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Abstract— The online differentiation of a signal contaminated
with bounded noise is addressed. A differentiator is developed
that generates a Lipschitz continuous output, is exact in the
absence of noise, and provides the optimal worst-case accuracy
among all possible exact differentiators when noise is present.
This combination of features is not shared by any previously
existing differentiator. Tuning of the developed differentiator
is very simple, requiring only the knowledge of a bound
for the second-order derivative of the signal. The approach
consists in regularizing the possibly highly noisy output of a
recently introduced linear adaptive robust exact differentiator
and feeding it to a first-order sliding-mode filter designed to
maintain optimal accuracy. The proposed regularization and
filtering of this output allows trading the speed with which
exactness is obtained for the feature of a Lipschitz continuous,
hence less noisy, output. An illustrative example is provided to
highlight the features of the developed differentiator.

I. INTRODUCTION

Signal differentiation encompasses the strategies and tech-
niques by which noisy signal measurements are processed
to compute an estimate of the signal’s derivative. A specific
strategy or technique is named a differentiator, and the output
of a differentiator is the derivative estimate. Differentiators
have attracted considerable attention in the control commu-
nity given their applications in fault diagnosis, observation,
and control, leading to the development, for instance, of dif-
ferentiators based on algebraic [1], [2], Kalman filtering [3],
[4], High-gain [5], [6], and sliding-mode [7], [8] techniques.

Assessing a differentiator’s theoretical performance using
qualitative properties and quantitative measures is highly
desirable. These properties are exactness and worst-case
accuracy [7], [9]. A differentiator is exact if its output
converges in finite-time to the actual signal derivative in
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the absence of noise. Accuracy refers to the maximum error
of the differentiator (after a certain time) for all admissible
signals and noise evolutions. A quantitative measure is given
by the time after which exactness is achieved, which could be
asymptotically (as time tends to infinity), after a finite time,
in fixed time (in a finite time uniformly bounded with respect
to the initial conditions), or from the beginning (except at
the initial time); each of these notions is stronger than the
previous ones.

The suitability of a differentiator for a specific application
depends on two aspects: (a) what is known about the noise
affecting the measurements and (b) what is known about the
signal whose derivatives are to be estimated. For example,
if the signal’s frequency content and noise are known and
mostly do not overlap, then standard linear techniques may
be suitable for differentiation [10], [11]. If the noise signal is
stochastic and has known statistics, then differentiators based
on differential algebraic operations or Kalman filters may be
suitable [2], [3]. If the noise is known to be bounded and,
in addition, the bound on the noise is known, then linear
high-gain differentiators may be tuned in an optimal way
[6], whereas if such information is not available or exact
differentiation of noise-free signals is desired, then sliding-
mode differentiators may be more appropriate [7].

Under the assumption that the noise is bounded by a
constant N and that the second-order derivative of the signal
to be differentiated has a known bound L, it has been
shown that an exact differentiator cannot achieve a worst-
case accuracy better than 2

√
2NL [7], [9]. Levant proposed

in [7] what is now called a super-twisting differentiator. This
differentiator employs sliding-mode techniques, is robust and
exact, and features finite-time convergence and a worst-case
accuracy given by C

√
NL, for some C > 0 that is a

function of its parameters. Numerical methods to compute
the worst-case accuracy of the super-twisting differentia-
tor were proposed by Angulo et al. in [12]. In contrast,
Seeber [13] recently presented analytical methods showing
that improving the worst-case accuracy of the super-twisting
differentiator reduces its convergence speed and that it cannot
achieve the optimal worst-case accuracy 2

√
2NL.

An exact differentiator for polynomial signals has been
proposed by Holloway and Krstic in [14], which converges
in a prescribed, fixed time. However, such a differentiator is
not robust and has an unbounded worst-case differentiation
error at the prescribed convergence time instant [15]. Robust
exact differentiators with fixed-time convergence have been
proposed in [8], [16], [17]. Such differentiators are based
on differential equations with a non-Lipschitz right-hand
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side. Similarly to the super-twisting differentiator, these
differentiators also feature a trade-off between worst-case
accuracy and convergence speed [16]; moreover, as shown
in [8], such fixed-time differentiators achieve a similar worst-
case accuracy as [7] for noise signals with small bound N .

None of the previously mentioned exact differentiators
achieve the optimal worst-case accuracy 2

√
2NL, and im-

proving their accuracy in general reduces their convergence
speed. A differentiator which achieves this optimal accuracy
while simultaneously being exact from the beginning is
proposed by Seeber and Haimovich in [9], based on a single
parameter adaptation of a finite-difference differentiator [18],
[19]. This differentiator, however, features a direct feed-
through from the noise to the output which causes the output
to be, loosely speaking, ‘highly noisy’. More formally this
may be seen from the fact that the output signal inherits
the discontinuous nature of the noise via the feed-through.
Moreover, a lack of robustness at the initial time instant
may lead to an unbounded output signal. These two features
of the output signal could be detrimental in a number of
practical applications. For example, the differentiator’s use
in controllers such as a proportional-derivative controller or
the twisting sliding-mode controller could result in harmful
high-frequency vibrations or chattering that may damage or
reduce the life of the actuators [20], [21]. Moreover, popular
chattering reduction techniques such as the boundary layer
design [22] and the high-order sliding modes [23], which are
efficient in the noise-free case, may be rendered ineffective
in the presence of noisy estimates [24]. For instance, it was
shown by Utkin in [24] that noisy estimates might make a
high-order sliding-mode controller have a larger regulation
error than a first-order one.

The present paper develops an exact differentiator that
achieves optimal worst-case accuracy and has a Lipschitz
continuous output. To this end, the optimal differentiator pro-
posed in [9] is combined with a first-order sliding-mode filter.
The resulting differentiator is easy to tune, featuring only
a single parameter that determines the convergence speed
and the Lipschitz constant of the output signal, but does not
otherwise impact the optimal differentiation accuracy. The
main features of the developed differentiator are theoretically
established and illustrated by means of an example.

Notation: R>0, R≥0 and R denote the nonnegative, the
positive and the whole real numbers, respectively; N denotes
the natural numbers. ⌈a⌉ denotes the least integer not less
than a ∈ R. One-sided limits of a function f at time instant T
from above are written as limt→T+ f(t), lim supt→T+ f(t),
and lim inft→T+ f(t). If α ∈ R, then |α| denotes its absolute
value. ‘Almost everywhere’ is abbreviated as ‘a.e.’.

II. PRELIMINARIES

We recall here the performance-related properties named
worst-case error, exactness, and accuracy as introduced
and precisely quantified in [9]. Afterward, we recall the
differentiator in [9], which was shown to be exact from the
beginning and to achieve optimal accuracy in the form of the
lowest possible worst-case differentiation error.

A. Performance Measures for Differentiators

Let F denote the set of functions f : R≥0 → R such
that f is differentiable and ḟ is Lipschitz continuous on
R≥0. Consider the differentiation of such a signal f from
a measurement u = f+η which is corrupted by a uniformly
bounded noise η. Denoting by E the set of all functions
η : R≥0 → R which are uniformly bounded on R≥0, the
corresponding classes of signals to consider, from which the
measurements are generated, are given by

FL = {f ∈ F :
∣∣∣f̈(t)∣∣∣ ≤ L a.e. on R≥0} (1a)

EN = {η ∈ E : |η(t)| ≤ N for all t ≥ 0}. (1b)

Write FL + EN = {f + η : f ∈ FL, η ∈ EN} for the set
of inputs u with fixed L and N . The possible inputs to the
differentiator then belong to the set

U =
⋃
L≥0
N≥0

(FL + EN ). (2)

A differentiator is a causal operator D : U → (R≥0 → R)
that maps the measured signal u to an estimate Du for the
derivative of f . For future reference, for every R ≥ 0, define
the class of signals with a bounded second derivative that, in
addition, have a bounded initial value and initial derivative

FR
L := {f ∈ FL : |f(0)| ≤ R, |ḟ(0)| ≤ R}. (3)

The next definitions recall concepts that are useful to describe
the features required for a differentiator in this work.

Definition 1 (Worst-case error [9]). Let L,N,R ∈ R≥0. A
differentiator D is said to have worst-case error ML,R

N (t)
from time t ≥ 0 over the signal class FR

L with noise bound
N if

ML,R
N (t) = sup

f∈FR
L

η∈EN

sup
τ≥t

∣∣ḟ(τ)− [D(f + η)](τ)
∣∣. (4)

Definition 2 (Exactness [9]). A differentiator D is said to
be exact in finite time over FL, if for each R ∈ R≥0 there
exists tR ∈ R>0 such that ML,R

0 (tR) = 0.

The time tR in Definition 2 is called a convergence time
bound of the differentiator and relates to the case without
measurement noise. In the following, the notion of conver-
gence time functions in presence of noise is introduced, based
on bounds for the asymptotic accuracy CL as defined in [9,
Definition 3.6]. Loosely speaking, such a function bounds
from above the time after which the differentiator with noisy
input achieves the corresponding accuracy.

Definition 3 (Accuracy). A differentiator D is said to have
accuracy bound ĈL,N ∈ R≥0 for signals in FL with noise
bounds less than N ∈ R>0, if there exists a function
T̂ : R≥0 × [0, N) → R≥0 that is continuous in its second
argument such that

ML,R
N [T̂ (R,N)] ≤ ĈL,N

√
NL (5)
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holds for all N ∈ [0, N) and R ≥ 0. In this case, T̂ is called
a convergence time function in presence of noise for ĈL,N .

Remark 1. Note that ĈL,N defined in Definition 3 differs
from the asymptotic accuracy CL defined in [9, Defini-
tion 3.6] mainly in the fact that noise amplitudes N up to
some given maximum noise amplitude N are considered. Any
accuracy bound ĈL,N as defined above is an upper bound
for the asymptotic accuracy CL, i.e., CL ≤ ĈL,N . Hence,
according to [9, Proposition 3.10], the lowest possible (i.e.,
optimal) value of ĈL,N is given by 2

√
2.

It is easy to see that, from any convergence time function
in presence of noise T̂ , a convergence time bound tR in
absence of noise is obtained according to tR = T̂ (R, 0).

B. Problem statement

The problem addressed in this paper is the following.
Let L > 0 be known. Design a differentiator D with the
following features:

i) D has Lipschitz continuous output;
ii) D has optimal accuracy bound ĈL,N = 2

√
2 with an N

that can be made arbitrarily large by appropriate tuning;
iii) D is exact in finite time over FL.

Existing exact sliding-mode differentiators, such as the
super-twisting differentiator [7] and its variants, do not fulfill
item ii) as shown in [13, Proposition 3.1], whereas the
optimal exact differentiator from [9] does not fulfill item i).
In addition to designing a differentiator having all of the
above features, the present paper also derives a closed-form
expression for a corresponding convergence time function in
presence of noise T̂ (R,N).

C. Optimal exact differentiation

Recall the optimal exact differentiator Dw from [9] with
output yw = Dwu given by

yw(t) =


0 if t = 0

limT→0+
u(t)− u(t− T )

T
if t > 0, T̂ (t) = 0

u(t)− u(t− T̂ (t))

T̂ (t)
if t > 0, T̂ (t) > 0

(6a)

where the time difference T̂ (t) is adapted according to

T̂ (t) = min

{
t, T , 2γ(t)

√
N̂(t)

L

}
(6b)

with an arbitrary function γ : R≥0 → [1, γ] and an estimate
N̂(t) for the noise amplitude that is determined from the
measurement u according to

N̂(t) =
1

2
sup

T∈(0,T ]
T≤t

σ∈[0,T ]

(
|Q(t, T, σ)| − Lσ(T − σ)

2

)
(6c)

wherein Q(t, T, σ) is defined as

Q(t, T, σ) = u(t− σ)− u(t) +
u(t)− u(t− T )

T
σ. (6d)

The differentiator features two parameters: a window-length
parameter T ∈ R≥0 which determines how much of the past
evolution of u is considered for computing the output yw,
and an upper bound γ ≥ 1 for the function γ. The latter
may in practice be chosen as γ = 1 to keep T̂ (t) and hence
the estimation delay of the differentiator as small as possible.

In [9], it was proved that yw(t) is well-defined for all t ≥ 0
and any u ∈ U , which also implies that the limit in (6a)
exists. Furthermore, it was shown that this differentiator is1

exact from the beginning and achieves optimal asymptotic
accuracy bound ĈL = 2

√
2 with convergence time function

T̂ (R,N) =
√
2N/L. However, depending on the features

of the noise, the output of this differentiator is not guaran-
teed to be continuous. This happens because the (possibly
discontinuous) noise η enters directly into the expression for
yw(t) in (6a) through the input u = f + η.

Next, we prove an additional auxiliary bound on the
differentiator output Dwu, which is important to establish
its local boundedness on R>0 later on.

Lemma 1. Let L ∈ R>0 and consider the differentiator Dw

defined in (6) with parameters γ̄ ≥ 1 and T̄ ∈ R>0 ∪ {∞}.
Then, for all u ∈ U and all t > 0, the differentiator output
yw = Dwu satisfies

|yw(t)| ≤

{
Lt
2 + |u(t)−u(0)|

t if t ≤ T

LT
2 +

|u(t)−u(t−T )|
T

otherwise.
(7)

The proof is given in the appendix.

III. DIFFERENTIATOR WITH LIPSCHITZ CONTINUOUS
OUTPUT

Comparing the features of the differentiator Dw in (6) with
those required in our problem statement, it is clear that the
aim is to trade a reduction in the speed with which exactness
is attained (in a finite time instead of from the beginning) for
the feature of a Lipschitz continuous output. The key idea
is to filter the output yw = Dwu by means of a first-order
sliding-mode system.

For this purpose, a regularization Dm of the differentiator
Dw is first introduced in Section III-A. The proposed differ-
entiator D with Lipschitz continuous output is then stated in
Section III-B.

A. Differentiator output regularization

The output of the differentiator Dw of (6), namely yw
in (6a), may lack not only continuity but also (Lebesgue)
measurability. To ensure that a filter that takes yw as input has
a well-defined solution, yw must be (at least) a measurable
function. One of the main reasons for this lack of measura-
bility is the fact that the supremum in (6c) is taken over an
uncountable set, apart from the fact that neither the noise η

1For the formal definition of exactness from the beginning, refer to [9,
Definition 2.4].
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nor the function γ are assumed to be Lebesgue measurable
in the present paper. To ensure measurability we introduce
the following regularization. For any function v : R≥0 → R,
its regularization v‡ : R≥0 → R ∪ {−∞,∞} is defined as

v‡(t) =

{
v(0) if t = 0
lim supε→0+ v(t−ε)+lim infε→0+ v(t−ε)

2 if t > 0
(8)

with ∞+ (−∞) := 0 in case both limits are infinite.
The following lemma, which is proven in the appendix,

shows that applying the regularization to a locally bounded
function yields a Lebesgue measurable function.

Lemma 2. Let v : R≥0 → R be locally bounded on R>0.
Then, the function v‡ defined in (8) takes only finite values,
i.e., v‡(t) ∈ R for all t ∈ R≥0, is locally bounded on R>0,
and is Lebesgue measurable.

Remark 2. A function v is locally bounded on R>0 if for
every t > 0 there exists a (sufficiently small) neighborhood
of t where v is bounded. Note that this does not preclude v
from being unbounded in a right-neighborhood of zero. For
example, v defined as v(0) = 0, v(t) = 1

t for t > 0 is locally
bounded on R>0; in this case, actually, v‡ = v.

Define a new, intermediate differentiator Dm whose output
ym = Dmu is a regularized version of yw, namely

ym(t) = y‡w(t). (9)

In the following result, we show that Dm achieves the same
accuracy as Dw, while guaranteeing a measurable output.

Proposition 1. Let L ∈ R>0 and consider the differentiator
Dm with output ym = Dmu defined by (6) and (9), with
parameters γ ∈ [1, 1 +

√
2] and T ∈ R>0 ∪ {∞}. Then, the

following statements are true:

a) the output Dmu is Lebesgue measurable for all u ∈ U;
b) the worst-case differentiation error of Dm fulfills

ML,R
N (t) ≤ 2

√
2NL for all N ∈ [0, LT

2
/2) and all

t >
√

2N/L. △

Remark 3. Note that in contrast to [9, Theorem 5.1], the
error bound does not necessarily hold for t =

√
2N/L due

to the regularization. Nevertheless, Dm can be seen to have
optimal accuracy bound ĈL,N = 2

√
2 for signals with noise

bounds less than N = LT
2

2 from Definition 3.

Proof. For item a), note that every u ∈ U is locally
bounded on R≥0. Lemma 1 then implies that yw = Dwu is
locally bounded on R>0, which allows to conclude Lebesgue
measurability of Dmu = y‡w using Lemma 2.

Regarding item b), from [9, Theorem 5.1] we have that
the output yw = Dw(f + η) of Dw satisfies∣∣ḟ(τ)− yw(τ)

∣∣ ≤ 2
√
2NL (10)

for all f ∈ FL, η ∈ EN , and all τ ≥
√
2N/L. Note

that lim supε→0+ ḟ(τ − ε) = ḟ(τ) since ḟ(t) is Lipschitz

continuous. Therefore, using (10), it follows that∣∣ḟ(τ)− lim sup
ε→0+

yw(τ − ε)
∣∣

=

∣∣∣∣lim sup
ε→0+

(
ḟ(τ − ε)− yw(τ − ε)

)∣∣∣∣ ≤ 2
√
2NL (11)

for all t >
√
2N/L. The same conclusion applies to

lim infε→0+ yw(t− ε) and in turn to ym(t), completing the
proof.

B. Exact differentiator with Lipschitz continuous output

Define the output of the proposed differentiator as the
Filippov [25] solution to

ẏ(t) = −κ sign(y(t)− ym(t)), y(0) = 0, (12)

with κ a positive design parameter, i.e., by applying a first-
order sliding-mode filter to the output ym of the regulariza-
tion. Note that this output may be unbounded in a right-
neighborhood of t = 0; nevertheless, the right-hand side of
(12) is uniformly bounded by virtue of the sign function
and Lebesgue measurable as a consequence of ym being
Lebesgue measurable according to Proposition 1-a). The
proposed differentiator is then defined by (6), (9), and (12).
The design parameter κ should be selected greater than the
upper bound L for the Lipschitz constant of ḟ , as will be
shown in the following.

Theorem 1. Let L > 0, N ≥ 0 and consider the differentia-
tor D with output y = Du defined by (6), (9), and (12) with
parameters γ ∈ [1, 1 +

√
2], T ∈ R>0 ∪ {∞}, and κ > L.

Then, the following statements are true:
a) D has a Lipschitz continuous output for any u ∈ U .
b) D has accuracy bound ĈL,N = 2

√
2 for signals in

FL with noise bounds less than N = LT
2

2 , with
corresponding convergence time function in presence of
noise given by

T̂ (R,N) = 2

√
2N

L
+

R

κ− L
. (13)

Proof. Item a) follows by noting that ẏ(t) exists almost
everywhere and is bounded by κ, therefore y(t) is Lipschitz.

For item b), let f ∈ FR
L , η ∈ EN with N < N , and define

the differentiation error e(t) = y(t)−ḟ(t) with y = D(f+η).
From (12), e satisfies

ė(t) = −κ sign(e(t)− ηm(t))− f̈(t) (14)

and |e(0)| ≤ R, with ηm = ym − ḟ = Dmf − ḟ being
Lebesgue measurable according to Proposition 1-a) and
bounded by

|ηm(t)| ≤ 2
√
2NL (15)

for all t > T̃ (N) :=
√
2N/L according to Proposition 1-b).

For t ∈ [0, T̃ (N)] it follows from |ė| ≤ κ+ L that

|e(t)| ≤ (κ+ L)t+ |e(0)| ≤ (κ+ L)T̃ (N) +R (16)
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holds. For t > T̃ (N), consider V (e) = |e| as a Lyapunov
function. Then, V = |e| > 2

√
2NL implies that its time

derivative V̇ along (14) satisfies

V̇ = −κ sign(e) sign(e− ηm(t))− f̈(t) sign(e) ≤ −κ+ L
(17)

since sign(e − ηm) = sign(e) due to (15). Noting that
V (T̃ (N)) ≤ (κ+L)T̃ (N)+R, it will now be shown using
the comparison principle that V (e(t)) ≤ 2

√
2NL holds for

all t ≥ T̂ (R,N), proving the claim that the worst-case
error satisfies MR,N

L (T̂ (R,N)) ≤ 2
√
2NL = ĈL,N

√
NL

with ĈL,N = 2
√
2. To see this, suppose to the contrary

that V (e(t)) > 2
√
2NL holds for some t ≥ T̂ (R,N).

Then, the differential inequality (17) may be integrated
backward in time to obtain V (e(t)) > 2

√
2NL for all

t ∈ [T̃ (N), T̂ (R,N)] along with the contradiction

V (T̃ (N)) ≥ V (T̂ (R,N)) + (κ− L)(T̂ (R,N)− T̃ (N))

> 2
√
2NL+ (κ− L)T̃ (N) +R

= (κ+ L)T̃ (N) +R, (18)

because 2
√
2NL = 2LT̃ (N).

IV. EXAMPLE

In the following, an illustrative example is shown in order
to demonstrate the features of the introduced differentiators
and to compare them to results from literature. To demon-
strate the effect of the regularization (8), the output (9) of the
regularized differentiator Dm is first computed analytically,
from which the output (12) of the proposed differentiator D
is then obtained by means of a numerical simulation.

Let V ⊂ [6, 10] be a dense Vitali set, i.e., a non-measurable
set whose closure is [6, 10] and which has the property that
for each x ∈ R there exists one and only one v ∈ V such
that v − x is a rational number. Consider differentiation of
the signal f(t) = t2/2 + 5t from a measurement u = f + η
subject to the noise with N = 1 given by

η(t) =



1−
√
t t < 4

1 t ∈ [4, 5)

1− 7
4 (t− 5)2 t ∈ [5, 6)

− 1
2 + 1

2µ(t) t ∈ V
1
2 + 1

2µ(t) otherwise,

(19)

with µ(t) = cosωt and positive parameter ω = 103. This
noise consists of a square-root arc on [0, 4), of a constant
on [4, 5), and of a parabola arc on [4, 6); it is not Lebesgue
measurable on the interval [6, 10]; and it is a high-frequency
deterministic signal for t > 10.

Consider the differentiators Dw, Dm, and D whose outputs
are defined in (6), (9), and (12), respectively, with parameters
L = 1, γ = 1, T = ∞, and κ = 2.5. In the following, the
outputs yw = Dwu of the original optimal exact differentiator
Dw and ym = Dmu of the regularized optimal exact
differentiator Dm will be calculcated analytically. Since the
noise is discontinuous at t = 4, N̂(t) = 1 follows for t ≥ 4

using the same arguments as in [9, Proposition 5.6]. For
t ∈ [0, 4), T ∈ (0, t), and σ ∈ [0, T ], we have

Q(t, T, σ) = −σ(T − σ)

2
− q(t, T, σ) (20)

according to (6d) with

q(t, T, σ) =
√
t− σ −

√
t+ (

√
t−

√
t− T )

σ

T
, (21)

and since this expression is positive due to the concavity of
the square root, then

|Q(t, T, σ)| − σ(T − σ)

2
= q(t, T, σ) (22)

is obtained for the expression in (6c). One may verify that
this expression is maximal for T = t and σ = 3t

4 , yielding
N̂(t) = q(t, t, 3t/4) for t < 4, resulting together with (6b)
in

N̂(t) =

{√
t

4 t < 4

1 t ≥ 4,
, T̂ (t) =


t t ∈ [0, 1]
4
√
t t ∈ (1, 4)

2 t ≥ 4.

(23)

Noting that t ∈ V implies t+ 2, t− 2 /∈ V by virtue of V
being a Vitali set, the output yw = Dwu of (6) is then given
by

yw(t) =



0 t = 0

ḟ(t)− t
2 − 1√

t
t ∈ (0, 1]

ḟ(t)−
4√t
2 −

√
t−
√

t− 4√t
4√t

t ∈ (1, 4)

ḟ(t)− 1 +
√
t−2
2 t ∈ [4, 5)

ḟ(t)− 1 +
√
t−2
2 − 7(t−5)2

8 t ∈ [5, 6)

ḟ(t)− 7
4 + 1

4µ(t) t ∈ [6, 7), t ∈ V
ḟ(t)− 5

4 + 1
4µ(t) t ∈ [6, 7), t /∈ V

ḟ(t)− 7
4 + 7(t−7)2

8 + µ(t)
4 t ∈ [7, 8), t ∈ V

ḟ(t)− 5
4 + 7(t−7)2

8 + µ(t)
4 t ∈ [7, 8), t /∈ V

ḟ(t)− 3
2 + µ(t)−µ(t−2)

4 t ∈ [8,∞), t ∈ V
ḟ(t)− 1

2 + µ(t)−µ(t−2)
4 t ∈ [8,∞), t− 2 ∈ V

ḟ(t)− 1 + µ(t)−µ(t−2)
4 otherwise.

(24)
By applying the regularization (8) to this function according
to (9), the output ym = Dmu of the regularized differentiator
is obtained as

ym(t) =



yw(t) t ∈ [0, 4)

ḟ(t)−
4√t
2 −

√
t−
√

t− 4√t
4√t

t = 4

ḟ(t)− 1 +
√
t−2
2 t ∈ (4, 5]

ḟ(t)− 1 +
√
t−2
2 − 7(t−5)2

8 t ∈ (5, 6]

ḟ(t)− 3
2 + 1

4µ(t) t ∈ (6, 7]

ḟ(t)− 3
2 + 7(t−7)2

8 + 1
4µ(t) t ∈ (7, 8]

ḟ(t)− 1 + µ(t)−µ(t−2)
4 t ∈ (8, 10]

ḟ(t)− 3
4 + µ(t)−µ(t−2)

4 t ∈ (10, 12]

ḟ(t)− 1 + µ(t)−µ(t−2)
4 t ∈ (12,∞).

(25)
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Fig. 1: Differentiation error obtained from an analytical
computation for the original optimal exact differentiator from
[9] and the regularized optimal exact differentiator (6), (9),
and obtained from a numerical forward Euler simulation
with step size ∆ = 5 · 10−4 for the proposed optimal exact
differentiator with Lipschitz continuous output (6), (9), (12)
and the super-twisting differentiator (26) with parameters
L = 1, γ̄ = 1, T = ∞, and κ = 2.5, as well as λ1 = 2.3,
λ2 = κ

L = 2.5, differentiating the signal f(t) = t2

2 + 5t
corrupted by discontinuous, not Lebesgue measurable, and
high-frequency noise η(t) as in (19) with ω = 103. Also
shown is the differentiators’ noise amplitude estimate N̂(t).

From the function ym, the output y = Du of the proposed
Lipschitz optimal exact differentiator is computed by means
of a numerical simulation using a forward Euler integration
of (12) with the step size ∆ = 5 ·10−4. For comparison pur-
poses, a numerical forward Euler simulation, with identical
step size, of a super-twisting differentiator [7]

ż1(t) = z2(t) + λ1

√
L
√
u‡(t)− z1(t) sign(u

‡(t)− z1(t))

ż2(t) = λ2L sign(u‡(t)− z1(t)) (26)

with output ys(t) = z2(t) is performed using the measure-
ment u‡ regularized according to (8) as an input. To achieve
similar convergence speed as the proposed differentiator,
λ2 = κ

L = 2.5 is chosen, and λ1 = 2.3 is selected.
Fig 1 depicts the differentiation error of the three optimal

differentiators and the super-twisting differentiator along
with the noise signal η(t) and the differentiators’ estimate
N̂(t) for its amplitude. One can see that the discontinuous,
high-frequency noise, which is additionally not Lebesgue
measurable on the interval [6, 10], causes the output yw of the
original differentiator Dw to be discontinuous (in addition

to also being not Lebesgue measurable). The regularized
differentiator Dm removes the non-measurable components,
resulting in a Lebesgue measurable output ym with smaller,
but still discontinuous and high-frequency variation of the
differentiation error. Additionally, the lack of Lipschitz con-
tinuity of the noise can be seen to cause an unbounded
differentiation error near t = 0 for both differentiators. The
proposed exact differentiator D, in contrast, features an out-
put that is Lipschitz continuous with Lipschitz constant κ =
2.5 and hence significantly attenuates the high-frequency
oscillations. Moreover, its differentiation error can be seen to
converge to within the optimal error bound 2

√
2NL ≈ 2.83,

according to Theorem 1, in a time bounded from above by
T̂ (5, 1) = 2

√
2 + 10

3 ≈ 6.17. The super-twisting differen-
tiator, in comparison, also features a Lipschitz continuous
output ys with Lipschitz constant κ and converges in a similar
time as the proposed differentiator, but can be seen to exceed
the optimal error bound near t = 6 in accordance with the
results obtained in [13].

V. CONCLUSIONS

This paper introduced what is, to the best of our knowl-
edge, the first exact differentiator with a Lipschitz continuous
output that attains optimal worst-case accuracy. To achieve
this result, we extend an optimal base differentiator by Seeber
and Haimovich [9] using a sliding-mode filter designed to
maintain the same worst-case accuracy as [9] while providing
a Lipschitz continuous estimate for the derivative. Doing so
requires Lebesgue measurability of the filter’s input, which
is ensured by regularizing the base differentiator’s output.
Compared to the base differentiator in [9], our approach
was shown to exhibit superior attentuation of high frequency
noise at the cost of reducing the speed of convergence,
which in [9] occurs instantaneously in the noise-free case.
Moreover, we give an upper bound on its convergence time
in presence of noise, at which it attains optimal accuracy.
The proposed differentiator thus has similar features as the
well-known super-twisting differentiator with the additional
advantage of having optimal worst-case differentiation ac-
curacy and a known convergence time bound in presence
of measurement noise. In the future, the robustness and
implementation of the differentiator in presence of sampled
measurements may be studied.

APPENDIX
PROOFS OF ALL LEMMATA

Proof of Lemma 1. Let t > 0, define τ = min{t, T}, and
distinguish the cases T̂ (t) = 0 and T̂ (t) > 0. In the first
case, the inequality

|u(t− τ) + yw(t)τ − u(t)| ≤ Lτ2

2
(27)

is obtained from [9, Lemma 5.8] by setting µ = σ = τ in
that lemma. In the second case, (27) is obtained from [9,
Lemma 5.9] with σ̂ = τ . In either case, (27) implies

|yw(t)|τ ≤ Lτ2

2
+ |u(t)− u(t− τ)|, (28)
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which after division by τ yields the claimed inequality.

Proof of Lemma 2. Since v is locally bounded, both limits
always yield finite values in R and are themselves locally
bounded as functions of t on R>0. It suffices to show that
lim supϵ→0+ v(t−ϵ) is measurable because measurability of
the limit inferior follows analogously and the definition of
v‡ at the single point t = 0 does not affect measurability.
First, note that with the restrictions ϵ ∈ (0, t) and n ∈ N,

lim sup
ϵ→0+

v(t− ϵ) = lim
ϵ→0+

sup
τ∈[t−ϵ,t)

v(τ)

= lim
n→∞

sup
τ∈[t− 1

n ,t)
v(τ) (29)

holds for all t > 0, where the first equality follows by
definition and the change of variables τ = t − ϵ, and the
second one is true with n restricted to the integers, because
the argument of the limit is monotonous. Define a sequence
of functions gn : R>0 → R, n ∈ N as

gn(t) = sup
τ∈[ ⌈nt⌉−1

n ,t)
v(τ), (30)

where ⌈nt⌉ denotes the least integer not less than nt. Note
that gn is piecewise monotone and is therefore measurable,
cf. [26, Page 17]. In the following, we show that

lim
n→∞

sup
τ∈[t− 1

n ,t)

v(τ) = lim
n→∞

gn(τ), (31)

which implies measurability of lim supϵ→0+ v(t − ϵ) by
virtue of being the pointwise limit of measurable functions
according to [26, Theorem 2.6]. Since t − 1

n ≤ ⌈nt⌉−1
n for

all n, t > 0, we have

lim
n→∞

sup
τ∈[t− 1

n ,t)

v(τ) ≥ lim
n→∞

sup
τ∈[ ⌈nt⌉−1

n ,t)
v(τ). (32)

Moreover, for all n, t > 0 there exists an integer m > n
such that t − 1

m ≥ ⌈nt⌉−1
n holds, implying the inequality

supτ∈[t− 1
m ,t) v(τ) ≤ sup

τ∈[ ⌈nt⌉−1
n ,t) v(τ), and thus

lim
m→∞

sup
τ∈[t− 1

m ,t)

v(τ) ≤ lim
n→∞

sup
τ∈[ ⌈nt⌉−1

n ,t)
v(τ), (33)

which together with (32) implies (31).
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