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Abstract— This work presents a Model Predictive Control
(MPC) algorithm for the Artificial Pancreas. In this work, we
assume that an a-priori model is unknown and the Compo-
nentwise Hölder Kinky Inference (CHoKI) data-based learning
method is used to make glucose predictions. A stochastic
formulation of the MPC with chance constraints is considered to
have a less conservative controller. The data collection and the
testing of the proposed controller are performed by exploiting
the virtual patients of the FDA-accepted UVA/Padova simulator.
The simulation results are quite satisfying since the time in
hypoglycemia is reduced.

I. INTRODUCTION

Type 1 Diabetes (T1D) is a metabolic disease that affects
millions of people all over the world, characterized by the
autoimmune destruction of the pancreatic beta cells, causing
the absence of insulin. This results in high Blood Glucose
(BG) levels and thus T1D patients require daily exogenous
insulin, whose amount computation is the key-point to restore
their euglycemic range (BG between 70 and 180 mg/dL),
avoiding hyper-/hypo- glycemic conditons [1].

The availability of Continuous Glucose Monitoring
(CGM) sensors and of pumps for continuous subcutaneous
insulin injections, has led to the Artificial Pancreas (AP)
development. The AP tries to mimic the functioning of a
healthy pancreas, exploiting two insulin actions: the basal
(continuous delivery of small amounts to manage fasting
periods) and the boluses (bigger amount injected at meal
times to face carbohydrate ingestion or when the BG level
is unexpectedly too high).

Model Predictive Control (MPC) is among the most used
algorithm for the AP, thanks to its ability to forecast future
BG values. In MPC the control action is obtained by solving
online, at each sampling time, a finite horizon optimal control
problem. This way, MPC is able to compute the sequence of
the best control actions (with length equal to the prediction
horizon), minimizing a cost function and satisfying the
constraints, in order to reach the desired goal. Then, the first
control action is applied to the system and the procedure is
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repeated at the following time step, in a receding horizon
fashion [2].

MPC requires a model of the system to make predictions.
Data-driven techniques may help to learn the behaviour of
the systems directly from past data. The use of MPC as a
control algorithm for the AP has been widely studied [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. All these
works are based on a model of the T1D patients (usually
physiological-based models [8]) for predictions. However,
the employed models may not correctly describe the specific
patient’s glucose-insulin dynamics, characterized by inter-
and also intra-patients variability. In this work, the model
is assumed to be unknown and the idea is to directly use the
data from the patients to learn their behaviour and to build a
personalized controller. Here, the chosen learning method is
the Componentwise Hölder Kinky Inference (CHoKI), a non-
parametric learning technique which has been proved valid
to learn nonlinear dynamical systems, and which favours the
design of robust MPCs that are stable by design [15].

A drawback of this technique is that the deterministic
bounds obtained may be so conservative that they render
an infeasible setup. For this reason, in [16], a truncated
bound on the prediction error was used to obtain practical
controllers. In this work, we propose to use a stochastic
description of uncertainties and constraints. To account for
the model-system mismatch, the approach proposed in [17]
is employed, since it allows for a small probability of
constraints violation.

To collect the data needed for learning and to test the
proposed control algorithms, the virtual patients of the
UVA/Padova simulator [18] are exploited. This is a simulator
accepted by the FDA as a substitute for preclinical trials.

The outline of the note is as follows: in Section II
the CHoKI method is explained and applied to the T1D
patient case. In Section III the MPC design is presented.
In Section IV the chance constraints theory is shown and
used in the MPC problem. Section V shows the results of
the application of the proposed MPC on the UVA/Padova
simulator. Section VI concludes the work.

Notation: A set of integers [a, b] is denoted Iba, Rn is the
set of real vectors of dimension n and Rn×m is the set of
real n×m matrices. Given v, w ∈Rnv , the notation (v, w)
implies [vT , wT ]T and v≤w implies that the inequality holds
for every component. ∥v∥ stands for the Euclidean norm of
v and |v|={w : wi = |vi|,∀i}. Given two sets A,B, A⊖B
denotes the Pontryagin difference. Their Cartesian product is
denoted A×B = {(x, y)|x ∈ A, y ∈ B}. The box B(v)⊂Rnv

is defined as B(v) = {y : |y| ≤ v}. An n,m-dimensional
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matrix of ones is denoted 1n×m. [A]j and [a]j define the j-
th row and entry of the matrix A and vector a, respectively.
The notation Pk{A} = Pk{A|xk} denotes the conditional
probability of an event A given the realization of xk.

II. PROBLEM STATEMENT

Glucose level in T1D patients can be represented as sam-
pled continuous-time system, described by an a-priori un-
known discrete-time model, with the measured output y(k)∈
Rny and the input u(k)∈Rnu . The goal in this case, as in the
AP currently on the market, is to manage the basal insulin
in an automatic fashion, while the postprandial boluses are
assumed to be delivered manually. Thus, only the relation
among BG, meals and basal insulin is considered. This means
that there is one measurable output (ny = 1), which is the
BG level, in mg/dL, and there are two inputs (nu = 2): a
non-controllable one, which is the carbohydrates of the meals
(u1, in mg) and a controllable one, which is the basal insulin
(u2, in pmol). The sampling time is set to 5min. The system
can be represented with the following NARX state space:

y(k + 1) = f
(
x(k), u(k)

)
+ e(k), (1)

where u(k) =
(
u1(k), u2(k)

)
, e(k) ∈ Rny is the pro-

cess noise and x ∈ Rnx is the regression state x(k) =(
y(k), . . . , y(k − na), u1(k − 1), . . . , u1(k − nb), u2(k −
1), . . . , u2(k−nc)

)
, where na, nb, nc ∈ N0 are the memory

horizons for the glucose, for the meals and for the basal
insulin, respectively. A data set of ND observations, de-
noted D = {([w]k, [y]k+1)}, for k = 1, . . . , ND is collected,
where w = (x, u1, u2) ∈ Rnw .

A. Componentwise Hölder Kinky Inference (CHoKI)

KI is a class of learning approaches that includes Lips-
chitz interpolation, which is a technique based on Lipschitz
continuity of the function desired to be learned. There exists
a more generalized extension, named Hölder continuity [19].

Definition 1. A function f : W → Y is Hölder continuous
if there exist two real constants L ≥ 0 and 0 < pl ≤ 1 such
that, for all w1, w2 ∈ W ,

∥f(w1)− f(w2)∥ ≤ L∥w1 − w2∥pl , (2)

where L represents the smallest Lipschitz constant and pl is
called the Hölder exponent, W ⊆ Rnw is the input space
and Y ⊆ Rny is the output space.

In the case of pl = 1, it means to have Lipschitz
continuity. In [15], the Hölder constants L and pl are replaced
by the matrices L and P , to build the Componentwise
Hölder Kinky Inference (CHoKI) method. The aim of the
CHoKI is to consider the effect that the variations of each
regressor component has on the output. This is based on the
componentwise Hölder continuity, defined as follows [15].

Definition 2. Given the matrices L and P ∈ Rny×nw ,
a function f : W → Y is componentwise L-P-Hölder
continuous if ∀w1, w2 ∈ W and ∀i ∈ Iny

1

|f(w1)− f(w2)| ≤ dPL
(
|w1 − w2|

)
, (3)

where

dPL (w) :=
(
a : [a]i =

nw∑
j=1

[L]i,j [w]
[P]i,j
j , ∀i ∈ Iny

1

)
. (4)

Then, assuming that the function f is Hölder continuous
and given a data set D of ND inputs/outputs observations,
the CHoKI predictor for a query qw ∈ Rnw is defined as:

f̂(qw; Θ,D) =
1

2
min

i=1,...,ND

(
[ỹ]i + dPL (|qw − [w]i|)

)
+

1

2
max

i=1,...,ND

(
[ỹ]i − dPL (|qw − [w]i|)

)
, (5)

where Θ = {L,P}. The matrices L and P can be found
from the data, solving an offline optimization problem [15].

A new output ŷ(k+1) = f̂(w(k); Θ,D) can be estimated
applying (5) and the prediction model can be formulated with
the following state-space:

x̂(k + 1) = F̂ (x(k), u1(k), u2(k))
ŷ(k) = Mx̂(k)

(6)

where F̂ (x(k), u1(k), u2(k)) = (f̂(x(k), u1(k), u2(k)),
y(k), . . . , y(k − na + 1), u1(k), . . . , u1(k − nb +
1), u2(k), . . . , u2(k − nc + 1)) and M = [Iny

, 0, . . . , 0].

B. CHoKI implementation for T1D patient

The collection of the data D is required to apply the
CHoKI learning method. This is a fundamental step since
the quality of the data will affect the CHoKI predictions and
thus the controller performance. This is done by exploiting
the UVA/Padova simulator, making several simulations with
various virtual adult T1D patients. In particular, to have
an appropriate spatial distribution of the insulin-glucose
points, different values of the initial BG, of the basal insulin
and of the meals amounts (with the bolus injected 20min
after the meal starts) were simulated. Moreover, to obtain
more realistic behaviors, some random noises were added.
Namely, the virtual typical commercial CGM was selected
as a sensor, with auto-regressive noise with inverse Johnson
transform distribution. For the virtual pump, its noise has a
Gaussian distribution, with 0 pmol mean and 0.1 standard
deviation. The meal carbohydrates estimation has a noise
with normal distribution, with 30% of the meal amount as
standard deviation. Once the data are collected, they have
to be correctly shaped to be used inside the CHoKI (i.e.
w), which means that the model orders have to be found.
In this case, the considered orders are na = 5, nb = 9
and nc = 3. They are identified through a cross-validation
procedure, choosing the combination with the lowest mean
squared error between the predictions and the real values,
but looking at the model complexity, to avoid the risk of
overfitting.

The hyperparameters Θ = {L,P} have to be estimated, to
get f̂(qw; Θ,D), and the same procedure explained in [15,
Section B] is followed. In this case, the optimization problem
is set to obtain just the values of L, since the matrix P is
assumed to be P = 1ny×nw

. Moreover, to highlight the

1620



TABLE I
MPC SETTINGS

Adult uref

[pmol]
ND [La;Lb;Lc]

µ
[mg/dL]

Nc ϵ

#1 122.38 4769 [0.74; 5.46; 0.29] 14.83 3 10
#2 134.89 4946 [4.89; 3.96; 0.09] 10.19 1 20
#3 149.97 4985 [0.71; 5.45; 0.09] 9.29 3 10
#5 91.83 4149 [0.84; 5.52; 0.44] 13.91 3 5
#6 190.22 5334 [4.72; 3.52; 0.09] 11.27 1 1
#8 105.83 4698 [1.08; 5.84; 0.1] 7.8 3 1
#9 94.59 3976 [1.13; 4.09; 0.09] 11.63 2 1

#10 124.86 4961 [3; 2; 0.09] 10.1 1 20

effect that each input in the regressor has on the output,
only three values of L are estimated. Which means to
have L = [La1na ;Lb1nb

;Lc1nc ], where La ∈ R is for the
glucose part, Lb ∈ R for the meals and Lc ∈ R for the
basal insulin. This procedure is done separately for all the
analyzed subjects, using the corresponding initial data set D
to obtain the customized matrix.

Once the optimization problem is solved for all the sub-
jects and the L are obtained, unseen data sets are used to
validate the models. A further analysis was performed to
check the models’ ability to predict glucose values according
to the given inputs correctly. The resulting L and the values
uref are reported in Table I, for each virtual subject.

III. CHOKI-BASED ROBUST MPC

In this section, the MPC is designed with the CHoKI learn-
ing method, exploited to obtain open-loop glucose predic-
tions, allowing to solve the constrained optimization problem
at each time instant. According to what is explained in [15],
to guarantee the MPC robustness against possible differences
among the CHoKI predictions and the real values, the output
constraints are tightened according to the propagation of
these errors. This way, the system in closed-loop with the
proposed controller is proved to be Input-to-State Stable
(ISS) [15, Theorem 3].

In this case, the goal of the control problem is to drive
and maintain the BG level inside the desired euglycemic
zone. This objective has to be reached fulfilling all the
desired inputs and output constraints. Namely, the glucose
level should be maintained in the set

Y = {y : 55 ≤ y ≤ 300mg/dL} (7)

in order to avoid extreme hyper- or hypoglycemic conditions.
The basal insulin u2 is the control action and its amounts
have to be inside the set U = {u : 0 ≤ u ≤ 500 pmol}.

A. Control and prediction horizons

The control horizon Nc is chosen according to the tight-
ened constraints, which are computed once and offline (see
Section IV-A). Nc is the maximum value that allows having
a non-empty set of constraints, but also with a meaningful
range according to the problem. To improve the controller’s
predictive ability and to increase the domain of attraction,
a prediction horizon (Np) larger than the control one is
chosen, Np > Nc.

For this reason, a local control law is required to compute
the inputs from Nc to Np and, in this work, the Linear
Quadratic Regulator (LQR) is exploited on the linearized
system x(k + 1) = Ax(k) + Bu(k), where u = (u1, u2).
In particular, the control law will be u = K(x − x) + u,
where (x, u) is an equilibrium point around which the
system F̂ (x, u) is linearized and K ∈ Rnu×nx is the
LQR control gain. The equilibrium state x contains y =
120mg/dL as glucose and u = (0, uref). The matrices
A ∈ Rnx×nx and B ∈ Rnx×nu of the linearized model
are numerically computed with the CHoKI, using the input-
output data. Thus, each element [A]j,i is given by

[A]j,i =
∂[F̂ ]j
∂[x]i

=
[F̂ ]j([x]i + ϵ)− [F̂ ]j([x]i − ϵ)

2ϵ
, (8)

where ϵ is different for each subject (see Table I). In the
same way, each element of B is given by [B]j,i =

∂[F̂ ]j
∂[u]i

.

Note that [A]1,1 = ∂[y]k+1

∂[y]k
and [B]1,1 = ∂[y]k+1

∂[u1]k
.

B. Constraints tightening (CHoKI-based MPC)

The estimation error must be considered in the design of
the controller, thus, the constraints are tightened according to
the maximum possible prediction error. The set of restricted
output constraints along the control horizon is given by

[Y]j = Y ⊖ [R]j , j = 1, . . . , Nc. (9)

Where [Y]0 = Y (in (7)) and [R]j are the reachability sets
that account for the possible deviation of the predictions from
the real system, computed as in [15, Section III-A]. Briefly,
the maximum absolute error obtained with the validation data
set is µ ∈ Rny and satisfy |y(k + 1) − ŷ(1|k)| ≤ µ. The
difference between a prediction at time step k + j given
the measurement at time step k and the prediction at that
time step given the measurement at time k+1, for the same
sequence of control inputs, is bounded by the sets |ŷ(j|k)−
ŷ(j−1|k+1)| ∈ [M]j ⊆ Rny and |ŵ(j|k)−ŵ(j−1|k+1)| ∈
[G]j ⊆ Rnw , where σ(j) = max(1, j−na). The reachability
sets are defined as [R]j = {y : |y| ∈ [M]j} for all j ∈ INc

1 .
The sets [M]j and [G]j are boxes that can be calculated
by the simple recursion [c]j = dPL ([d]j−1) and [d]j =
([c]j , . . . , [c]σ(j), 0, . . . , 0), with [c]1 = µ, where µ is the
prediction error bound, and, thus, [R]j = B([c]j) [15].

In this case, due to the T1D complexity, the reachability
sets R are too big, ending with a small control horizon.
Moreover, the constraints are too tight, which leads to
possible infeasibilities due to values outside the ranges. For
these reasons, a less conservative strategy is proposed in this
paper, employing stochastic constraints [17].

IV. CHOKI-BASED STOCHASTIC MPC

In this section, a brief description of the chance constraints
theory applied to the stochastic MPC is reported [17]. This
method allows a small probability of constraints violation,
taking into consideration the probabilistic description of the
uncertainty. This could face the infeasibilities, due to possible
values outside the tightened constraints. This means having
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less conservative tightening, which leads to an increased
region of attraction without changing the prediction horizon.

In [17], the predicted state trajectory of the system is de-
composed into its deterministic and stochastic components:
x̂(j|k) = ẑ(j|k)+ êx(j|k), j ∈ INc−1

0 , given a finite control
horizon Nc. Where ẑ ∈ Rnx represents the evolution of the
nominal (deterministic) model and êx ∈ Rnx represents the
evolution of the stochastic component of the state.

The state constraints x(j|k) ∈ X can be stated in a
probabilistic way, as P{x(j|k) ∈ X} ≥ 1− ε. Which means
that the state constraints are satisfied with a probability
higher than 1− ε, where ε is the probability of violating the
state constraint. Then, they are rewritten component-wise as

P{[Ax]ix(j|k) ≤ [bx]i} ≥ 1− [ε]i, i ∈ Ip1, j ∈ INc
1 (10)

and these chance constraints are satisfied if the nominal
system satisfies the constraints z(j|k) ∈ X̃j , with

X̃j = {z ∈ Rnx |Axz ≤ ηj}, j ∈ INc
1 . (11)

Where ηj is given by

[ηj ]i = max
η

η (12a)

s.t. Pk{η ≤ [bx]i − [Ax]iex(j|k)} ≥ 1− [ε]i (12b)

for i ∈ Ip1. Where Ax ∈ Rp×nx , bx ∈ Rp, p is the number of
linear constraints that defines the set X , ε ∈ [0, 1]p and [ε]i is
the probability of violating the linear state constraint i [20].

In this paper, the stochastic constraint tightening is imple-
mented exploiting the available measurements of the error
(i.e. the difference among the real values and the predictions
made with the CHoKI), according to the sampling approach
presented in [17, Section V], computing

[ηj ]i = [bx]i − q1−r/Ns
. (13)

The number of the samples for which the constraints do not
hold is r:

r ≤ εuNs−
√
2εuNs ln

1

β
, r ≥ εlNs−1+

√
3εlNs ln

2

β
,

where Ns = 1143 is the total number of samples, ε ∈
[εl, εu] and q1−r/Ns

is the (1− r/Ns)-quantile of the set
{[Ax]iex

l(j|k)}l=1,...,Ns . In our case, the (1−r/Ns)-quantile
is computed on the truncated uncertainty distribution ob-
tained through the CHoKI, at each step. Note that the
satisfaction of the chance constraints holds with a confi-
dence 1−β=95% (i.e. εl=0.095 and εu=0.105), since the
constraints are obtained directly from the data, with the sam-
pling approach. Thus, the solution to the sampled program is
equal to the chance-constrained one with confidence 1−β.

A. Constraints tightening (CHoKI-based stochastic MPC)

As in [17], the system describing a T1D patient can be
split into its deterministic and stochastic components, (1).
The output constraints have to be tightened. The computation
is done once and offline, to obtain ymin and ymax (i.e. ηj
from (13)), given the evolution of the uncertainty, to have

[Y ′]j = {y : ymin(j) ≤ y ≤ ymax(j)}. (14)

The propagation of the error is obtained computing [c]j and
[d]j at each step, as reported in Section III-B. The main
difference is that since in this case the constraints tightening
is based on the probability distribution of the errors, the
computation is done considering all the uncertainty values,
to get the distribution at each step. Once these are obtained,
each mean is subtracted from all the values to fit a normal
distribution with zero mean (since in the computation of [c]j
and [d]j the propagation of the error is in absolute value) and
this is then truncated at the value corresponding to the 90th

percentile (with ε = 0.1, because of the 10% probability
of constraints violation). Then, the (1 − r/Ns)-quantile is
computed and the entire procedure is repeated for all the
considered virtual subjects. The values of the 90th percentiles
at the first prediction step are the µ reported in Table I.

The values of the tightened constraints affect also the
choice of the control horizons Nc (reported in Table I),
for each virtual subject. While the prediction horizon is set
to Np = 12 for all (to reach 60min of predictions).

B. Optimization problem (CHoKI-based stochastic MPC)

The optimization problem is set as follows:

min
u2,ya,δhyper,δhypo

VN (x̂, u; Θ,D) (15a)

s.t. x̂(0|k) = x(k) (15b)
x̂(j+1|k)=F̂

(
x̂(j|k),u1(j),u2(j)

)
, j ∈ INc−1

0 (15c)

x̂(j+1|k)=F̂
(
x̂(j|k),K(x̄−x(j))+ū

)
, j∈INp−1

Nc
(15d)

ŷ(j|k) = Mx̂(j|k), u2(j) ∈ U , j ∈ INp−1
0 (15e)

ŷ(j|k) ∈ [Y ′]j , j ∈ INc−1
0 (15f)

ŷ(j|k) ∈ [Y ′]Nc , j ∈ INp−1
Nc

(15g)

u1(j) = 0, j ∈ INp−1
1 (15h)

70− δhypo ≤ ya ≤ 140 + δhyper (15i)
δhyper ≥ 0, δhypo ≥ 0 (15j)

where (15h) is used since the meals are not predictable.
The cost function is built in this way:

VN (x̂, u; Θ,D) = VNc
+ VNp

+ Vs + λVp,

Where the first term is the stage cost VNc
, along the control

horizon:

VNc
=

∑Nc−1
j=0 ∥ŷ(j|k)− ya∥2Q + ∥u2(j)− uref∥2R (16)

where the set-point ya is an auxiliary optimization variable,
which is constrained to be inside the interval [70, 140] and
needed for the implementation of the MPC in a zone control
fashion. Since some slack variables δhypo, δhyper are added
to the constraints of ya (15i), a stationary cost Vs is created:

Vs = phyperδ
2
hyper + phypoδ

2
hypo, (17)

with asymmetric weights, phypo > phyper, to represent that
hypoglycemia is more dangerous than hyperglycemia [8].

Similarly to the stationary cost, from Nc to Np − 1, the
cost VNp

is given by

VNp
=

∑Np−1
j=Nc

∥ŷ(j|k)− ya∥2Q. (18)
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Fig. 1. Each line represents a specific virtual patient. In the upper graph, the lines represent the BG trend, the black triangles depict the meals time and
the green zone is the safe range (i.e. 70-180 mg/dL). In the lower graph, the basal insulin injections.

The terminal cost VP penalizes the difference between the
last state and the reference state (xref , which contains ya, no
meals and uref ):

VP = ∥x̂(Np|k)− xref∥2P , (19)

where P is the solution to the Riccati equation, given the
LQR control gain K. The terminal cost is usually employed
to guarantee the MPC stability and it is weighted by a
factor λ > 0, since no terminal constraint is considered [21].
Moreover, several combinations of the weights were tested
and the definitive ones are the following: R = 10, phypo =
1 ·107, phyper = 1 ·106, λ = 10 and Q = 1, except for Adult
8 and 9, for whom Q = 100.

The aim is to create a customized controller, which means
that for each of the analyzed virtual patients is set a person-
alized optimization problem, with the corresponding values.

V. SIMULATIONS AND RESULTS

In this section the proposed customized MPC with stochas-
tic constraints is applied as control algorithm of the virtual
AP in the UVA/Padova simulator. The controller is tested
on the virtual T1D adults, through three-day simulations,
with the following 15min duration meals each day: 40 g
of carbohydrates at 06:00am, 100 g at 12:00pm and 60 g at
07:00pm; and the boluses, computed by the simulator, are
injected 20min after the meal starts. The simulations settings
are the same as the ones used for the data collection.

The results of the simulations are displayed in Figure 1,
where the upper graph represents the BG outcomes, while the
lower graph shows the basal insulin injections computed by
the proposed MPC. The BG values are mainly inside the eu-
glycemic range (i.e. the green zone), except for some higher
values that are caused by the ingestion of the carbohydrates
(note that the black triangles depict the meals).

Looking at the BG trends may be not enough and indeed
other important tools are considered for the evaluation of
the quality of the insulin-glucose management: the Control-
Variability Grid Analysis (CVGA) and the Time In Range
(TIR). The former is a graphical representation of the simula-
tion ”worst condition”, with the minimum BG value on the x-
axis and the maximum one on the y-axis and where each dot
represents a subject [22]. The latter shows the percentages of
time a patient spends in each specific BG range. The CVGA
results are shown in Figure 2, looking at the dots. These are
satisfying since all the dots are inside the safe zones A and
B. The TIR results are reported in the upper part of Table II.
The TIR requirements are mostly satisfied since the subjects
stay between 70 and 180 mg/dL for more than the 70%
of the simulation time, according to the American Diabetes
Association requirements. An exception occurs for adults 8
and 9, who are slightly more than 5% over 250 mg/dL and
adult 8 also has TIR equal to 69%. However, they always
fulfill the time requirements for the hypoglycemic ranges,
which was the main goal, due to its dangerousness.

In Figure 2 and in the lower part of Table II are reported
the CVGA (see the squares) and TIR results of the con-
tinuous basal therapy provided by the simulator, to make
a comparison. The benefit of the proposal, particularly in
the management of hypoglycemic conditions, is clear. For
example, looking at the CVGA, the virtual patients adult 5
and adult 9 pass from the Lower D zone to the Upper B zone
(green and purple dots and squares in Figure 2, respectively),
which means that the minimum BG value is increased.

VI. CONCLUSION

A CHoKI-based MPC with stochastic constraints tighten-
ing is proposed as control algorithm of the AP, with the
aim of driving and maintaining the T1D patients’ BG values
inside the euglycemic range, updating the basal insulin injec-
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TABLE II
TIR PERCENTAGES

Adult < 54
mg/dL

54-70
mg/dL

70-180
mg/dL

180-250
mg/dL

> 250
mg/dL

Proposed
controller

# 1 0% 0% 84% 15% 1%
# 2 0% 0% 90% 10% 0%
# 3 0% 0% 81% 19% 0%
# 5 0% 0% 85% 14% 1%
# 6 0% 1% 84% 12% 3%
# 8 0% 0% 69% 25% 6%
# 9 0% 0% 70% 23% 7%
# 10 0% 0% 95% 5% 0%

Constant
insulin
therapy

# 1 0% 0% 92% 8% 0%
# 2 0% 2% 91% 7% 0%
# 3 0% 0% 94% 6% 0%
# 5 14% 7% 75% 4% 0%
# 6 0% 2% 87% 10% 1%
# 8 0% 0% 77% 18% 5%
# 9 6% 7% 78% 8% 1%
# 10 0% 0% 91% 9% 0%

tions amount every 5min. The application of the proposed
controller to the virtual patients of the UVA/Padova simulator
is presented. The results are quite promising and the main
outcome is that it reduces the hypoglycemic events, which
is fundamental due to their dangerousness. This is possible
thanks to the CHoKI ability to forecast future glucose values,
which allows the MPC to find the optimal insulin amounts,
to reach and maintain the BG goal, respecting the imposed
constraints. Future work will be focused on the study of
recursive feasibility and stability of the proposed controller.
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