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Abstract— In this paper, we discuss the non-parametric
estimate problem using kernel-based LTI system identification
techniques by constructing a Loewner-based interpolant of the
estimated model. Through this framework, we have been able
to retrieve a finite-dimensional approximation of the infinite-
dimensional estimate obtained using the classical kernel-based
methodologies. The employment of the Loewner framework
constitutes an enhancement of recent results which propose
to use a Padé approximant to obtain a rational transfer
function from an irrational transfer function corresponding
to the identified impulse response. The enhancement has been
illustrated for the identification of the Rao-Garnier benchmark.

Index Terms— System Identification, Kernel-based learning,
Loewner framework, Continuous-time system identification,
LTI system identification,

I. INTRODUCTION

A. Motivations and state of the art

Modeling dynamical systems from data leans naturally
toward the identification of discrete-time models due to how
data are naturally collected. For this reason, the research
effort in system identification is mainly focused on discrete-
time modeling [1], [2], [3]. However, in many contexts, the
use of continuous-time models is more appropriate because,
in the physical world, dynamical systems are usually de-
scribed in the continuous-time domain [4]. Thus, system
identification for continuous-time models is a consolidated
research area with many results [5], [6]. Continuous-time
models are commonly identified relying on a two steps
procedure that first uses the data to obtain a discrete-time
model and then the identified model is converted into a
continuous-time one [7], [8], [9]. However, these two-step
approaches have multiple drawbacks as explained in detail
in [4], [10], [11]. Firstly, they cannot handle non-uniformly
sampled data, or time-delay that are not multiple of the
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sampling time. Furthermore, they struggle with stiff sys-
tems. For these reasons, several algorithms or optimization
schemes that directly identify a continuous-time model were
developed in recent years [6], [10], [12], [13], [14], [15],
[16], and multiple Matlab toolboxes are available [17], [18].

Most of the aforecited methods are parametric and rely
on the prior knowledge of the system order. When this
information is unavailable, these methods are equipped with
criteria that assess the more suitable order given the data.
Among others, it is possible to use the Akaike Information
Criterion [19], or the Young heuristic Information Crite-
rion [20]. On the other hand, these methods select the
model among a discrete set of possible structures. For
this reason, recently, non-parametric techniques that employ
regularization to tune continuously the model complexity
were developed. These approaches, commonly known as
kernel methods or regularization networks, were originally
introduced for the identification of Linear Time-Invariant
(LTI) systems in [21]. Since then, they gained popularity for
their ability to easily embed specific desired properties into
the identified model [22], [23], [24] such as, among others,
Bounded Input Bounded Output (BIBO) stability, causality,
or smoothness. Additionally, they can be easily equipped
with various methods, such as Empirical Bayes [25], for
automatically tuning the complexity of the identified model.
For continuous-time models, unfortunately, these techniques
provide identified models that are difficult to employ in
practical applications because the identified model is defined
by its impulse response.

Recently, [14] proposed a solution to this problem that
directly identifies an approximated transfer function of the
identified model. In this approach, the authors derive the
irrational transfer function corresponding to the identified
impulse response, and they propose to use a Padé ap-
proximant [26] to obtain a rational transfer function. This
approach suffers from two drawbacks: (D1) the Padé ap-
proximation is designed to represent the irrational function
only around a specific point in the domain, and (D2) it is
not guaranteed that the approximation preserves the stability
properties that the kernel methods guarantee.

B. Contributions

To cope with issues (D1) and (D2) we employ
the Loewner-based interpolation method to construct a
(finite-dimensional) rational approximant of the (infinite-
dimensional) irrational estimated transfer function obtained
in [14], [27], [28]. The Loewner framework [29], [30],
[31], [32], originally developed for rational interpolation,
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is a model reduction technique yielding a reduced order
model that interpolates the transfer function of the high-
order model at arbitrarily selected frequencies and directions.
In this respect, since the reduced model is solely obtained
by interpolating a set of points in multiple parts of the
complex plane, the Loewner framework can be employed for
solving (D1). Additionally, the Loewner framework is well
studied in the literature and various techniques that guarantee
the stability of the reduced model are available [33], [32].
For this reason, it is also possible to address (D2).

C. Organization

The paper is organized as follows. Section II briefly
recalls the kernel-based methodology for the identification of
LTI models. Then, Section III illustrates how the Loewner
framework is employed to select a finite-dimensional approx-
imation of the identified model. The proposed methodology
is validated through numerical simulations in Section IV.
Finally, V concludes the manuscript with some concluding
remarks.

D. Notation

We denote by C, R and N the set of complex, real and
natural numbers, respectively (0 ∈ N). ι is the imaginary unit.
Given a complex number z ∈ C, Re(z), Im(z), and z∗ are
the real part, the imaginary part, and the complex conjugate
of z, respectively. Given n ∈ N, Rn and Cn are the set of real
and complex column vectors of dimension n, respectively.
Given n,m ∈ N, Rn×m and Cn×m are the set of real and
complex matrices of dimension n × m, respectively. With
a slight abuse of notation, we use tuples of numbers and
column vectors interchangeably. Given n ∈ N, In ∈ Rn×n

is the identity matrix. Given a function x : [0,∞) → R,
L[x] : C → C denotes the Laplace transform of x.

II. THE SYSTEM IDENTIFICATION TECHNIQUE

Consider the continuous-time causal Single-Input Single-
Output (SISO) LTI system whose output y : [0,∞) → R
corresponding to the input u : [0,∞) → R is

y(t) = [g ⋆ u](t) :=

∫ ∞

0

g(ψ)u(t− ψ) dψ ,

where ⋆ denotes the convolution operator and g : [0,∞) → R
is the impulse response of the system. Suppose to have
collected the dataset D = {(ti, yi)}ni=1 ⊆ R2 from an
experiment on the system. In particular, we suppose that, for
all i ∈ {1, . . . , n}, yi = [g⋆u](ti)+ei where u : [0,∞) → R
is a known input excitation signal and e is a Gaussian white
noise. In particular, given i, j ∈ {1, . . . , n} with i ̸= j, ei
and ej are independent and ei ∼ N (0, β2) where N (µ, σ2)
is the normal distribution with mean µ ∈ R and variance
σ2 ∈ (0,∞). Since the data are collected from a causal
system, for the remainder of the manuscript, we assume that,
for every i ∈ {0, . . . , n}, ti > 0.

The identification procedure for continuous-time LTI mod-
els is explained in detail in [23]. In particular, the impulse

response of the identified model is obtained by solving the
optimization problem

argmin
ĝ∈H(k)

n∑
i=1

(
yi − [ĝ ⋆ u](ti)

)2
+ τ
∣∣ĝ∣∣2H(k)

, (1)

where ĝ is the impulse response of the identified model,
k : [0,∞) × [0,∞) → R is a valid kernel function, i.e.
it is a symmetric and positive semi-definite function, H(k)
is the Reproducing Kernel Hilbert Space (RKHS) [34] with
reproducing kernel k, | · |H(k) is its norm, and τ ∈ [0,∞)
is the parameter that tunes the complexity of the model.
In particular, increasing τ decreases the complexity of the
estimated model. Using the Representer Theorem [35], the
solution of the optimization problem (1) is given by

ĝ(t) =

n∑
i=1

ci

∫ ∞

0

u(ti − ψ)k(t, ψ) dψ, ∀t ∈ [0,∞) (2)

where c = (ci)
n
i=1 ∈ Rn is the solution of the linear system

O(O + τIn)c = Oȳ

with ȳ = (yi)
n
i=1 ∈ Rn and O ∈ Rn×n being a symmet-

ric positive semi-definite matrix whose (i, j)-th element is
ou(ti, tj) that reads as

ou(ti, tj) :=

∫ ∞

0

∫ ∞

0

u(ti−ξ)u(tj−ψ)k(ξ, ψ) dξ dψ. (3)

The properties of the estimated function ĝ strongly depend
on the selection of the kernel function k. Additionally, the
Representer Theorem, given any bounded input, is guaran-
teed to hold only for absolutely integrable kernels [36]. In
this early work, we focus exclusively on the stable spline
kernel introduced in [21] because (i) it is widely used in the
literature, i.a. [37], [38], [39], (ii) it is a stable kernel [23],
[40], i.e. it guarantees that the estimated model is BIBO
and the Representer Theorem is valid, (iii) they are strongly
related to other useful stable kernels such as the DC and TC
kernels [41].

The stable spline kernel can be defined as [14, Prop. 2.1]

k(a, b) = λ

q−1∑
h=0

γq,h

{
e−β[(2q−h−1)a+hb] If a ≥ b

e−β[(2q−h−1)b+ha] If a < b
, (4)

where λ, β ∈ [0,∞), q ∈ N \ {0} are kernel parameters that
need to be tuned, and

γq,h =
(−1)q+h+1

h!(2q − h− 1)!
.

Using kernel (4) and estimate (2), the method requires the
tuning of the hyperparameters ζ = (τ, λ, β, q) ∈ [0,∞)3 ×
N \ {0}. This problem is usually addressed by solving an
optimization problem capable of dealing with the trade-off
between complexity and fitting, therefore enabling the avoid-
ance of over- and under-fitting. For this type of estimation
technique, the most popular method is based on the empirical
Bayes theory [25], and it translates into the maximization of
the likelihood of the available data given a certain ζ. More
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precisely, we select ζ as the solution of the optimization
problem

argmin
ζ∈[0,∞)3×N\{0}

ȳ⊤(O + τIn)
−1ȳ + log det

(
O + τIn

)
.

The estimated impulse response ĝ described in (2) is a linear
combination of convolutions between the kernel function k
and functions that are defined using the excitation input
signal. Handling this function in practical applications can
be daunting, and it is usually approximated numerically in
a finite set of time instants, i.e. by discretizing the model.
To avoid this issue, we follow the rationale of [14] where
they propose computing a rational approximation of the
transfer function Ĝ = L[ĝ]. In particular, they first define
the irrational transfer function of the identified model, and
they employ it to define a rational approximant. The irrational
transfer function of the identified model using kernel (4) is
given by [14, Prop. 3.2]. In detail, for each s ∈ C, we have

Ĝ(s) = λ

[
q−1∑
h=0

Qu
q,h(s) +Hu

q (s)

]
,

where

Qu
q,h(s) =

γq,h
s+ βh

(
n∑

i=1

ciA
u
i

(
β(2q − h− 1)

))
,

Hu
q (s) =

(−1)qβ2q−1∏2q−1
i=0 (s+ βi)

(
n∑

i=1

ciA
u
i

(
s+ β(2q − 1)

))
,

and Au
i := L[ui] with ui(t) = u(ti−t), for every t ∈ [0,∞).

By analyzing the term Hu
q (s), the transfer function Ĝ is

irrational for many input signals u. In the next Section, we
propose a method to find a rational approximation of Ĝ using
the Loewner framework.

III. APPROXIMATED FINITE-DIMENSIONAL MODEL

As anticipated in the Introduction, the Loewner-based
order reduction approach yield interpolants of the transfer
function at a finite number of points in its domain. For
this reason, we consider 2m ∈ N interpolation points
that, for convenience, are divided into two disjointed sets.
Specifically:

{(λi, ri, wi)}mi=1 ⊆ C3, {(µi, ℓi, vi)}mi=1 ⊆ C3,

where, for every i ∈ {1, . . . ,m}, we have

Ĝ(λi)ri = wi, ℓiĜ(µi) = vi.

Furthermore, we assume that {λi}mi=1 ∩ {µi}mi=1 = ∅. The
objective is to define an LTI model of order m whose transfer
function Ĝr interpolates all the considered interpolation
points. Therefore, for every i ∈ {1, . . . ,m}, we get the
following interpolation conditions:

Ĝr(λi)ri = wi = Ĝ(λi)ri, ℓiĜr(µi) = vi = ℓiĜ(µi).

Carrying out the procedure in [30], the descriptor of the
reduced model is given by the equations

Lẋ(t) = Lσx(t)− V u(t), y(t) =Wx(t), (5)

where V := [v1, . . . , vm]⊤ ∈ Cm×1, W := [w1, . . . , wm] ∈
C1×m,

L :=


v1r1−ℓ1w1

µ1−λ1
· · · v1rm−ℓ1wm

µ1−λm

...
. . .

...
vmr1−ℓmw1

µm−λ1
· · · vmrm−ℓmwm

µm−λm

 ,
and

Lσ :=


µ1v1r1−ℓ1w1λ1

µ1−λ1
· · · µ1v1rm−ℓ1wmλm

µ1−λm

...
. . .

...
µmvmr1−ℓmw1λ1

µm−λ1
· · · µmvmrm−ℓmwmλm

µm−λm

 .
Therefore, the rational transfer function of the reduced model
is Ĝr(s) = −W (sL − Lσ)

−1V , for every s ∈ C. The
matrices L ∈ Cn×n and Lσ ∈ Cn×n are commonly
referred to as the Loewner Matrix and the shifted Loewner
Matrix, respectively. Additionally, it is worth noting that
these matrices are, respectively, the solution of the Sylvester
equations

ML− LΛ = V R− LW,

MLσ − LσΛ =MVR− LWΛ,

where Λ := diag(λ1, . . . , λm) ∈ Cm×m, M :=
diag(µ1, . . . , µm) ∈ Cm×m, R := [r1, . . . , rm] ∈ C1×m,
and L := [ℓ1, . . . , ℓm]⊤ ∈ Cm×1.

Unfortunately, the reduced model (5) cannot be applied
talis qualis in this context for three reasons:

1) The reduced model takes on complex values i.e., it maps
complex functions to complex functions.

2) In general, for arbitrary interpolation points, the
Loewner matrix might be nonsingular and thus the
reduced model (5) might not be a minimum realization.

3) The reduced model can be an unstable interpolant, and
its stability strongly depends on the selected interpola-
tion points.

In the next three sections, problems 1)-3) are tackled by
suitably modifying the proposed interpolant.

A. Real reduced model

In this section, we propose to use a shift of coordinates in
order to obtain a real reduced model, i.e. a model that maps
real functions to real functions. In particular, following [30],
we consider invertible matrices Jλ, Jµ ∈ Cm×m such that
matrices

Λ̄ := JλΛJ
−1
λ R̄ := RJ−1

λ W̄ :=WJ−1
λ

M̄ := JµMJ−1
µ L̄ := JµL V̄ := JµV

are all real matrices. Then, the real Loewner matrix L̄ ∈
Rm×m and the real shifted Loewner matrix L̄σ ∈ Rm×m

can be defined, respectively, as the solutions of the following
Sylvester equations:

M̄ L̄− L̄Λ̄ = V̄ R̄− L̄W̄ ,

M̄ L̄σ − L̄σΛ̄ = M̄V̄ R̄− L̄W̄ Λ̄.
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Thus, the real reduced model is given by

L̄ẋ(t) = L̄σx(t)− V̄ u(t), y(t) = W̄x(t), (6)

with transfer function Ḡr(s) = −W̄ (sL̄− L̄σ)
−1V̄ .

Notice that matrix Λ̄ has the same spectrum of Λ. There-
fore, since the spectrum of Λ is {λi}mi=1, Jλ exists if and
only if for every i ∈ {1, . . . ,m}, there exists j ∈ {1, . . . ,m}
such that λi = λ∗j . If this condition is satisfied, we can define
Jλ as a block diagonal matrix with a 2× 2 block, that is[

1 −ι
1 ι

]
∈ C2×2,

for each complex conjugate pairs in {λi}mi=1 and a 1 × 1
block, that is I1, for each real elements of {λi}mi=1. Analo-
gously, Jµ is defined in the same way using the interpolation
points in {µi}mi=1.

B. Minimum realization of the reduced model

Usually, the sets of interpolation points {λi}mi=1 and
{µi}mi=1 are selected using the available knowledge of the
model to reduce. However, in this work, we aim to find
an interpolant for the transfer function Ĝ that is obtained
through a black-box identification procedure. Therefore, we
cannot select the interpolation points relying on the prior
knowledge of the system. For this reason, it is useful to use
as many interpolation points as possible to cover the relevant
parts of the domain of Ĝ. However, with the presence of
many redundant interpolation points the reduced model can
have more states than needed and/or a nonsingular Loewner
matrix. In particular, this may occur when the matrix pencil
(L̄σ, L̄) is not regular, i.e. if, for every s ∈ {λi}mi=1∪{µi}mi=1,

rank(sL̄− L̄σ) = rank

[
L̄
L̄σ

]
= rank

[
L̄ L̄σ

]
=: r < m.

A procedure that solves this problem was proposed in [29].
Consider the two short Singular Value Decompositions
(SVD)[

L̄
L̄σ

]
= UvSvZ

⊤
v ,

[
L̄ L̄σ

]
= UhShZ

⊤
h ,

where Sv, Sh ∈ Rr×r, Uv, Zh ∈ R2m×r, and Zv, Uh ∈
Rm×r. Then, the minimal realization of the reduced model
can be described by the equations

U⊤
h L̄Zv ẋ(t) = U⊤

h L̄σZv x(t)− U⊤
h V̄ u(t) , (7a)

y(t) = W̄Zv x(t) . (7b)

with transfer function

Ğr(s) = −W̄Zv

(
U⊤
h (sL̄σ − L̄σ)Zv

)−1

U⊤
h V̄ .

C. Asymptotically stable reduced model

Using kernel (4), the identified model (2) is BIBO stable
as shown in [21], [23]. However, it is not guaranteed that
the approximated model (7) preserves this property. In the
literature, there are various methods to enforce stability
on the interpolated model. Here, we consider the method
proposed in [33]. Specifically, let r ∈ N, and define

Sr :=

r⋃
i=1

[
Ri×i × Ri×i × Ri×1 × R1×i

]
,

S+
r := {(E,A,B,C) ∈ Sr : σ(E,A) ⊆ C+} ,

S−
r := {(E,A,B,C) ∈ Sr : σ(E,A) ⊆ C−} ,

where σ(E,A) is the set of eigenvalues of the matrix pencil
(E,A), C+ := {z ∈ C : Re(z) ≥ 0} and C− := {z ∈ C :
Re(z) < 0}. The set Sr can be interpreted as the set of the
SISO models of order equal or smaller than r described using
its descriptor form’s matrices. Then, S−

r is the set of BIBO
models and S+

r is the set of antistable models. Additionally,
given Σ = (E,A,B,C) ∈ Sr we define the function HΣ :
C → C as the transfer function of the model associated to
Σ, i.e. HΣ(s) = C(sE −A)−1B.

Using these definitions, [42] proposes to define the BIBO
stable reduced model as the solution of the optimization
problem

Σs = argmin
Σ∈S−

r

∣∣∣HΣ − Ğr

∣∣∣
2

(8)

where |·|2 is the L2 norm and Ğr is the transfer function of
the reduced model defined in (7). To solve this optimization
problem, let us recall from [33, Thm. 2] that for every Σ ∈ Sr

there exist Σ+ ∈ S+
r and Σ− ∈ S−

r such that HΣ = HΣ+ +
HΣ− . Then, the models Σ− and Σ+ can be constructed using
the stable-unstable decomposition. 1 Then, there exist Q+ ∈
S+ and Q− ∈ S− such that Ğr = HQ+

+HQ− where Ğr is
the transfer function of the interpolant defined in (7). Finally,
the solution of the optimization problem (8) is Σs = Q− with
transfer function Gr = HQ−

IV. SIMULATIONS

To validate the proposed method numerically, we consider
the Rao-Garnier benchmark [10] whose transfer function is

R(s) =
−6400s+ 1600

s4 + 5s3 + 408s2 + 416s+ 1600
, ∀s ∈ C.

This benchmark is commonly used for continuous-time
LTI system identification because it has some interesting
properties. Firstly, the system has two oscillatory modes
caused by its two complex conjugate pairs with low damping
coefficients located at 2 rad/s and 20 rad/s. Additionally, the
model has a zero in the right half plane.

For the identification, we consider four different experi-
mental settings:

A. Uniformly sampled measurement of the impulse re-
sponse;

1In practice, it can be easily computed by means of various control
systems toolbox, for example in MATLAB using the stabsep function.
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B. Uniformly sampled measurement of the step response;
C. Irregularly sampled measurement of the impulse re-

sponse;
D. Irregularly sampled measurement of the step response;

In all the experiments, we collect n = 200. For A and C
the noise variance is σ2 = 1.732, while for B and D is
σ2 = 0.227. For A and B the sampling time is 0.025 sec.
Therefore, ti = (i − 1)0.025 sec. Instead, for C and D the
intersample times are distributed according to a uniform dis-
tribution in the interval [0.0229, 0.0271]. The identification
procedure is carried out on all the experiments using the
method proposed in [14], which uses a Padé approximant,
and the proposed approach which uses the Loewner-based
approach explained in Section III. Finally, the performances
are evaluated on a validation dataset Dv = {uvi , yvi }50000i=1

taken from a noiseless experiment on the system using a
random Gaussian excitation band limited at 320Hz with
a sampling time of 3200−1 sec. To compare the identified
models, we use the performance index

q(Dv) := 1−

√√√√√ ∑50000
t=1 |yvi − ŷv|2∑50000

t=1

∣∣∣yvi − 1
50000

∑50000
i=1 yvi

∣∣∣2
where ŷv is the output of the estimated model using the
same input of the validation dataset. To better assess the
performance of the methods, we employ a Monte Carlo
simulation with 125 runs.

For the evaluation of ou, defined in (3), and of Au
i , we

refer to the equation reported in [14]. The stable spline order
is set to q = 1. To reduce the computational complexity
of the estimated model, we employ the procedure presented
in [43] after selecting the hyperparameters. Furthermore, for
the Loewner method, we use 1000 interpolation points, 200
reals and 400 complex conjugate pairs. In particular, let
us define {ai}200i=1 such that a1 = 0.2, a200 = 200 and
log(ai+1) − log(ai) = log(aj+1) − log(aj) for every i, j ∈
{1, 199}. Then, the real interpolation points are {−ai}200i=1

and the complex conjugate pairs are {(+ιai,−ιai)}200i=1 and
{(ai + ιai, ai − ιai)}200i=1. The 600 interpolation points are
split into two disjointed sets {λi}150i=1 and {µi}150i=1 in such
a way that the matrices Jλ and Jµ exist, as explained in
Section III-A.

Figure 1 reports the box plots of the performance index
obtained from the Monte Carlo simulation. Here, we can
note that the proposed Loewner approximation outperforms
the Padé approximant proposed in [14]. The main reason
for this improvement can be noted in Figure 2 where the
magnitude plot of the Bode diagram of the estimated models
of experiment A are compared with the one of the true sys-
tem. Since the Padé approximant is designed to approximate
the irrational transfer function only around 0, the second
oscillatory mode is lost during the approximation procedure.
Instead, the Loewner-based approach finds an interpolant
along a wide range inside the domain of the transfer function.
Therefore, it is able to better approximate the effect of the
second oscillatory mode of the identified model.

70 75 80 85 90 95 100

D Loewner

D Padé

C Loewner

C Padé

B Loewner

B Padé

A Loewner

A Padé

q(Dv) [%]

Fig. 1. Box plots of the performance index on the validation dataset in
the various experiments.

100 101 102

−60

−40

−20

0

20

ω [ rad
s ]

|·
|[
d
B
]

Fig. 2. Comparison between the magnitude of the true system (black
line) with the ones identified using experiment A. In particular, the green
and red lines are obtained using the Padé approximant and Loewner-based
approximant, respectively.

V. CONCLUSIONS

In practical applications, the non-parametric estimate ob-
tained using kernel-based LTI system identification tech-
niques can be daunting, and it lacks interpretability. For
this reason, in this work, we propose a method that tackles
this problem by employing a Loewner-based interpolant
of the estimated model. The proposed methodology is a
refinement of the procedure introduced in [14] that shows
significant improvements in the identification of the Rao-
Garnier benchmark. With the proposed methodology, it is
possible to retrieve a finite-dimensional approximation of
the infinite-dimensional estimate obtained using the classi-
cal kernel-based methodologies. Additionally, the obtained
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model preserves the BIBO stability guarantees of the original
model, it is in minimal realization and the model order is
automatically selected by the procedure.

In future developments, we aim to expand the identifi-
cation procedure to more complicated input signals and to
optimize the estimation procedure.
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