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Follower Agnostic Learning in Stackelberg Games

Chinmay Maheshwari!, James Cheng', Shankar Sastry®, Lillian Ratliff> and Eric Mazumdar?

Abstract— In this paper, we present an efficient algorithm to
solve online Stackelberg games, featuring multiple followers,
in a follower-agnostic manner. Unlike previous works, our
approach works even when leader has no knowledge about
the followers’ utility functions, strategy space or learning algo-
rithm. Our algorithm introduces a unique gradient estimator,
leveraging specially designed strategies to probe followers. In
a departure from traditional assumptions of optimal play, we
model followers’ responses using a convergent adaptation rule,
allowing for realistic and dynamic interactions. The leader con-
structs the gradient estimator solely based on observations of
followers’ actions. We provide both non-asymptotic convergence
rates to stationary points of the leader’s objective and demon-
strate asymptotic convergence to a local Stackelberg equilibrium.
To validate the effectiveness of our algorithm, we use this
algorithm to solve the problem of incentive design on a large-
scale transportation network, showcasing its robustness even
when the leader lacks access to followers’ demand information.

I. INTRODUCTION

Stackelberg games encompass a wide range of practical
problems including incentive design, Bayesian persuasion,
inverse optimization, bilevel optimization, cybersecurity, ad-
versarial learning, to name a few. Stackelberg games are
comprised of two type of players — leader and followers'.

Mathematically, they are represented as follows:
LCnin f(z,y)
s.t. y € S(x) := SOL(Y,G(z,-))),

where X is the leader’s strategy set, Y C R is the followers’
(joint) strategy set, f : X x Y — R is the utility of
the leader, G : X x Y —> R? is the game Jacobian of
followers and SOL(Y,G(x,-)) is a variational inequality
problem that denotes the equilibrium response of followers,
given the strategy of leader be x € X. Assuming that the
set S(z) is singleton for every € X (commonly referred
as lower-level singleton assumption), (I1.1) is equivalent to
optimizing the following hyper-objective:

min f(@) = f(z,S(x)).

Note that in general (I.2) is non-convex optimization prob-
lem. Thus, the goal in Stackelberg games is to find a
stationary point / local optima of (I1.2) ( [2]).

In numerous practical scenarios, it is unrealistic to pre-
sume that the leader possesses any information regarding the
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variational inequality problem at the lower-level, including
the mapping G(z,-) and even their strategy set Y — infor-
mation traditionally assumed in prior research on solving
Stackelberg games. Thus, the key question we ask in this
work is:

Q: Can we design efficient algorithms for Stack-
elberg games where the leader does not require
any explicit knowledge of the game played between
followers?

In this work, we affirmatively answer the above question
in the setting where the leader can only probe the follow-
ers with different strategies and receive estimates of their
(approximated) equilibrium responses. This is in contrast
to the common assumption in the literature on Stackelberg
games, where it is assumed that the leader has access
to an equilibrium or best-response of followers either by
knowledge of the utility function of followers or through an
oracle. In particular, we consider that followers are rational in
the sense that they employ an adaptation/learning algorithm,
which asymptotically converges to the equilibrium [3].

We propose a two-loop algorithm where, in the outer
loop, the leader fixes its strategy (i.e., the value of x) and
announces it to the followers. Between two updates of the
leader’s strategy, the followers employ an adaptation algo-
rithm, for a finite number of steps, so that they converge to an
approximate equilibrium (or best-response). Upon observing
the followers’ behavior, the leader constructs an approximate
estimator of the gradient of the hyper-objective (I.2) and
updates its strategy via gradient descent using the estimator.

We show that the proposed algorithm converges to a
stationary point of (.2) at a rate O(T~'/2). Moreover, we
show that if the hyper-objective satisfies the strict-saddle
property, i.e. the minimum eigenvalue at any saddle point
is strictly negative, then the iterates asymptotically avoid
saddle points (which include local maxima) and converge to
a local minima of the hyper-objective (aka local Stackelberg
equilibrium [2]).

We corroborate the theoretical results by conducting a sim-
ulated study of the proposed algorithm to design tolls over
the Sioux Falls (South Dakota, US) transportation network.
In this setup, we assume that the leader does not know the
origin-destination (0-d) demand of travelers moving between
different o-d pairs, which is sensitive information.

A. Related works

Learning in Stackelberg games: Learning in Stackelberg
games with finite actions is an active area of research ( [4]—
[8]), where the leader has access to either a noisy or exact
best response oracle. Furthermore, a dominant paradigm in
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this literature is to consider two-player games with finite
strategy sets or linearly parametrized utility functions, with
the exception of [2], [9]-[11]. In [2], the authors study the
convergence of a two-timescale algorithm to the Stackel-
berg equilibrium, requiring knowledge of the Hessian of
followers’ utility functions for leader updates. In [9], [10],
the authors require the followers to follow a specific (i.e.
gradient type) learning algorithm in order to ensure conver-
gence. Finally, in [11], the authors impose strong convexity
assumption on the hyper-objective which is restrictive (as
shown in [12]). In this work, we aim to design follower-
agnostic learning in a general-sum Stackelberg game in
continuous spaces with no knowledge of the followers’ utility
functions or learning algorithms and not imposing restrictive
assumptions about convexity of hyper-objective.

Bilevel optimzation. Bilevel optimization, a subset of
problem (I.1), is extensively studied in literature, resembling
a Stackelberg game with a single leader and follower. Ex-
isting research on bilevel optimization pursues three main
approaches. The first utilizes a value function-based ap-
proach, converting the problem into a constrained single-
level optimization problem with convergence guarantees to
approximate Karush-Kuhn-Tucker (KKT) points [13], [14].
However, such points may not capture locally optimal solu-
tions [15]. Another line of research focuses on asymptotic
convergence of solutions of simpler bilevel problems than
(I.1) under various assumptions on the lower-level objective
function structure [16]-[18]. The third line explores solving
the non-convex optimization problem (I.2) using gradient
descent, requiring the computation of the gradient of the
solution mapping, denoted as V.S(x). While many methods
exist for approximating V.S (z), including Automatic Implicit
Differentiation (AID) ( [19]-[23]), or Iterative Differentiation
( [20], [24]-[26]), our work is closely related to zeroth-
order methods, specifically avoiding the computation of the
Hessian ( [15]). Our proposed algorithm shares similarities
with [15], but we eliminate the need for oracle access
to a lower-level optimal solution, leveraging two-timescale
stochastic approximation to analyze accumulated errors [15].

II. PROBLEM FORMULATION
Consider the following Stackelberg game

Cpin - f(zy)
such that y € S(x) := SOL(Y,G(z,-))), (SG)

where (i) X = R and Y C R? is assumed to be
convex and compact set; (i) f : X xY — R and
G:XxY — RY are twice continuously differentiable
functions; (iii) SOL(Y, G(z, -)) denotes the solution to varia-
tional inequality characterized by functional G(z, -). That is,
SOL(Y,G(z,) ={y €Y : (¥ —y,G(z,y)) 20, Vy €
Y}. Under mild conditions on the monotonicity of G(z, -),
it is ensured that S(z) is non-empty and convex ( [27]).

In what follows, we call a continuously differentiable
function f : R — R to be L—Lipschitz if for every z, 2’ €
RY, || f(z) — f(z')|| < L||z —2'||. Furthermore, we call it to
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be {—smooth if for every x,2’ € R, ||V f(z) - Vf(a')|| <
Cx — 2]

Next, we introduce the main assumptions on the parame-
ters of (SG) made throughtout this paper

Assumption 1. (1) For every y € Y, the function f(-,y)
is Ly-Lipschitz. Additionally, for every x € X, the
Sunction f(x,-) is Lo—Lipschitz and {s-smooth.

(2) For every x € X, the set S(x) is singleton and function
S(x) is Lgs-Lipschitz.

(3) The function f(x) = f(x,S(x)) is twice-continuously

differentiable, L-Lipschitz and {—smooth.

Assumption 1-(1) is a common assumption employed in
literature to derive rates of convergence [10], [11]. Assump-
tion 1-(2), which requires that the set S(x) exists, is singleton
and Lipscthiz continuous for every z, holds for strongly
monotone games at lower level [28]. Furthermore, it also
applies to the incentive design problem in routing games,
as discussed in Section IIl. Assumption 1-(3) is a technical
condition we impose on the hyper-objective to use Taylor’s
series expansion in the proof of convergence. Notably, this
assumption is less restrictive than those imposed on the
hyper-objective in [11]. We believe this assumption can be
further relaxed, but we leave this as an interesting direction
for future work.

III. MOTIVATING EXAMPLE: INCENTIVE DESIGN
IN ROUTING GAMES

Consider a transportation network G = (N, £) comprised
of set of nodes N and set of edges &, used by self-interested
(infinitesimal)travelers. Each traveler is traveling between
some origin-destination (o-d) pair on the network. The set
of all o-d pairs be denoted by Z. For each o-d pair z € Z,
let R, be the set of routes connecting the o-d pair z. Let
D, be the demand of travelers traveling between o-d pair
z € Z and y,, be the flow of travelers from o-d pair z € Z
that choose route r € R .. Naturally, ZreRz Yr. = D, for
every z € Z. We denote the set of all feasible route flows
by Y =][.cz Y., where Y, := D, - A(RIR:1) is a simplex.
The route flow gives rise of congestion on the edges of the
network. Given a route flow y € Y, the resulting congestion
on edges is denoted by w(y) = (we(y))ece, Where

we(y)zz Z yrzl(eer)v Veef.

2EZTER,

(IIL1)

Higher congestion leads to higher travel time on any edge.
More formally, let ¢.(-) be a strictly increasing smooth
function which denotes the travel time of using edge e € £
as a function of congestion. A social planner can alter
the congestion levels on the network by imposing tolls on
the edges of the network which changes the preferences
of travelers for different routes. Let x. € R denote the
tolls imposed on edge e € £. 2 Under the network tolls
T = (z¢)ece € RIEI and route flow y € Y, the overall cost

2Here, we allow for tolls to take negative values. Such tolling scheme
can be implemented by considering revenue-refunding schemes.



experienced by travelers from o-d pair z € Z taking a route
reR,is

Cr(y7x) = Zee(we(y)) + Ze.

eer

(II1.2)

Given a fixed network tolls x, the resulting congestion
— Wardrop equilibrium — can be obtained by solving the
following strictly convex optimization problem ( [29])

we(y)
S(x) = argmin ®(y,z) = Z/o £.(0)d0 + zowe(y).

yey ecé&

(I11.3)

Under the setting presented in this section, it can be
verified that the set S(x) exists, is singleton, and is Lipschitz
continuous mapping [28].

The goal of social planner is to minimize the overall con-
gestion on the network while also minimizing the tolls levied
on travelers. More formally, the planner’s objective function
is given by f(2,y) = Y .ce we(y)le(we(y)) +Allz]|?, where
the first term corresponds to the average congestion on
the network and second term is a regularization term with
parameter A > 0, which ensures low values of tolls®. Thus,
the problem of toll design is as follows

min f(z,y)
z€eRIEl yeY
s.t. y € S(z) = argmin ®(y,x), (111.4)

y'ey
which is an instantiation of (SG).

Remark 1. In order to compute S(x) in (IIL3) the planner
needs to know the set Y that requires knowledge of the
demand of travelers between various o-d pairs, which is
a sensitive information. In Section V, we use the proposed
approach to solve (111.4) where the designer does not know
the demand of travelers and can only observe the congestion
levels (we)ece on the network in response to the set tolls.

IV. ALGORITHM AND ANALYSIS

In this section, we present a follower agnostic algorithm
for solving (SG). Following which, we present the conver-
gence guarantees of the proposed algorithm to a stationary
point. Additionally, we show that the algorithm will eventu-
ally converge to a local optima by avoiding the saddle points
and local maximum.

A. Algorithmic structure

The algorithm is based on alternatively moving towards
solution to the variational inequality at lower level and
descending along the upper-level objective function. Specif-
ically, between two updates of leader (upper-level), the fol-
lowers (lower level) employ an iterative adaptive rule, aimed
to solve the variational inequality SOL(-), for a fixed number
of steps. Following which, the upper level iterates descend

3Note that \ can in-general be zero, i.e. we do not require strong
convexity of leader’s objective function in its decision variable for our
theoretical results to hold. We choose A > 0 to impose a “soft-constraint”
on the amount of tolls.

along an “approximated” gradient estimator, inspired from
zeroth-order optimization ( [30], [31]), evaluated at the
lower-level iteration in current round.

a) Leader’s strategy update: The leader’s update rule
is as follows:

(UL

Tip1 = g — NeF (24304, 0¢),

where F(az;é, v) denotes a gradient estimator of function
f() == f(-,S(-)), evaluated at z with parameters &, v. We
shall describe the estimator in detail below.

b) Gradient estimator: In order to compute the gradient
of f (z), we need to compute the derivative through the
solution to the variational inequality in (SG), i.e. S(z),
which may involve higher order gradient computations and
at times is not computable in closed form due to constraints.
In this work, we consider a gradient estimator inspired from
[30], [31]. Specifically, we consider the following estimator

Fab.0) =5 (£ @) @) v, avD

such that (i) & = x + dv, where v € S(R?) := {z € R :
[zl = 1} and § > O, are referred as perturbation and
perturbation radius respectively; (ii) K is a positive integer
capturing the number of rounds of adaptation rule employed
by followers between two updates of leader’s strategy; (iii)
for any x € X, k € [K — 1] consider a iterative solver for
variational inequality denoted by H such that

y(k+1)(x) — Hk(y(k) (x);x), Vkel[K-1], (LL)

where y(©) is some initialization for the iterative solver of
variational inequality. For example, when the lower level
problem is just a convex optimization problem with objective
function g(z, -), a typical choice of Hy, is projected gradient
descent, i.e. Hy(y;2) = Py (y — % Vyg(z,y)), where Py
denotes the orthogonal projection on Y and v is the step
size. Note that, in order to construct the gradient estimator
in (IV.1), the leader need not know the exact description of
update rule Hy. For most of the paper, we shall concisely
denote y*)(z) and y*) (2) as §*) and y*) respectively.

Remark 2. Direct application of zeroth-order gradient esti-
mator from [30], [31] would result in following estimator

Flasb) = § (§@) - ) v

where f is defined in (1.2). Observe that the gradient
estimators F and F differ because in (IV.1) we evaluate
f(x,-) at y¥) () while in (IV.2) we evaluated it at S(z)
for any x € R%. This induces additional bias in the gradient
estimator that needs to be appropriately accounted while
establishing convergence results.

IV.2)

c) Algorithm: The algorithms runs for 7' rounds. In
every round ¢ € [T — 1] the leader queries the followers with
two strategies x; and 2; = x;+6;v; where v; ~ Unif(S(R%))
is a vector sampled uniformly randomly from the unit sphere
in R? and 6, is the perturbation radius (refer line 2-3
in Algorithm 1). The followers respond to the leader’s
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Algorithm 1: Follower Agnostic Stackelberg Opti-
mization Algorithm

Data: Time horizon T, Initial conditions
y(()o) ey, 29(()0) €Y, zo € X, Step sizes (1),
Perturbation radius (d;)

for t=0,1,..7 — 1 do

Sample v; ~ Unif(S(R%))

Assign jt =T+ 5tvt

for k=0,1,.... K — 1 do

Update " = Hy(y("); i)

Update 5" = Hy(5"); 1)

end
Update

Tiy1 = Tt — ﬂt% (f(fﬁmyzEK)) - f(xta Z?:g

0 (0 (K
9 Set y§+)1 = %54-)1 = yt( )

10 end

® N R W N =

K))) "

strategies by using an iterative variational inequality solver
for K steps to obtain gjt(K) and yt(K) respectively (refer line
4 and 7 in Algorithm 1). After observing §§K) and yEK), the
leader computes a gradient estimator as per (IV.1). The leader
updates its strategy for next time as per (UL) (refer line 8 in
Algorithm 1). The followers initialize their strategies as per

line 9 in Algorithm 1.

B. Convergence to stationary points
We now study the convergence properties of Algorithm 1.

Assumption 2. For any x,& € X, the updates in (LL) are
such that ||y (z)—y ) (2)|| < C||lz—2||, for some C > 0.

Assumption 2 posits that the adaptation rule employed
by followers is stable with respect to perturbations in the
leader’s strategy. This assumption is typically satisfied by
many algorithms, including gradient-based algorithms.

Assumption 3. Atleast one of the following holds:

(1a) For any x € X, the iterates (LL) converge to equilib-
rium at a polynomial rate. That is, for any initial point
y 0 eV [ly) (@) - S(@)|IP < CK My @ = S(2)[|?,
where \,C are positive scalars.

(1b) For any © € X, the iterates (LL) converge to equilib-
rium at a exponential rate. That is, for any initial point
YO, [y (2) = S(@)]| < Cp¥ [y ® — S(w), where C
is a positive scalar and p € [0,1).

Remark 3. Convergence of lower-level problem is exten-
sively studied in literature, e.g. [32], [33], and is not the
focus of this article. Assumption 3(la) holds for gradient
descent updates for convex functions that satisfy quadratic
growth condition [34]. Meanwhile, Assumption 3(1b) holds
for gradient descent on strongly convex functions.

Theorem 1. Ler Assumption 1-3 hold. If we choose n; =
At+1)"Y2d"1 6, = §(t+1)"4d/2 such that 7j < d/2/.

Then the updates (x().cr) in Algorithm 1 are such that

~ ~( d «a 1
inkE |||V H<Ool—=+—3a(1+—) ),
win & (1970 1?] < 0 (= + 720 (14
where o = CK > if Assumption 3(1a) hold, or o = p¥ if
Assumption 3(1b) hold.

Intuitively, the theorem states that if we want to converge
closer to a stationary point then we need to run the Algorithm
1 with larger 7' or smaller @ (i.e. larger K). Crucially,
the term ad® in the bound is due to error accumulation
between time steps due to non-convergence of lower-level to
exact solution of variational inequality S(x). Owing to such
precise characterization of error accumulation across time
steps, our rate is informative of the computational complexity
of solving the bi-level problem while in other contemporary
work, namely [15], it resembles iteration complexity of the
oracle. Since « is a function of K, the number of lower
level iterations in every round, we can choose K to be large
enough to make sure that the algorithm converges closer to
the stationary point.

Corollary 1. Let Assumption 1-2 and Assumption 3(1a) hold.
Set m, = qj(t +1)"Y2d=1,6, = §(t + 1)~ Y4d~Y/? such
that 7 < d/20. Additionally, set K > T/ d%/*. Then the
iterates of Algorithm 1 satisfy min,e (7 E [||Vf(xt)||2} <
0(F)-

Corollary 2. Let Assumption [1-2 and Assumption
3(1b) hold. Set m, = q[t + 1)"Y2d15 =
5(t + 1)"Y4dY2 such that 7 < d/20. Additionally,
set K > (1/|log(p)]) ((1/2)log(T) + 2log(d)). Then
minger) E [Vf(ift)HQf <O0(%)-

Remark 4. We know that for non-convex smooth func-
tions, gradient descent converges to a stationary point (at
a rate of O(1/\/T)). However, the key point of departure
of (UL) from standard gradient descent is the presence
of bias in the gradient estimator. Consequently, the key
component of the proof is to bound the error in the gra-
dient estimator (IV.1). This is because the estimator can
be decomposed as F(xy;64,v¢) = Vf(xe) + &(1) + Et(z) +
Et(g), where Et(l) =K {F(xt;ét,vtﬂmj - Vf(:ct),é’t@) =
F(xy;04,v) — B [F'(Jct;ét,vtﬂmt} ,Et(?’) = F(24; 64, v1) —
F(x4;0,,v). The term Et(l) denotes the bias introduced due
to the difference between standard zeroth-order gradient
estimator, as per (IV.2), and the true gradient. The term
Et(?) denotes the randomness introduced if we were to use
the standard zeroth-order gradient estimator (IV.2). Finally,
the term 5,5(3) denotes the bias introduced due to difference
between our gradient estimator (IV.1) and the standard
zeroth-order gradient estimator (cf. Remark 2).

a) Proof of Theorem 1: The proof of Theorem 1
follows by noting that f approximately decreases along
the trajectory (UL) (Lemma 1). Note that the decrease is
said to be ‘“approximate” because of the bias introduced
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by (IV.1) in comparison to actual gradient V f (-). We then
proceed to individually bound the bias terms (Lemma 2).
The convergence rate follows by using the step size and
perturbation radius stated in the statement of Theorem 1.

Proof of Theorem 1. From Lemma 1 we know that f ()
approximately decreases along the trajectory of (UL). That
is,

~ ~ ] ~
E[f(zisn)] <E[f@n)] - ZE[IVi@)I?]
+nE [0 12] +mE [1E012] + W [162)17]
Iv.3)

Using the bounds on error terms from Lemma 2, we obtain

72 5242
4

+ CdZof %))

e [Ivi@l?] +nt

2 eo+2Cd22at kn
k=0

E [f(mt+1)] <E [f(ft)] -
d

o (i

+4d2L20n?.

2
k

Re-arranging the terms and adding and substracting the term

f(z*) = mingex f(z), we obtain

Summing the previous equation over time step ¢ we obtain

> nE[IVi@)l?] < (fwo) - fa"))

N B 72 52 72
[F@0)] - o) + 022
t—1 t—1

2RIV F@)?] <E
er;lQLz <2a eo+20dzzat k 2+CZozt ko2
k=0 k=0

- (E {f:(xtﬂ)} - f(x*)) + 4d2[~/2£77752-

te(T)
£2d2
Z nté +2€0d2L2 Z 77t t
te[T] te( T]
+2Cd4L2 Z Mt Z t— k
te[T) 6f k=0
Term E
+OL Y 5 o Z RGR pAdPIP0 Y (VA)
te[T) 67 k=0 te[T]
Term F

Setting n, = 7j(t+1)"/2d~ and 6, = 6(t+1)"/4d~1/2,
as per the statement of Theorem 1, and dividing both sides
by ZtE[T] ¢, We obtain

> nE[I970I] < 275 (o) - )

Zte 1" e
Cldlog(T)6*  2Cd3Lia N 4C L2027 log(T)d
WT (1—a)gpvVT VT ’
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2d0'CL3 Y 5 Za

ZteT]nt te[T] 67 k=0

Term E

L20d2 Z 7715 Z t— k5k7

ZteT] Tt te[T] o7 =0

Term F

where C' is a positive scalar. Next, we bound Term E +
Term F as follows

~

t—1
Nt
< o~
t k=0
71 T
U Ok t
52 > oF > o
k=0 ' t=k+1
7 T-1
== > 6k
k=0
=371 (d2ﬁ2 log(T) + d252ﬁ) )
where in second equality Oy, := (d*n? +d?53?), and we have

appropriately adjusted the constant C' to account for additinal
constants. Thus, combining (IV.4) and (IV.5), we obtain

> mE [[VF()?]

Term E + Term F < Z 5 d4 24 d2(5,€)

t=1

O _

t—1

o
0
1
@k ak+1
ok 1 -«

=

1>

£
I

ok

!

(07

<

=

11—«

Ed

0
(07

‘3\

IV.5)

Zte (1) "t

=

<o(jréww—ﬂﬁn+d%¥” e
4lo\g/g)d+\dfl <d210g( )+d2\/T)>.

To conclude, we obtain

min & [V f(r)°] < zxen ME;JMEUVf@OH]

(it (7))

This concludes the proof. O

Now, we formally state the Lemmas used in the proof.

Lemma 1. If 7 < d/(2() then
E [ f@i)| <E|f(z)] - TE |V )]

+ ek (IR 1] + mE [1EP012] + i [162)17]
{IV.6)

The proof of Lemma 1 follows in two steps: First, we use
second-order Taylor series expansion of f along the iterate
values. Second, we use (UL) and complete the squares using
algebraic manipulations. A detailed proof is provided in the
extended version of this paper [1].

Lemma 2. The errors E [||5t(l)||2} for i € {1,2,3} are
bounded as follows:

252d? N

B[] < =55, [IE®)P] < 422,

)



t—1

d2
3 .
B [161F] < 523 (20t + 20 Y atHat
k=0
i1 av.m
+C atk6i>,

k=0

where C'is a scalar and ey = ||y(()0) — S(z0) %

The stated bounds on E [||5t(1)||2} and E {”515(2)”2} are
inspired by the literature on two-point zeroth-order gradient
estimators [30], [31]. We use the Lipschitz property of f(z,-)
to bound
d2

1EP)? < 2
t 5?

3([1wt™ = S@)I+ gt = S ).

Term A

Term B

Following which, Term A and Term B are recursively
bounded. A detailed proof is provided in the extended version
of this paper [1].

C. Non-convergence to saddle points

In this section, we show that the updates in (UL) does
not converge to a saddle point. Towards that goal, we make
the following assumption that posits that the function f(-)
satisfy the strict saddle property.

Assumption 4. For any saddle point x* of f it holds that

Amin (V2 f(2%)) < 0.
In the following theorem, we formally state the non-
convergence result.

Theorem 2. Let Assumption 1-4 hold. For € > 0 there exists
a time T, such that for any saddle point x* of f it holds
that E [||z; — x.||*] > €,V t > T..

To prove Theorem 2, an asymptotic pseudo-trajectory
of (UL) is constructed. We then show that the asymptotic
pseudo-trajectory almost surely avoids saddle point.

a) Proof of Theorem 2: The proof follows by contra-
diction. Suppose there exists a saddle point x* such that
lim¢ o0 E [||[z; — 2*||?] = 0. This implies that for any
€ > 0 there exists an integer 7, such that for all ¢ > T,
it holds that

E [|zess — 2*|?] <e/4 Vs >0. (IV.8)

Next, for any arbitrary point x; along the trajectory (UL),
we define a dynamics parametrized by 7y = x; + O,
as follows zsy1(Z¢) = 2z5(Z¢) — masV[f(2s(2t)), where
zo(#¢) = &;. From Lemma 3, we know that for any ¢ > 0
and positive integer S there exists 7, e,s such that

sup E [||zs(ds) — mess|’] <€/4 V> T.s.
s€]0,5]

Iv.9)

Next, note that ||zs(Z¢) — o*[|? < 2||2s(2¢) — mers]® +
2|45 — x*||?. Therefore, combining (IV.8)-(IV.9), we ob-
serve that for every t > max{T., T, s}, E[||zs(2:) —2*||*] <
e, Vsel0,9].

But from [35] we know that for gradient descent with
random initialization almost surely avoids converging to
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saddle point # there exists S, such that for all s > S, it holds
that ||25(#;) — 2*||> > 2¢. This establishes contradiction.

Lemma 3. Letr x; be an arbitrary point along the trajectory
(UL). Define a dynamics parametrized by &y = x + 04vt,
such that zs11(24) = 2z5(&4) — sV (2s(81)), where
20(%¢) = @4 and it holds that for any positive integer L,
we have
lim sup E[||zes — 2s(2)])%] = 0.
t_’oose[O,L] [” t+s 8( t)” ]
A detailed proof of Lemma 3 is provided in the online
version of this article [1].

V. NUMERICAL EXPERIMENTS

We numerically study the Algorithm 1 in the context
of incentive design in routing games (described in Section
IIT). We consider the Sioux Falls transportation network,
as depicted in Figure 1(a). The latency function and net-
work topology are inherited from http://tinyurl.
com/y4fminvt. We consider a synthetic demand of
(1,2,3,2,2,1) units, respectively, between o-d pairs Z =
((1,20), (13,2),(20,1), (10, 13), (11, 20), (4, 21)).

Sioux Falls Network Objective Values Over Time

Time

(a) Schematic depiction of Sioux Falls (b) The evolution of planners

transportation network network. The objective function with iterates

numbers on the edges and nodes are of the algorithm. The shaded

identifiers. blue region denotes the confi-
dence interval calculated over
12 runs.

Fig. 1: Simulation results.

The incentive designer can set tolls on each edge of the
network. In response, unknown to the planner, the travelers
alter their route selection as per a gradient rule. More
formally, given a toll z € RI®l, we consider that the route
choices made by the travelers are updated by descending
along the gradient of the potential function ®(-,z) (cf.
(II1.3)). Note that, for any = € RI¢l 2z € Z,r € R., the

1 o 0 T Owe (1 Owe (1
gradient is 5 = 37 e Lo (v) T2+ o Y =

2icee be(we)U(e € 1) + zelle € 1) = ey, 2),

4More specifically, we use the results from [35, Proposition 8]. Even
though the results in [35, Proposition 8] hold for gradient descent update
with constant step-size, we can use this result for decaying step size in
our context as well. This is because the proof of [35, Proposition 8] only
requires each step of the gradient update to be diffeomorphism, which holds
in our setting as the step-sizes are always non-negative and decaying.



where () is due to (III.1) and (i) follows from (IIL.2).
Consequently, the gradient update takes the following form:

for every z € Z, ygk—H) =Py, ((%(«];) - VCr(qkap))reRz) :

We simulate 12 runs of Algorithm 1 with 7' = 1000

and K = 3. The initial route flow vector y(()o) and ﬂ(()o) are

randomly initialized. We set initial tolls uniformly randomly
between [0,0.1]. We set the step size n; = 6(t + 1)71/2,
6 =0.3-(t+ 1)~ 4 =0.005 and A = 0.01. In Figure
1(b), we show the leader’s objective value as function of time
iterates ¢ € [T']. We observe that all trajectories converge to
same objective value even with random initializations. This
shows that the convergent point is perhaps a global optimizer.

VI. CONCLUSIONS

We propose an efficient algorithm for Stackelberg games
which converges to a stationary point at a rate of O(T~'/?)
and asymptotically reaches a local Stackelberg equilibrium.
The algorithm is designed so that the leader does not need to
know any information about the game structure at lower-level
and updates its strategies by only querying for the followers
response to its strategy. However, in this work we assume that
follower’s equilibrium strategy is singleton, Lipschitz and
the leader’s hyper-objective is differentiable. An interesting
direction of future work is to relax this assumption.
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