊗ Id)∇f(xt; ξt+1)

− Ã(ξt+1)⊤λt

where the equivalence is due to (10). Meanwhile (9b) can
be easily computed in closed form. The FSPPD algorithm is
thus equivalent to:

xt+ 1
2 = xt − ηt+1

(
(C̃(ξt+1)⊗ Id)∇f(xt; ξt+1) (19a)

+ Ã(ξt+1)⊤λt − γ|L̃(ξt+1)|xt
)

xt+1 =
[
I+ 2γηt+1 Diag(L̃(ξt+1))

]−1

xt+ 1
2 (19b)

λt+1 = λt + ηt+1Ã(ξt+1)xt. (19c)

At iteration t, agent i holds the following variables:
xt
i, λt

ι(i,j) for j ∈ Ni. Under this setting, we claim

147

Algorithm 2 Asynchronous Implementation of FSPPD
(From Agent i’s Perspective)

1: Assume ∇fi(xi; ξ) is always ready. Denote B,U as
communication buffers.

2: Set iteration counters gi = si = 0.
3: while not optimal do
4: Agent i wakes up and resets U = ∅.
5: Select a random subset Ñi ⊆ Ni.
6: Initialize the job buffer B ← {bι(i,j) | j ∈ Ñi}, where

bι(i,j) represents a sparsified comm. job between i, j.
7: while |U| < |Ñi| do
8: Execute bι(i,j) ∈ B in random order and wait until the

communication job is successfully executed on i, j.
9: Update U ← U ∪ {bι(i,j)}, B ← B\{bι(i,j)}, gi ←

max{gi, gj}.
10: end while
11: If |U| > 0, apply gi ← gi + 1, si ← si + 1 and update

state variables as (xgi
i , λgi

ι(i,·)) according to (19).
12: end while

that (19) can be implemented distributively over the net-
work. In particular, to compute xt+1

i from (19a), (19b),
agent i only needs the information: xt

i, ∇fi(xt
i; ξ

t+1),
[Ã(ξt+1)⊤]id:(i+1)dλ

t and |L̃(ξt+1)|id:(i+1)dx
t. With the

notation Qt+1
ι(i,j)(x) = Q(x;Sι(i,j)(ξt+1)), we note that (i)

[Ã(ξt+1)⊤]id:(i+1)dλ
t is a linear combination of the spar-

sified local dual variables {Qt+1
ι(i,j)(λ

t
ι(i,j)) | j ∈ Ni(ξ

t+1)},
and (ii) |L̃(ξt+1)|id:(i+1)dx

t coincides with the sum of spar-
sified local decision variables {Qt+1

ι(i,j)(x
t
j) | j ∈ Ni(ξ

t+1)}.
Similarly, in the update of (19c), the dual variables λt+1 use
the same information from the above sparsified communica-
tion. The details are summarized in Algorithm 1. We remark
that the distributed computation architecture is due to the
design of weighted proximal term in (9a), (10).

Asynchronous Implementation. FSPPD can be imple-
mented in an asynchronous fashion where agents stay idle
if they are not incident to any selected edges in the random
graph. This can be achieved through assigning zeros to the
diagonal matrix C̃(ξ) in (16). An example implementation
is given in Algorithm 2. As FSPPD requires synchronized
dual variable λι(i,j) on the adjacent agents, we enforce
in line 9, 11 that a pair of agents must be consensual
on applying the exchanged sparse parameters, i.e., the two
copies of λι(i,j) are consensual and received parameters from
neighbors must be applied to local state variables through
(19). Besides, computing C̃(ξ) requires knowledge of the
probability P(|Ni(ξ)| > 0). Taking Algorithm 2 as an
example, agent i can approximate the latter as

P(|Ni(ξ)| > 0) ≈ si/gi, (20)

where si, gi are the local and global iteration counters.

IV. CONVERGENCE ANALYSIS

In this section, we show that FSPPD converges asymp-
totically to an optimal solution of (1). Our analysis strategy

follows that of [21] and utilizes [20, Corollary 3.1]. Observe
the following assumptions:

Assumption IV.1 (Stochastic Gradient). There exists con-
stants σ0, σ1 ≥ 0 such that for any i ∈ [n] and fixed x

Eξ[∇fi(x; ξ)] = ∇fi(x), (21)
sup
ξ∈Ω
∥∇f(x; ξ)∥ ≤ σ0 + σ1∥x∥. (22)

Assumption IV.2 (Strong Convexity). For each i =
1, . . . , n, the local objective function fi(x) is µi-strongly
convex. We define µ = mini∈[n] µi > 0.

Note that Assumption IV.1 is a standard condition which
states that each agent has access to an unbiased stochastic
gradient oracle of the local objective function and the latter
satisfies a growth condition. On the other hand, Assump-
tion IV.2 is a standard strong convexity assumption.
Fixed Point of FSPPD. Our first task is to characterize
the fixed point(s) found by the FSPPD algorithm (if the
algorithm converges). Define the stochastic forward operator
F̃ξ and backward operator B̃ξ by:

F̃ξ(x, λ) =

[
(C̃(ξ)⊗ Id)∇f(x; ξ) + Ã(ξ)⊤λ− γ|L̃(ξ)|x

−Ã(ξ)x

]
B̃ξ(x, λ) =

[
2γ Diag(L̃(ξ))x

0

]
, (23)

From (19), we observe that the FSPPD algorithm generates
a sequence (xt, λt) following[
xt+1

λt+1

]
= (Id + ηt+1B̃ξt+1)−1

[[
xt

λt

]
− ηt+1F̃ξt+1(xt, λt)

]
(24)

where Id is the identity operator.
When the operators in (24) are deterministic, e.g., they are

replaced by F(x, λ),B(x, λ) to facilitate our discussion, it
is known that the deterministic forward backward algorithm
(24) converges to a fixed point given by the zeros of
0 = F(x, λ) + B(x, λ) [22, Proposition 50]. Intuitively,
the stochastic algorithm (24) should also converge to the
following set of primal-dual solution:

Z⋆ :=
{
(x⋆, λ⋆) : E

[
F̃ξ(x

⋆, λ⋆) + B̃ξ(x
⋆, λ⋆)

]
= 0

}
.

(25)
This is the case as shown in Theorem IV.3. Before we discuss
the convergence result, let us examine (25). We first notice
that

E[Ã(ξt)] = (R⊗ Id)(A⊗ Id), (26)

where the rate matrix R ∈ RE×E is diagonal with

diag(R)ι(i,j) = αι(i,j)ωι(i,j). (27)

By (16), we have E[C̃(ξ)] = I since E[1(|Ni(ξ)| > 0)] =
P(|Ni(ξ)| > 0). Using (10), (26) and the fact

L̃(ξt+1) = Ã(ξt+1)⊤Ã(ξt+1) = (A⊗ Id)
⊤Ã(ξt+1),

we observe that any (x⋆, λ⋆) ∈ Z⋆ satisfies[
∇f(x⋆) + ((RA)⊗ Id)

⊤λ⋆ + γ((A⊤RA)⊗ Id)x
⋆

−((RA)⊗ Id)x
⋆

]
= 0,

148

which is equivalent to{
∇f(x⋆) + ((RA)⊗ Id)

⊤λ⋆ = 0

x⋆
i = x⋆

j ∀(i, j) ∈ E
(28)

=⇒
∑n

i=1∇fi(x⋆
1) = 0, x⋆

j = x⋆
1, j = 1, ..., n,

where the last implication uses the fact that row sums of A
are 0, thus (1n⊗Id)⊤((RA)⊗Id)⊤ = ((RA1n)

⊤⊗Id) = 0.
By convexity of f , x⋆

j is an optimal solution of (1).
Finally, we show that a weighted average iterate of FSPPD

converges to an optimal solution of (3).

Theorem IV.3. Assume Z⋆ ̸= ∅, the step size conditions
ηt+1/ηt → 1,

∑∞
t=1 ηt → ∞ and

∑∞
t=1 η

2
t < ∞, and γ ≤

µ/λmax(|A|⊤R|A|). Then, for any initialization (x0, λ0),
the weighted average iterate of Algorithm 1:

z̄t = (x̄t, λ̄t) = (
∑t

r=0 ηr)
−1

∑t
r=0 ηr(x

r, λr) (29)

converges almost surely to a point in Z⋆ (25). In particular,
the limit point of x̄t is a point satisfying (28).

Proof. It suffices to verify that the stochastic operators
F̃ξ, B̃ξ of FSPPD (24) satisfy the assumptions in Theorem
3.1 of [20], and subsequently applying Corollary 3.1 therein
yields the proof. To fix ideas, we denote the expected
operators F = E[F̃ξ], B = E[B̃ξ], with

F(x, λ)
(i)
=

[
∇f(x) + ((RA)⊗ Id)

⊤λ− γ((|A|⊤R|A|)⊗ Id)x
−((RA)⊗ Id)x

]
(30)

B(x, λ) =

[
2γ Diag((A⊤RA)⊗ Id)x

0

]
(31)

where (i) uses that |L̃(ξ)| = (|A| ⊗ Id)
⊤Ĩ(ξ)(|A| ⊗ Id) ⇒

E[|L̃(ξ)|] = (|A|⊤R|A|) ⊗ Id. The following discussions
verify Conditions 1) to 6) in Theorem 3.1 of [20]:

1) The operator F is monotone because for any
(x, λ), (x′, λ′) ∈ Rnd × REd,

⟨F(x′, λ′)− F(x, λ) | (x′, λ′)− (x, λ)⟩

=

〈([
−γ|A|⊤R|A| (RA)⊤

−RA 0

]
⊗ Id

)[
x′ − x
λ′ − λ

] ∣∣∣∣ [x′ − x
λ′ − λ

]〉
+

〈[
∇f(x′)−∇f(x)

0

] ∣∣∣∣ [x′ − x
λ′ − λ

]〉
(32)

=
〈
−γ((|A|⊤R|A|)⊗ Id)(x

′ − x)
∣∣ x′ − x

〉
+ ⟨∇f(x′)−∇f(x) | x′ − x⟩ (33)

(i)

≥ −γ∥((R1/2|A|)⊗ Id)(x
′ − x)∥2 + µ∥x′ − x∥2 (34)

≥
(
µ− γ∥ (R1/2|A|)⊗ Id ∥22

)
∥x′ − x∥2

(ii)

≥ 0 (35)

where (i) uses strong convexity of fi ∀i ∈ [n]; (ii) utilizes
the step size condition γ ≤ µ/λmax(|A|⊤R|A|).

The operator B is monotone because for any
(x, λ), (x′, λ′) ∈ Rnd × REd,

⟨B(x′, λ′)− B(x, λ) | (x′, λ′)− (x, λ)⟩
= 2γ∥Diag((A⊤RA)⊗ Id)

1/2(x′ − x)∥2 ≥ 0 (36)

Furthermore, both operators F, B are maximal.
2) We verify that there exists p ≥ 1, (x⋆, λ⋆) ∈ Z⋆ which

admits a 2p-integrable representation. First observe that for
any (x⋆, λ⋆) ∈ Z⋆,∫

F̃ξ(x
⋆, λ⋆)P(dξ) + B̃ξ(x

⋆, λ⋆)P(dξ) = 0, (37)

which holds using the definition of Z⋆ in (25). Besides,∫ ∥∥∥∥B̃ξ

[
x⋆

λ⋆

]∥∥∥∥4 P(dξ) = ∫
∥2γ Diag(L̃(ξ))x⋆∥4P(dξ)

≤ (2γn)4∥x⋆∥4 <∞, (38)

and similar conclusion for F̃ξ is shown in (42). This verifies
the condition with p = 2.

3) For compact K ⊆ Rnd ×REd, take ϵ = 1 and observe

sup
(x,λ)∈K∩(Rnd×REd)

∫
∥B̃ξ(x, λ)∥2P(dξ)

≤ sup
(x,λ)∈K∩(Rnd×REd)

(2γn)2
∫
∥x∥2P(dξ) <∞. (39)

4) Since the domain of B̃ξ is Rnd × REd, the distance
between (x, λ) and the domain of B̃ξ is zero.

5) For any η > 0, (x, λ) ∈ Rnd × REd, we have

1

η4

∫
∥(I+ ηB̃ξ)

−1(x, λ)− (x, λ)∥4P(dξ)

=
1

η4

∫
∥(I+ 2γ Diag(L̃(ξ)))−1(x)− x∥4P(dξ)

≤ 1

η4

∫ ∥∥∥∥ 1

1 + 2γn
x− x

∥∥∥∥4 P(dξ)
<

(
2γn

η(1 + 2γn)

)4

(1 + ∥x∥4) (40)

6) For all (x, λ) ∈ Rnd × REd, we observe

∥F̃ξ(x, λ)∥ (41)

≤

∥∥∥∥∥
[
−γ|L̃(ξ)| Ã(ξ)⊤

−Ã(ξ) 0

] [
x
λ

]∥∥∥∥∥+ ∥C̃(ξ)∇f(x; ξ)∥

(22)
≤

∥∥∥∥∥
[
−γ|L̃(ξ)| Ã(ξ)⊤

−Ã(ξ) 0

]∥∥∥∥∥
F

∥(x, λ)∥+ σ0 + σ1∥x∥

≤
(√

4Ed+ 2γn2d+ σ1

)
∥(x, λ)∥+ σ0

Obviously, the above implies∫
∥F̃ξ(x, λ)∥4P(dξ) (42)

≤ 8

[(√
4Ed+ 2γn2d+ σ1

)4

∥(x, λ)∥4 + σ4
0

]
This concludes the proof of Theorem IV.3.
Theorem IV.3 states that the consensus step size γ should

be bounded according to the strong convexity modulus µ and
the network structure. When the rate matrix R increases, we
observe that γ has to be decreased for normalizing the effects
of the mixing term on x in (19a).

149

Fig. 1. Comparison under the stochastic gradient setting; cf. (A).

V. NUMERICAL EXPERIMENTS

We focus on a linear regression task and consider G as
a fully connected graph of n = 10 agents. We first set
xtr ∈ R20 as a ground truth vector. For each i = 1, . . . , n,
each agent i holds a local objective function fi(x, ξi) =
|a(ξi)⊤x−y(ξi)|2+10−4∥x∥22. The samples follow a(ξi) ∼
N (mi, 0.1I), y(ξi) = a(ξi)

⊤xtr + z(ξi) with z(ξi) ∼
N (0, 0.1), where mi is an agent-specfic mean. At iteration t,
the agents communicate on random subgraphs (V, E(ξt+1)),
where E(ξt+1) is a singleton set as we only sample one edge
from G, thus P(|Ni(ξ)| > 0) = 9/45 for i = 1, . . . , n. For
T <∞, the sequence of subgraphs (V, E(ξt)), t = 1, . . . , T
satisfies the B-connectedness property in the time varying
graph model [16]. Notice that FSPPD can be implemented
with multiple local updates by choosing C̃(ξ) = I for all ξ.

We benchmark the performance of FSPPD against state-
of-the-art distributed optimization algorithms in two different
setups: (A) when only stochastic gradient is available: we
compare with SwarmSGD [17] which works in a similar
setting as FSPPD and ChocoSGD [13] which uses a com-
position of random sparsification and random gossip that
samples 1 agent per iteration; (B) when exact gradient is
available: we compare with Di-CS-GD [15] and DIMIX
[16] which are two recent algorithms for this setting. The
step sizes used to produce the experiment are shown in the
legend, with ηt =

4
10−4(a+t) for ChocoSGD and ηt =

a0

a1+t
for others. For compressed communication, we used 8-bit
quantizer in SwarmSGD, and random-1 coordinate sparsifier
in other algorithms. In Fig. 1 and 2, we report the optimal
solution gap (

∑n
i=1 ∥x̄t

i − x⋆∥22)/(
∑n

i=1 ∥x0
i − x⋆∥22) and

consensus error
∑n

i=1 ∥x̄t
i − (

∑n
i=1 x̄

t
i/n)∥22 where x̄t

i =
(
∑t

r=0 ηrx
r
i)/(

∑t
r=0 ηr) for FSPPD and Di-CS-GD, x̄t

i =
(
∑t

r=0 x
r
i)/(t + 1) for SwarmSGD and DIMIX and x̄t

i =
(
∑t

r=0(a + r)2xr
i)/(

∑t
r=0(a + r)2) for ChocoSGD. All

figures report the average performance over 10 random-
seeded simulations. We observe that FSPPD converges faster
and suspect that this is due to implicit gradient tracking.

Conclusions. We have proposed an algorithm called FSPPD
and showed that it solves (1) using peer-to-peer communica-
tion over a network of agents. The algorithm features com-
munication efficient implementation via compressed message
exchanges on time-varying (random) graph. Future works
include analyzing FSPPD under more general settings, e.g.,
non-convex objective, nonlinear compression schemes, etc.

Fig. 2. Comparison under the exact gradient setting; cf. (B).

REFERENCES

[1] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-
works,” in Proceedings of the 3rd international symposium on Infor-
mation processing in sensor networks, pp. 20–27, 2004.

[2] T.-H. Chang, M. Hong, H.-T. Wai, X. Zhang, and S. Lu, “Distributed
learning in the nonconvex world: From batch data to streaming and
beyond,” IEEE Signal Processing Magazine, 2020.

[3] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Automat. Control., 2009.

[4] J. N. Tsitsiklis, “Problems in decentralized decision making and
computation.,” tech. rep., MIT LIDS, 1984.

[5] S. Sundhar Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochas-
tic subgradient projection algorithms for convex optimization,” Journal
of optimization theory and applications, vol. 147, pp. 516–545, 2010.

[6] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
decentralized algorithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient descent,” NeurIPS,
vol. 30, 2017.

[7] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems,
vol. 5, no. 3, pp. 1245–1260, 2017.

[8] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order
algorithm for decentralized consensus optimization,” SIAM Journal
on Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[9] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed
dual averaging for convex optimization,” in CDC, 2012.

[10] F. Saadatniaki, R. Xin, and U. A. Khan, “Decentralized optimization
over time-varying directed graphs with row and column-stochastic
matrices,” IEEE Trans. Automat. Control., 2020.

[11] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric conver-
gence for distributed optimization over time-varying graphs,” SIAM
Journal on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

[12] Y. Lu and C. De Sa, “Optimal complexity in decentralized training,”
in ICML, pp. 7111–7123, 2021.

[13] A. Koloskova, S. Stich, and M. Jaggi, “Decentralized stochastic
optimization and gossip algorithms with compressed communication,”
in ICML, pp. 3478–3487, 2019.

[14] I. Lobel and A. Ozdaglar, “Distributed subgradient methods for convex
optimization over random networks,” IEEE Trans. Automat. Control.,
vol. 56, no. 6, pp. 1291–1306, 2010.

[15] Y. Chen, A. Hashemi, and H. Vikalo, “Decentralized optimization
on time-varying directed graphs under communication constraints,”
in ICASSP, pp. 3670–3674, 2021.

[16] H. Reisizadeh, B. Touri, and S. Mohajer, “Dimix: Diminishing mixing
for sloppy agents,” SIAM Journal on Optimization, 2023.

[17] G. Nadiradze, A. Sabour, P. Davies, S. Li, and D. Alistarh,
“Asynchronous decentralized sgd with quantized and local updates,”
NeurIPS, vol. 34, pp. 6829–6842, 2021.

[18] M. Hong and T.-H. Chang, “Stochastic proximal gradient consensus
over random networks,” IEEE Trans. on Signal Process., vol. 65,
no. 11, pp. 2933–2948, 2017.

[19] D. Hajinezhad and M. Hong, “Perturbed proximal primal–dual al-
gorithm for nonconvex nonsmooth optimization,” Mathematical Pro-
gramming, vol. 176, no. 1-2, pp. 207–245, 2019.

[20] P. Bianchi and W. Hachem, “Dynamical behavior of a stochas-
tic forward–backward algorithm using random monotone operators,”
JOTA, vol. 171, pp. 90–120, 2016.

[21] P. Bianchi, W. Hachem, and A. Salim, “A fully stochastic primal-dual
algorithm,” Optimization Letters, vol. 15, no. 2, pp. 701–710, 2021.

[22] P. L. Combettes and J.-C. Pesquet, “Fixed point strategies in data
science,” IEEE Trans. on Signal Process., 2021.

150

