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Abstract— Street lighting dimming is adjustable to current
micro-location conditions such as weather, road and pavement
traffic type and density. With the trade-off goals of energy sav-
ings and required lighting quality, it is suitable for optimization
problem formulation. The paper proposes a model predictive
control for optimal dimming of street lighting adjustable to
micro-location conditions and multiple spatial points of interest.
Simplified mathematical model of street lighting ray tracing
is utilized to capture expected illuminance in various points
of interest in a three-dimensional space. Power percentage of
luminaires is optimized based on predicted micro-location data
and with imposed gradual rate of change. A joint street-wise
dimming profile is adjusted to several points of interest for
each luminaire as a reference tracking problem for optimizing
the light demand trade-off in critical points from safety aspect,
user comfort from social aspect and minimizing the overall
consumption. The algorithm is verified on the realistic annual
simulation for a case study of Kralja Tomislava street in City
of Sisak, Croatia. The results show the potential of 31.94%
less consumption compared with the currently operating street
lighting.

I. INTRODUCTION

Street lighting system is one of the most widespread
infrastructures of the modern cities, crucial for public safety
and life quality. It is technologically outdated and consumes
up to 30% of the city electric energy [1], and therefore a
suitable area for further energy efficiency improvements. The
modernization of the system implies replacing the luminaires
with Light-Emitting Diodes (LED), but also improvements in
the control systems, remote-control capability and adaptation
to working conditions.

Aiming to improve the energy efficiency and performance
of the system, several research works have been carried
out in the past two decades, mostly focusing on remote-
control and application of new communication protocols.
Recently, approaches also include LED street light modelling
and adaptive and intelligent control design.

System architecture that enables adaptive remote control
of public lighting is proposed in [2]. The results show savings
of 25.64% while maintaining the maximum light intensity at
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peak traffic and pedestrian flows. In [3], an intelligent wire-
less communication system for LED streetlight management
is presented. The system minimizes the investment cost of
traditional wired approach and makes it dynamically adaptive
to surrounding environment conditions.

Based on the I-V characteristics of the LED luminaire
datasheet, voltage, current and resistor parameters were
extracted to build a proposed mathematical model of the
luminaire in [4]. In comparison with measurements-based
approach, the proposed model showed better performance.
Another mathematical model of the LED photo-electro volt-
age and current model is derived in [5]. The results of the
model verification using two LED lamp chips indicated that
the model is qualified for design and research purposes.
Modelling of the LED light spatial distribution on the street
surface with respect to the Cartesian coordinates of the points
of interest, lamp position, height of the lamp, and angular
distribution profile of lamp luminous intensity is reported in
[6].

The authors of [7] propose regression, statistical, and
neural prediction methods of the vehicular traffic flow data
collected by a smart camera. A high potential energy saving
is revealed from the experimental results without affecting
the safety of traffic. To release the congestion during traffic
peak-load, exponential, weighted, and simple moving aver-
age traffic prediction models are analyzed in [8]. The authors
propose a control mechanism based on categorization and
packet propagation to prevent the network from overload-
ing, showing that weighted moving average model is most
effective in reducing packet dropped. Based on the historical
data of pedestrian movements collected by motion sensor, the
authors of [9] propose a system that predicts the pedestrian
activity and controls the streetlight intensity accordingly. The
results obtained showed the effectiveness of the proposed
system in securing the pedestrians safety, reducing the light
pollution, and improving the energy efficiency of the system.
Aiming to optimize the energy consumption of the street-
light system for better energy efficiency improvement, an
embedded video processing-based strategy is proposed in
[10]. An adaptive control scheme uses deep learning for off-
peak and late-night hours. The movement of pedestrians and
vehicles is detectable and exploitable for the adjustment of
the lighting level, resulting in significant improvement of the
energy efficiency.

A fuzzy logic based-controller is proposed in [11] for
adjusting the brightness of photovoltaic-powered street lu-
minaires with respect to future traffic forecast model based
on real data and energy level of batteries. Simulation results
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indicate that the proposed control system ensures the street
security and extend the autonomy of the system. Authors of
[12] propose an artificial neural network control strategy to
improve the energy efficiency of a residential street lighting
area. The results obtained indicated that a 13.5% reduction
of power consumption and 34% of unwanted utilization of
the system.

In this paper, a centralized Model Predictive Control
(MPC) algorithm for street lighting system is proposed
considering micro-location conditions of weather, pedestri-
ans, traffic, and street topology, denoted jointly as WPTS.
Besides the flow density, the conditions also imply road
and pavement users diversity, related to number of diverse
spatial coordinates. Based on collected data, predictions of
WPTS conditions are generated and used as inputs to modify
the fundamental dimming profile. Together with derived
ray tracing model of light propagation, the tracking MPC
optimization problem is formulated. The concept is initially
proposed in [13] for a 4-luminaire road segment and here
extended for the whole street and long-term operation. The
control system is simulated based on real case study of street
geometry and data for the selected street in City of Sisak,
Croatia. Results obtained for a one-year period show the
effectiveness of the proposed control.

The paper is organized as follows. Section II presents light
propagation mathematical model and MPC. The implemen-
tation aspects and case study is elaborated in Section III.
Results are presented and discussed in Section IV, followed
by conclusions in Section V.

II. MODEL PREDICTIVE CONTROL OF STREET LIGHTING

A. Mathematical Model

For optimal three-dimensional spatial lighting, often also
referred to as vertical lighting, we propose a MPC algorithm
to adjust the illuminance intensity at a chosen set of points
of interest on the street surface. For this, we first derive
a mathematical relation between a luminaire as the light
source and the illuminance Ep at arbitrary selected points of
interest p defined with Cartesian coordinates (x, y, z). The
model is based on [6] and also includes luminaire geometric
data, such as height h and boom length d, and light source
characteristic, i.e. luminous intensity I . A single point of
interest p is influenced by ns luminaires of index i and results
in superposed contribution:

Ep(x, y, z) =

ns∑
i=1

Ii · hi[
(x2

i ) + (yi − di)2 + (hi − zi)2
] 3

2

, (1)

where I is dependent of photometric and azimuth angle,
which are related as trigonometric functions of (x, y, z)
[6],[13].

In discrete time state-space representation, such model
obtains the form:

xk+1 = Axk +Buk,

yk = Cxk,
(2)

where:

• k ∈ Z is the sampling time index.
• xk ∈ Rm is the system state vector (the illumi-

nance intensity level at each point of interest, xk =

[E1, E2, . . . , Em]
⊤
k

)
with m as the number of the

observed points in the street.
• uk ∈ Rn is the system input vector i.e., vector of

luminous intensity level of each contributing streetlight
luminaire, uk = [I1, I2, . . . , In]

⊤
k with n as the number

of the luminaires in the street.
• yk ∈ Rm.
By substituting lamp parameters and the Cartesian coordi-

nates of the observed points of interest p in the illuminance
model from (2), a general road segment nsi between lumi-
naires i and i+ 1, shown in Fig. 1, is modeled as:

xnsi
k+1 = Ansixnsi

k +Bnsiunsi , (3)

with xnsi ∈ Rms = [Ensi
A , ..., Ensi

J ]⊤ representing illumi-
nance in the observed points of interest, influenced by lumi-
naires unsi ∈ Rns = [Insii−1, Insii , Insii+1, Insii+2]

⊤. With more
lamps influencing x, vector u is augmented correspondingly.
Street composition determines only the mutual Cartesian
relations of lamps and observed points, and reflects in Bnsi .

Since light propagation is instantaneous, the model is
static, i.e. A = 0 in (2) and correspondingly in (3). However,
the model is extendable for moving objects in which case A
is dynamic and B non-linear, or for weather effects (fog) in
which case B is time-varying. For simplicity, here we focus
on the static model.

Whole street is further modeled by stacking the segments:

x = [xnsi⊤, xnsi+1⊤, ..., xnsi+n⊤]⊤,

u =

n⋃
i

unsi = [I1, I2, . . . , In]
⊤
, (4)

A =

A
nsi 0′ 0′

0′ Ansi+1 0′

0′ 0′
. . .

 , B =

B
nsi 0ns 0ns

0ns Bnsi+1 0ns

0ns 0ns
. . .

 ,

where 0′ = 0ms×ms . Note that 0ns is a vector.

B. Model Predictive Control

The collected and processed data of WPTS conditions are
used to generate prediction data for a prediction horizon N
with a time resolution of Ts. Based on the prediction data,
a new adaptive dimming profile, and therefore, a dynamic
reference xref is obtained at a predetermined set of points
of interest p. The prediction data is generated comparing
to a respective historical WPTS data. Each prediction is
generated by a modelling method using one of group of
methods consisting of physical models, machine learning
methods, or neural networks, which are focus of our paper
[14].

Delivered illuminance intensity at any point of interest
on the street surface with respect to WPTS conditions is
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Fig. 1: Street segment with contributing luminaires and points of interest

formulated as an MPC reference tracking problem:

min
ui,k

N∑
k=1

m∑
j=1

n∑
i=1

wj |xj,k − xref
j,k |+ wuui,k,

s.t.
xj,k ≥ xmin, j ∈ S,

xref
j,k = f(j, k, vk),

xj,k+1 = Axj,k +Bui,k,

yj,k = Cxj,k,

0 ≤ ui,k ≤ umax,

∆umin ≤ uk+1 − uk ≤ ∆umax

(5)

where:

• n: total number of luminaires
• i: luminaire index
• m: total number of points of interest p
• j: point of interest index
• N : prediction horizon
• k: discrete time step index
• u: control variable as lamp power (0-100%)
• x: state variable as illuminance intensity at the point of

interest p
• xref

j,k : dynamic desired illuminance intensities at points
of interest p

• w: weighting coefficients (priorities)
• f : prediction and estimation of the desired lighting level

at j point of interest in weather conditions vk
• S: subset of p for which the quality of lighting (norms)

strictly applies
• xmin: Minimum allowed lighting intensity stemming

from the street lighting norms
• umax: Maximum permissible light source intensity
• ∆umin: Minimum power change as gradual decrease
• ∆umax: Maximum power change as gradual increase

Introduction of ∆u implies extension of x with past values
of u, and A from (2) is no longer static. The weighing factor
wj is chosen to empirically impose priority of points of
interest, i.e. critical and less important ones, together with
the selection of j point of interest and its 3D position in
the street. The wu emphasize importance of power savings
in trade-off to trajectory following part. Setting xref

j,k = 0
implies light pollution reduction in chosen j point of interest.

III. CASE STUDY AND IMPLEMENTATION

The approach is validated for King Tomislav Street (Fig. 2)
in the City of Sisak, Croatia, considering the available data
of WPTS and current dimming profile of the street lighting
system. The specifications of the installed luminaires Preci-
sionLux2 LE-CS-80 manufacturer LED Elektronika Ltd. is
given in Table I.

TABLE I. PrecisionLux2 LE-CS-80 specifications.

Technical specification Value
P 80 W
ΦLamp 9694 lm
ΦLuminaire 8918 lm
η 92.00 lm
Luminous efficacy 111.5 lm/W
Pole distance 30.000 m
Light spot height 8.000 m
Light spot overhang 0.000 m
Boom inclination 0.0◦

A schematic representation of three street segments is
shown in Fig. 1. The distance between any two successive
lamps for King Tomislav Street is 30 m, the height of the
lamp is h = 8 m, the light point overhang is 0 m, the
boom inclination is 0 m, and boom length is d = 0.1 m.
The Cartesian x, y, and z coordinates of the selected set of
points of interest {A, B, C, D, E, G, H, I, J} representing
vehicles, cyclists, pedestrian (children, elderly, disabled, etc.)
are shown in Table II.
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Fig. 2: Case study street of King Tomislav Street

This illuminance distribution model is verified based on
a data collected from two street segments of King Tomislav
and J. J. Strossmayer Streets in the City of Sisak, Croatia.
The model shows high accuracy with deviation less than
0.3% for average error of 60 points in each segment with four
contributing luminaires [13] when compared to professional
lighting ray tracing software.

TABLE II. Cartesian coordinates of points of interest A-J.

(x,y,z) I1 I2 I3 I4
A (0,4,0) (-30,4,0) (30,4,0) (-60,4,0)
B (0,0.667,0) (-30,0.667,0) (30,0.667,0) (60,0.667,0)
C (0,7.333,0) (-30,7.333,0) (30,7.333,0) (-60,7.333,0)
D (4.5,2,1.2) (-25.5,2,1.2) (34.5,2,1.2) (-55.5,2,1.2)
E (4.5,7.333,1.5) (-25.5,7.333,1.5) (34.5,7.333,1.5) (-55.5,7.333,1.5)
G (0,10,0) (-30,10,0) (30,10,0) (-60,10,0)
H (0,-2,0) (-30,-2,0) (30,-2,0) (-60,-2,0)
I (15,9.5,1) (-15,9.5,1) (45,9.5,1) (-45,9.5,1)
J (15,-1.5,1.7) (-15,-1.5,1.7) (45,-1.5,1.7) (-45,-1.5,1.7)

Using the data from tables I and II, the model (2) is
obtained, given e.g. for first five points p ∈ {A,B,C,D,E}
of segment nsi influenced by four luminaires:

xA,k+1

xB,k+1

xC,k+1

xD,k+1

xE,k+1


︸ ︷︷ ︸

xk+1

=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

A


xA,k

xB,k

xC,k

xD,k

xE,k


︸ ︷︷ ︸

xk

+


0.0112 0.0003 0.0003 0.0000
0.0155 0.0003 0.0003 0.0000
0.0063 0.0002 0.0002 0.0000
0.0135 0.0004 0.0002 0.0000
0.0064 0.0004 0.0002 0.0000


︸ ︷︷ ︸

B

×


I1
I2
I3
I4

 ,

︸ ︷︷ ︸
uk

yA,k

yB,k

yC,k

yD,k

yE,k


︸ ︷︷ ︸

yk

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

C

×


xA,k

xB,k

xC,k

xD,k

xE,k

 .

︸ ︷︷ ︸
xk

(6)

Based on acquired WPTS data, the representative vali-
dation scenarios are selected to demonstrate recurring road

TABLE III. Adaptive dimming profile (predetermined
streetlight dimming scenario)

Road conditions Thresholds Dimming profile

1
Clear, dry

Light traffic
Few pedestrians

precipitation = 0
visibility ≥ 10 000
traffic density < 4

pedestrians total < 10.0

D1 0.3@80%
0.7@20%

2
Clear, dry

Moderate traffic
Moderate pedestrians

precipitation = 0
visibility ≥ 10 000
traffic density ≥ 4
traffic density < 8

pedestrian total ≥ 10.0
pedestrian total ≤ 50.0

D2 0.3@90%
0.7@20%

3
Clear, dry

Severe traffic
Many pedestrians

precipitation = 0
visibility ≥ 10 000
traffic density > 8

pedestrians total > 50.0

D3 0.3@100%
0.7@30%

4
Rain

Moderate traffic
Moderate pedestrians

precipitation > 0
humidity ≥ 90

visibility ≤ 10 000
traffic density ≥ 4
traffic density < 8

pedestrian total ≥ 10.0
pedestrian total ≤ 50.0

D4 0.3@100%
0.7@40%

5
Snow

Moderate traffic
Moderate pedestrians

precipitation > 0
humidity ≥ 90

temperature < 0
visibility ≤ 10 000
traffic density ≥ 4
traffic density < 8

pedestrian total ≥ 10.0
pedestrian total ≤ 50.0

D5 0.3@80%
0.7@40%

6
Fog

Moderate traffic
Moderate pedestrians

precipitation = 0
humidity ≥ 90

temperature ≤ 10
visibility ≤ 10 000
traffic density ≥ 4
traffic density < 8

pedestrian total ≥ 10.0
pedestrian total ≤ 50.0

D6 0.3@90%
0.7@40%

conditions at selected micro-location. Each scenario is de-
termined by a year period, traffic and pedestrian density
and diverse weather conditions typical for the selected lo-
cation. Traffic density is categorized between 0 and 10,
corresponding to empty road and full traffic jam, respectively.
Characteristic weather conditions for selected location are:
clear and dry weather, rain, snow and fog. Selected weather
conditions are characterized by temperature, precipitation,
visibility and humidity information.

According to the selected validation scenarios, the new
dimming profile is established for each scenario individually
by the lighting operator to ensure specific adaptation of light
intensity to current road conditions. The list of representative
simulation scenarios with the new adaptive dimming profile
is shown in Table III. Such general dimming profile is further
fine-tuned for individual road segments and for individual
points of interest such that xref is formed.

For the complete street, the segments are stacked along
the x-axis positive direction. In particular, 3 km long case
study street with 100 luminaires and the distance between
two consecutive ones of 30 m, the street is divided into 1000
segments. For each segment, four lamps are contributing
to provide the required lighting level on the street surface
for 9 selected points of interest. Also, a single luminaire
contributes to 4 segments or 36 points of interests.

The above-mentioned case and corresponding problem
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dimensions are for the highest customization of the street
lighting, implying that every street luminaire can monitor
its own WPTS data and observe own set of points of
interest with corresponding trajectory tracking weights. The
dimensions are further stacked over the prediction horizon,
leading to large dimensions of the problem. Simplifications
are applicable and various scenarios are possible, stemming
down to the whole street being considered as a single
segment, or parting the street to representative groups of
segments such as crossroads, pedestrian crossings, vicinity
of vital buildings, and regular, non-critical segments.

A. Micro-location conditions

In the normal practice of the street lighting control system,
the system operator applies specific dimming profile for
different street categories in the city. These profiles are set
to the best practice of the operator, following from road
location and traffic density. Those are usually set to a higher
level in the evenings and mornings when traffic is more
dense, and to a lower one throughout the night. In particular
for a M3 category road of King Tomislav Street, shown in
Fig. 2, current dimming profile is set as 15%-70%-15% of
time at 100%-40%-100% of power, denoted as 0.3@100%,
0.7@40%, obtained from our industry partner. The time
of operation (on and off) of street lighting is calendar-
dependent, defined with sunset and sunrise times.

The adjustment of the lighting level considers WPTS
data of weather conditions, pedestrian diversity and volume,
traffic volume and road conditions as well as the current
applied dimming profile. Therefore, the data of WPTS and
current dimming profile is collected for May 2021 to May
2022.

To define the street users requirements and preferences, a
survey of 245 people is conducted with the aim to determine
drivers and pedestrians visual demands and evaluate the qual-
ity of current public lighting setup. The survey considered
age, gender, physical disabilities, and habits.

Weather conditions are collected for a one-year period
from local weather station in City of Sisak. Road traffic
conditions are taken from the commercial navigation ser-
vice. The collected data were extracted to tables, cleaned,
processed, and saved to the simulation environment.

IV. RESULTS

Results are obtained in MATLAB/Simulink with time
horizon of 6 hours ahead, i.e., the prediction horizon is
N = 72 with a sampling time step of 5 minutes. Gradual rate
of change constraints are chosen as ∆umin = −250 W and
∆umax = 250 W for a sample time Ts, set as 5 minutes.

The MPC algorithm is simulated for one-year period, with
on-site micro-location data from May 2021 to May 2022,
for two cases: i) the currently operating case and using
the current dimming profile denoted as ’Current’ and ii)
MPC with adaptive dimming profile to adjust the illuminance
intensities at the selected set of points of interest according to
specific dimming profiles and WPTS data, denoted as ’MPC’.

Figure 3 shows the daily energy consumption of the
street lighting system of 100 considered lamps with current
dimming profile and the proposed MPC approach for one-
year simulation time. The trend correlates with daylight
duration, resulting in higher consumption during winter
period. Adaptable dimming to micro-location data evidently
consumes less energy. It can also be observed that the energy
consumption with adaptable dimming (MPC) is less uniform
throughout the year as a result of variable WPTS data and
corresponding scenarios from Table III.

Two representative weeks from summer (August 2-8,
2021) and a winter period (January 17-23, 2022) are pre-
sented in figures 4 and 5. The figures show WPTS micro-
location conditions of traffic and pedestrian density, and
weather data of temperature, humidity, visibility and pre-
cipitation. As mentioned before, traffic data is taken from
navigational service and show expressed morning rush hours
and differences between working and non-working days. It
also shows higher traffic during summer period. Pedestrian
data is taken from survey for working and non-working
days, and therefore visibly repetitive as not being real-
time acquired. Weather difference is evidently expressed,
with winter period having intervals of reduced visibility and
high humidity but no precipitation, resulting in fog scenario
selection of dimming profile. Low temperature in winter
period results in snow-risk scenarios and higher illumination
throughout the night. This is also visible in Fig. 3 as the
expressed peak consumption during winter days.

Total consumed electric energy for a single luminaire and
one-year operation is summed as percentage operation for
5 min intervals and extended to 1h, then summed for the
whole year of 8760 hours. For the presented case, the total
consumption of current operation is 186.86 kWh for e.g.
luminaire 1 and 18.686 MWh for the whole street. The total
yearly consumption of MPC approach is 127.19 kWh for e.g.
luminaire 1 and 13.705 MWh for the whole street. In relative
terms, consumption of luminaire 1 is reduced by 31.93%
and the total street consumption by 26.65%. The difference
occur since some of the street segments, such as pedestrian
crossing and crossroads, are selected as safety-critical ones
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Fig. 4: Dimming profiles for exemplary summer week

and therefore require higher level of illuminance intensity.
Finally, from the perspective of obtaining savings, it

comes to the decision on the dimming profiles and, more
specifically, the level of the amount of light on the street for
the cases of low or no traffic or pedestrians.

V. CONCLUSION

The paper proposes an MPC strategy for street lighting
formulated as a trajectory tracking problem with referent
dimming profiles specific for selected spatial points of in-
terest on the street, adjustable to road and pedestrian traffic
flow and diversity, and weather conditions. The algorithm
is highly adjustable and offers significant opportunity in en-
ergy efficiency, safety, and lighting comfort, all predictively
adjustable to on-site conditions. The effectiveness of the
approach is validated in 1-year simulation based on real test
site data and micro-location conditions, resulting in up to
31.93% consumption reduction for the presented case.
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