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Abstract— For joint parameter-state estimation problems,
classical particle filters often suffer from sample degeneracy or
problems related to artificial noise, stemming from the particles
representing unknown parameters. To address this challenge,
this paper provides a novel filtering approach that avoids gen-
erating such particles by utilizing Rao-Blackwellization, which
therefore provides more accurate estimates. Moreover, our
method employs a modularization approach when integrating
out the parameters, significantly reducing the computational
complexity. All these designs ensure the superior performance
of our method. Finally, a couple of numerical examples are
presented to illustrate the superior performance of our method
compared with several existing approaches.

I. INTRODUCTION

Stochastic filtering is a popular topic in the control
community, which aims to infer hidden system states and
parameters from partial, noisy observations. A good solution
to this problem can provide deep insights into the considered
system and enable better feedback control. In nonlinear and
non-Gaussian cases, the bootstrap particle filter (BPF) [1] is
one popular approach for the filtering problem. This method
employs the simulation-based Monte-Carlo technique to re-
cursively approximate conditional distributions, and its reli-
ability is guaranteed by its convergence to the exact filtering
solution [2]. This method has been successfully used in
many applications, including wireless communications [3]
and biological studies [4], [5], [6], [7], etc.

Despite its successes, the BPF performs poorly in estimat-
ing static variables, e.g., system parameters. The problem is
attributed to the resampling step, which repeatedly reduces
the number of distinct particles representing unknown pa-
rameters. Since the BPF does not increase this number in
other steps, these particles soon become identical after a
few initial iterations. This sample degeneracy diminishes the
effectiveness of the Monte-Carlo technique (which relies on
a population of distinct particles) and can provide highly
inaccurate estimates [8].

To mitigate sample degeneracy, researchers have devel-
oped some improved methods that introduce additional (ar-
tificial) noise to perturb the particles, thereby increasing
the number of distinct particles. Such methods include the
resample-move method [9], [10] and regularized particle
filter (RPF) [11], [12], [13]. This idea also appears in the
nested particle filter (NPF) [14], which operates in two
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layers: the first layer estimates the system parameters using
an RPF, and the second layer infers the state variables using
a BPF. Some improvements to this nested approach were
reported in [15], [16]. Nevertheless, the use of artificial noise
(in all the above methods) “throws away” the time-invariant
property of parameters, as it assumes parameters to be time-
varying [11]. When the particle size is finite, this can result
in highly inaccurate estimates, especially if the intensity of
the artificial noise is not properly chosen [13]. Consequently,
introducing artificial noise might not be the optimal solution
to tackle sample degeneracy.

Both sample degeneracy and the problem related to arti-
ficial noise stem from the particles representing static vari-
ables. From this perspective, a method that avoids generating
such particles can effectively tackle these issues. This aligns
with the Rao-Blackwellized particle filter (RB-PF) [17],
[18], which reduces the filter’s dependence on Monte Carlo
techniques by integrating out some variables using a finite-
dimensional filter. When the integrated-out variables include
the unknown parameters, this method has the potential to
effectively mitigate sample degeneracy and the problem
related to artificial noise. The RB-PF has been theoretically
shown to have superior performance compared to the BPF in
terms of accuracy under quite general conditions [17], [19].
The RB-PF has been successfully applied to joint parameter-
state estimation in biochemical reaction systems described by
continuous-time Markov Chains (CTMCs) [20], [21].

Despite its success with CTMCs, the idea of Rao-
Blackwellization has not been sufficiently explored for the
joint state-parameter estimation in SDEs. This paper is
devoted to filling this gap by providing a principled method
based on Rao-Blackwellization and modularization. Our ap-
proach adopts the strategy of integrating out unknown param-
eters by applying a finite-dimensional filter to the Zakai equa-
tion. This strategy circumvents the need to generate particles
representing parameters, thereby effectively mitigating the
problems related to sample degeneracy and artificial noise.
Utilizing conditional independence, our method employs a
modularization approach to solve the Zakai equation for
each parameter separately, significantly reducing the com-
putational cost. These designs result in an effective method
for joint parameter-state estimation in SDEs.

The rest of the paper is organized as follows. Section II
first introduces the mathematical problem of joint parameter-
state estimation in SDEs. In Section III, we introduce our
novel approach to this filtering problem. Numerical examples
are presented in Section IV to demonstrate our method.
Finally, Section V concludes this paper.
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II. STOCHASTIC FILTERING FOR SDES

We consider stochastic differential systems expressed as:

dXi(t) = fi(Θi, X(t))dt+ σidBi(t), i = 1, . . . , n (1)

where X(t) is the n-dimensional state vector, Xi(t) is
its i-th component, {f1, . . . , fn} are measurable func-
tions, {Θ1, . . . ,Θn} are n unknown system parameters,
{B1(t), . . . , Bn(t)} are independent standard Brownian mo-
tions, and {σ1, . . . , σn} represent the noise intensities which
we assume to be known. In many real-world problems, such
a system is measured at consecutive time points {t1, t2, . . . }
with corresponding measurements Y (tk) (k = 1, 2, . . . ). We
assume that these measurements satisfy

Y (tk) = h(X(tk)) + ΣW (tk), k = 1, 2, . . . ,

where h(·) is a vector-valued function, {W (t1),W (t2), . . . }
are vectors of independent standard normal random variables,
and Σ is the covariance matrix of the observation noise.

The considered system (1) requires the parameters (Θi)
and noise (i.e., Bi(t)) immediately influencing different state
variables be independent. This is not too restrictive, as
many practical systems either fall into this framework or
can be transformed into an equivalent system of this form.
Specifically, when Xi(t) (for i = 1, . . . , n) models the effect
of each driving force (e.g., the cumulative firings of each
chemical reaction or the work done by each physical force),
this requirement naturally holds, as different driving forces
are often governed by distinct parameters and noise sources.

To estimate hidden system state and parameters, stochastic
filtering aims to compute the conditional distribution:
πtk(dθ, dx) , P

(
Θ ∈ dθ,X(tk) ∈ dx

∣∣Y (t1), . . . Y (tk)
)

for k = 1, 2, . . . . Let us denote the initial distribution
as πt0(dθ, dx) , P (Θ ∈ dθ,X(0) ∈ dx), which is
assumed to be uniform, and define ρtk+1

(dθ, dx) ,
P
(
Θ ∈ dθ,X(tk+1) ∈ dx

∣∣Y (t1), . . . Y (tk)
)
. Then by

Bayes’ rule, the target distribution πtk(dθ, dx) satisfies [2]:

ρtk+1
(dθ, dx) (2)

=

∫
x′
P (X(tk+1) ∈ dx|Θ = θ,X(tk) = x′)πtk(dθ, dx′)

πtk+1
(dθ, dx) ∝ L

(
Y (tk+1)

∣∣x) ρtk+1
(dθ, dx) (3)

for k = 0, 1, . . . , where t0 = 0, and L(y|x) is the likelihood
function for the observation given the system state. We can
interpret (2) as the prediction step, which forecasts X(tk+1)
and Θ using the observations up to time tk; Eq. (3) can be
interpreted as the correction step, which adjusts the predicted
distribution based on the new measurement collected at tk+1.

A. Existing filtering methods

Eq. (2) and (3) often cannot be solved explicitly. Thus,
many Monte-Carlo based methods were proposed for them.

1) Bootstrap particle filter (BPF) [1]: The bootstrap
particle filter (BPF) solves (2) and (3) by Monte-Carlo
samples together with a resampling scheme (see Algo-
rithm 1). Initially, the algorithm samples N particles from
the initial distribution (Line 1, Algorithm 1). For each

tk, the algorithm simulates the particles from time tk to
tk+1 according to the dynamical equation (Line 3, Algo-
rithm 1). Then, the empirical distribution of the particles
(θ1,x1(tk+1)), . . . , (θN ,xN (tk+1)) approximates the pre-
dicting distribution ρtk+1

(·, ·) . Next, the BPF computes par-
ticle weights according to the measurement Y (tk+1) (Line
4, Algorithm 1) and uses the empirical distribution of the
weighted particles to approximate the conditional distribution
πtk+1

(·, ·) (Line 5, Algorithm 1). Finally, the algorithm
resamples particles to remove non-important samples and
reproduce important particles so that the computational com-
plexity is reduced [8]. The convergence of the BPF to the
exact filter (as N →∞) has been shown in [2].

Algorithm 1: Bootstrap particle filter ([1], [8])

1 Sample N particles (θ1,x1(0)) , . . . , (θN ,xN (0)) from
the initial distribution πt0 ;

2 for each time point tk (k ∈ Z≥0) do
3 Simulate each (θj ,xj(·)) from tk to tk+1 by (1);
4 Compute weights wj = L

(
Y (tk+1)

∣∣xj(tk+1)
)
;

5 Filter: π̄tk+1(θ, x) =
∑N
j=1 wj1(θj=θ,xj(tk+1)=x)∑

j wj
;

6 Resample {wj , (θj ,xj(·))}j to obtain N equally
weighted particles to replace the old ones;

7 end

2) Regularized particle filter (RPF): When the particle
size is finite, the performance of the BPF in estimating
system parameters is poor due to sample degeneracy. Specif-
ically, the resampling step reduces the number of distinct
particles θ1, . . . ,θN used for estimating parameters. After
several iterations, the BPF often ends up with particles
sharing the same parameter part θj . This shared θj is not
necessarily equal to the true parameter values. Often, random
effects can cause this shared θj to deviate significantly
from the true parameter values, thereby greatly affecting
the accuracy of the method. A more effective alternative
to the BPF is the regularized particle filter (RPF) [11],
[22], [13], [12], which introduces some artificial noise to
θj (in each iteration in the BPF) to ensure greater diversity
among the particles θ1, . . . ,θN . The RPF has demonstrated
excellent performance in numerous applications (as shown in
the aforementioned references), and it also converges to the
exact filtering result as N →∞ under some mild conditions,
[13], [23], [24], [25].

3) Nested particle filter (NPF): The literature [14] in-
troduced the nest particle filter (NPF) for joint parameter-
state estimation. The first layer of the NPF employs
a regularized particle filter (RPF) to infer the parame-
ters, i.e., targeting πtk(dθ) , P

(
Θ ∈ dθ

∣∣Y (t1), . . . Y (tk)
)
.

The second layer uses the BPF to estimate the state
variables given a fixed θ, i.e., targeting πtk(dx|θ) ,
P
(
X(tk) ∈ dx

∣∣Y (t1), . . . Y (tk),Θ = θ
)
. The two layers are

wisely integrated, enabling the NPF to operate in a recursive
manner. Finally, the NPF gives an approximated solution to
the filtering problem by combining the results in both layers
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according to πtk(dθ, dx) = πtk(dx|θ)πtk(dθ). Its validity in
the limit of large particles has been shown in [14].

4) Further remarks: The performance of RPFs and NPFs
largely depends on the choice of the artificial noise intensity,
which is not easy to determine in advance. Weak artifi-
cial noise cannot effectively circumvent sample degeneracy;
strong artificial noise could result in a big bias [11]. Our
previous study [13] demonstrates that in some examples, the
RPF requires a training step in advance to find the optimal
noise intensity, which can be extremely time-consuming. In
summary, employing artificial noise to perturb particles may
not be optimal for joint parameter-state estimation.

III. FILTERING APPROACH BASED ON
RAO-BLACKWELLIZATION AND MODULARIZATION

We propose a new filtering method for joint parameter-
state estimation based on Rao-Blackwellization and modu-
larization. The key idea is to marginalize out the parameters
Θ using an efficient finite-dimensional filter. This strategy
circumvents the need for generating particles representing
Θ, thereby mitigating the related issues. Moreover, when
integrating out Θ, our method employs a divide-and-conquer
approach to reduce the computational complexity.

A. Derivation of our Rao-Blackwellized particle filter

First, we give a new formula to re-express the filter πtk .
Let X0:t be the whole trajectory of X(·) from time zero
to t, Yt1:tk the measurements up to tk, and πΘ|X(t, dθ) =
P
(
Θ ∈ dθ

∣∣X0:t

)
. Then, by the tower property, we have

πtk (dθ, dx) = E
[
P
(
Θ ∈ dθ

∣∣X0:tk , Yt1:tk

)
1 (X(tk) ∈ dx)

∣∣∣Yt1:tk

]
= E

[
πΘ|X(tk, dθ) 1 (X(tk) ∈ dx)

∣∣∣Yt1:tk

]
(4)

where the second line holds because L(y|x) does not depend
on the parameters in our problem. Similarly, ρtk+1

satisfies

ρtk+1 (dθ, dx) = E
[
πΘ|X(tk+1, dθ) 1 (X(tk+1) ∈ dx)

∣∣∣Yt1:tk

]
. (5)

Eq. (4) and (5) suggest that the filtering problem can be
numerically solved by generating samples for the process(
πΘ|X(t, ·), X(t)

)
. This scheme avoids generating particles

that represent parameters Θ.
Next, we introduce a divide-and-conquer approach to com-

pute πΘ|X(t, ·). When the terms in the dynamical equation
(1) are regular enough, the density of πΘ|X(t, ·) is the unique
normalized solution of the Zakai equation [26]{

dρΘ|X(t, θ) = ρΘ|X(t, θ)
∑n
i=1

fi(θi,X(t))

σ2
i

dXi(t)

ρΘ|X(0, θ)dθ = πΘ|X(0, dθ)
.

Basically, this Zakai equation is high dimensional, and it
suffers the curse of dimensionality when solved directly
using grid-based methods. Fortunately, our system (1) has
a nice structure where the i-th parameter only immediately
affects the i-th state. This enables a modularization method
for computing the Zakai equation. Specifically, this Zakai

equation has an explicit solution [27]

ρΘ|X(t, θ) = ρΘ|X(0, θ)×
n∏
i=1

exp

{∫ t

0

fi(θi, X(s))

σ2
i

[
dXi(s)−

fi(θi, X(s))

2
ds
]}

.

Recall that we assume a uniform prior distribution for Θ and
X(0). This means that ρΘ|X(0, θ) =

∏n
i=1 ρΘi(θi) where

ρΘi(·) is the marginal distribution for Θi. Thus, the solution
of the Zakai equation can be expressed by

ρΘ|X(t, θ) =
n∏
i=1

ρΘi (θi) exp

{∫ t

0

fi(θi, X(s))

σ2
i

[
dXi(s)−

fi(θi, X(s))

2
ds
]}

︸ ︷︷ ︸
=: ρΘi|X (t,θ)

(6)

indicating that the parameters are conditionally indepen-
dent given X0:t. Here, we denote ρΘi|X(t, ·) as the un-
normalized marginal conditional distribution for Θi. With
this conditional independence, we can compute πΘ|X(t, ·)
(or equivalently, ρΘ|X(t, ·)) by applying the Euler-Maruyama
method to each marginal distribution ρΘi|X(t, ·) rather than
the joint distribution. This strategy reduces the computational
complexity from O (Gn) to O (nG), with G the number of
grid points for each parameter. Consequently, this divide-
and-conquer method, as suggested by (6), is efficient even
in high-dimensional cases.

B. Algorithm of our Rao-Blackwellized particle filter

Following the above idea, we provide a Rao-
Blackwellized particle filter (RB-PF) in Algorithm 2.
Essentially, the method generates samples for the processes(
X(·), ρΘ1|X , . . . , ρΘn|X

)
and approximates πtk(·) by (4).

First, the algorithm generates particle x1(0), . . . ,xN (0)
from the initial distribution (Line 1, Algorithm 2). Then,
for each xj(0), the algorithm creates ρ̄ij(0, ·) to represent
the conditional density of Θi given X(0) = xj(0) (Line 2,
Algorithm 2). Due to memory constraints, a digital computer
cannot store all the values of this conditional density func-
tion. Consequently, for each Θi, the algorithm only stores
the values of the density function corresponding to some
representative points selected within R.

Then, at each time point tk, Algorithm 2 solves the
prediction and correct equations (2) and (3) by simulating the
particles according to (1) and (6). The algorithm simulates
every xj(·) from time tk to tk+1 according to the dynamics
(1) with parameters sampled from the conditional distribution
ρ̄j(tk, θ) ,

∏n
i=1 ρ̄

i
j(tk, θi) (Line 4, Algorithm 2). For each

xj(·), the algorithm then computes the marginal conditional
densities ρ̄ij(tk+1, ·) according to (6) (Line 5, Algorithm 2).
By (5), the predicting distribution ρtk+1

can be approximated

by ρ̄tk+1
(θ, x) =

∑N
j=1[1(xj(tk+1)=x)

∏n
i=1 ρ̄

i
j(tk+1,θi)]

N . To
approximate the filter πtk+1

(θ, x), our algorithm computes
weights for all the particles (Line 6, Algorithm 2) and
provides a filter π̄tk+1

(θ, x) according to (3) and (4) (Line 7,
Algorithm 2). Finally, our algorithm resamples the particles
to accelerate the speed.
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Algorithm 2: Rao-Blackwellized particle filter

1 Sample N particles x1(0), . . . ,xN (0) from πt0 ;
2 For every Θi, select a finite set �i ⊂ R. Then, for each

xj(0) and each i, denote marginal distribution
ρ̄ij(0, θi) ∝ pΘi(θi), ∀θi ∈ �i ;

3 for each time point tk (k ∈ Z≥0) do
4 Simulate each xj(·) from tk to tk+1 by (1) with

parameters θj sampled from the distribution
ρ̄j(tk, θ) ,

∏n
i=1 ρ̄

i
j(tk, θi);

5 For each xj(·) and i ∈ {1, . . . , n}, compute

ρ̄
i
j(tk+1, θi) =

ρ̄
i
j(tk, θi)e

∫ tk+1

tk

fi(θi,xj(s))

σ2
i

[
d(xj)i(s)−

fi(θi,xj(s))

2
ds

]

for every θi ∈ �, and then normalize it;
6 Compute weights wj = L

(
Y (tk+1)

∣∣xj(tk+1)
)
;

7 Approximated filter:

π̄tk+1 (θ, x) =

∑N
j=1

[
wj1(xj(tk+1) = x)

∏n
i=1 ρ̄

i
j(tk+1, θi)

]
∑
j wj

8 Reample
{
wj ,
(
xj , ρ̄1

j , . . . , ρ̄
n
j

)}
j

to obtain N new
particles to replace the old ones;

9 end

C. Some discussions about our method

Our RB-PF also has a nested structure. Concretely, the
particles x1(·), . . . ,xN (· · · ) can be seen as the first layer es-
timating the system state, and

{(
ρ̄1
j , . . . , ρ

n
j

)}
j=1,...,N

form
the second layer estimating the parameters (given the state
trajectories). Compared with the NPF, our filter reversed its
order of layers for estimating the parameters and states. More
importantly, the second layer in our algorithm uses a finite-
dimensional filter rather than a BPF or RPF for parameter
estimation. This strategy circumvents the need to generate
particles representing Θ, thereby mitigating issues related to
sample degeneracy and artificial noise.

Our algorithm improves classical particle filtering methods
(e.g., the BPF, RPF, and NPF) at the cost of requiring more
computational resources for the same particle size. Essen-
tially, our RB-PF needs to additionally compute and store the
distributions ρ̄ij(t, ·), which necessitates more computational
time and computer memory. We provided a modularization-
based approach for these conditional distributions, thereby
reducing the additional computational costs to some ex-
tent. Still, the extra computational effort is not negligible.
Nonetheless, this additional computation is worthwhile. It
can effectively mitigate the problems associated with RPF
and NPF, and, consequently, our method can outperform
existing methods within the same computational time.

IV. NUMERICAL EXAMPLES

We show some examples to demonstrate our approach.
All the algorithms were performed on the Euler Computing
Cluster at ETH Zurich, using a node with 12-core CPUs.

A. Stochastic Lorenz-63 model

Here, we consider a stochastic Lorenz-63 model [28].
The model consists of three states (X1(t), X2(t), X3(t)) and
three parameters (Θ1,Θ2,Θ3). Its dynamics is described by

dX1(t) = −Θ1 [X1(t)−X2(t)] dt+ dB1(t)

dX2(t) = [Θ2X1(t)−X2(t)−X1(t)X3(t)] dt+ dB2(t)

dX3(t) = [X1(t)X2(t)−Θ3X3(t)] dt+ dB3(t).

Clearly, this system conforms to the model (1). Moreover,
we assume that the process are measured at time points
{0.05, 0.10, . . . , 10}, and the measurements Y (tk) satisfies

Y (tk) =

[
X1(tk)
X3(tk)

]
+

[
W1(tk)
W2(tk)

]
for tk = 0.05, . . . .

(A) (B)

(C)

Fig. 1. Results of our RB-PF applied to the stochastic Lorenz-63
system. (A) Simulated trajectory of the system. (B) Observation process.
(C) Estimation results.

First, we examined the performance of our RB-PF in
solving the filtering problem. We assumed that the initial
state and parameters were independent and satisfied uniform
distributions: X1(0) ∼ U(−9,−3), X2(0) ∼ U(−9,−3),
X3(0) ∼ U(20, 28), Θ1 ∼ U(5, 20), Θ2 ∼ U(18, 50),
and Θ3 ∼ U(1, 8). Then, we simulated a trajectory of the
system with the initial state (−6,−5, 24.5)

> and parameters
(10, 28, 8/3). Finally, we applied our RB-PF (with a particle
size of N = 20, 000) to solve this filtering problem. The
whole computational time was approximately 55 minutes.
The numerical result in Figure 1 shows that our approach
provides sharp estimates for the system states and parame-
ters. The mean estimates of the state variables almost overlap
with the true state trajectories, with the standard deviations
too small to be visible (Figure 1.C). The mean estimates for
the system parameters also fast converge to the true values
(Figure 1.C). From time four onward, these estimates closely
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RB-PF

BPF

RPF (c=10-4 )

RPF (c=10-3 )

RPF (c=10-2 )

NPF (c=10-4 )

NPF (c=10-2 )

NPF (c=1)

Fig. 2. Comparison of different filters in parameter estimation for the
stochastic Lorenz-63 system. The black dashed lines represent the true
parameter values. The colored lines present the estimates from different
filters, with the dots indicating the mean estimates and the error bars
representing the standard deviation. The names of the particle filters are
listed on the left, where c denotes the artificial noise intensity.

match the true parameter value, with very small standard
deviations. These results demonstrate the accuracy of our
method in this filtering problem.

Next, we compared our RB-PF with other approaches (the
BPF, RPF, and NPF). We applied these filters to the same
observation trajectory and carefully selected their particle
sizes so that their computational time was similar to that
of the RB-PF (≈ 55 minutes). The sample sizes of the BPF
and RPF were set to be 40,000. For the NPF, the particle
sizes in the first and second layers were both set to be 200.
The artificial noise in the RPF and NPF was generated from
a normal distribution with mean (0, 0, 0)> and covariance
matrix cId. Here, c is a tunable hyper-parameter, and Id is
the identity matrix.

The results in Figure 2 show that the RB-PF is the most
accurate in estimating system parameters. First, the RB-PF
is one of the three filters where all the confidence intervals
(mean ± one standard deviation) include their respective true
parameter values. Moreover, among these three filters, the
RB-PF has the smallest standard deviations.

Figure 2 reveals the great challenge of choosing a proper
artificial noise intensity (c) for the RPF and NPF. When c is
small, these filters still suffer sample degeneracy, resulting
in very similar particles whose confidence interval does not
necessarily cover the true parameter value (see the RPFs and
NPFs with c < 10−2). Particularly, when c = 0, the RPF
degenerates to the BPF, resulting in particles with identical
parameter parts. As c increases, the artificial noise can lead
to a big error, causing a large standard deviation in parameter
estimation (see the RPFs and NPFs with c ≥ 10−2).

Thanks to the divide-and-conquer strategy (as suggested
by (6)), the additional computational resources required in
RB-PF for the Zakai equation are acceptable. In this example,
the computational time required by the additional computa-
tion is comparable to that spent on the remaining part of the
algorithm. Consequently, for the same computational time,
the RB-PF can still employ half of the sample size compared
to the other competing methods, resulting in its superior
performance in parameter estimation.

B. Stochastic Lotka-Volterra dynamics

Next, we consider the Lotka-Volterra system [29], [30],

dX1(t) = X1(t)
(

Θ1 −X2(t)
)

dt+ 0.1dB1(t)

dX2(t) = X2(t)
(

Θ2X1(t)− 1
)

dt+ 0.1dB2(t)

describing the interaction between a prey species (X1) and a
predator species (X2). The parameters Θ1 and 1/Θ2 are the
carrying capacities of the predator (X2) and the prey (X1),
indicating the maximum sustainable populations of these
species in this environment when randomness is absent. We
assume the initial conditions (X1(0), X2(0)) and parameters
(Θ1,Θ2) are independent and satisfy a uniform distribution
U(0.1, 2). The measurements of the system have the form

Y (tk) = X2(tk) + 0.1W (tk) for tk = 0.5, 1, 1.5, . . . , 40.

First, we examined the performance of our RB-PF in
this example. We simulated a trajectory of the system (see
Figure 3.A–B) and then applied our RB-PF with a particle
size of N = 10, 000. The numerical results shown in
Figure 3 indicate that our method can accurately estimate
the dynamics of both the prey and predator. Moreover, it
can accurately estimate the carrying capacity of both species
(i.e., Θ1 and 1/Θ2). Since the dynamics of the predator are
measured in this example, the algorithm provides a more
accurate estimate for the carrying capacity of the predator
(i.e., Θ1) than that of the prey (i.e., 1/Θ2). In conclusion,
our method is effective in solving this filtering problem.

We also compared our RB-PF with the BPF, RPF, and
NPF. We applied these filters to the same observation tra-
jectory and carefully selected their particle sizes so that
their computational time was similar to that of the RB-PF
(around 35 minutes). The sample sizes of the BPF and RPF
were set to be 20,000. For the NPF, the particle sizes in
the first and second layers were set to be 100 and 200.
The comparison results in Figure 4 demonstrate that only
three filters (including our RB-PF) can accurately estimate
the parameters with all the confidence intervals (mean ±

(A)

(C) 

(B)

Fig. 3. Results of our RB-PF applied to the stochastic Lotka-Volterra
system with the predator being measured. (A) Simulated trajectory of the
system. (B) Measurements. (C) Estimation results. The standard deviation
of X2-estimates is too small to be visible.
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RB-PF

BPF

RPF (c=10-4 )

RPF (c=10-2 )

NPF (c=10-4 )

NPF (c=10-2 )

Fig. 4. Comparison of different filters in parameter estimation for the
stochastic Lotka-Volterra system. All the elements, such as the dashed lines
and colored error bars, retain the same meanings as described in Figure 2.

one standard deviation) encompassing their respective true
parameter values. Although an RPF and an NPF are among
these accurate filters, their effectiveness depends on a careful
selection of the artificial noise intensity, which is challenging
to determine in advance. In contrast, our method does not
require fine-tuning of any such parameters. These results
further indicate the superior performance of our approach.

V. CONCLUSION

This paper proposed a novel and effective filtering ap-
proach for joint parameter-state estimation in SDEs based
on Rao-Blackwellization and modularization. Our method
operates in two layers: the first layer estimates state variables
using a BPF, and the second layer integrates out all the
parameters using the Euler-Maruyama method. This strategy
eliminates the need to generate particles representing pa-
rameters and, therefore, circumvents the problems related to
sample degeneracy and artificial noise presented in the state-
of-the-art methods. Moreover, our method employs a modu-
larization approach in the second layer, which significantly
reduces the required additional computational effort. These
designs result in an effective filtering algorithm for joint
parameter-state estimation in SDEs. Its superior performance
was also demonstrated through several numerical examples.

A few topics deserve further investigation in future work.
First, a theoretical analysis of this method is needed to
investigate its superior performance and limitations. Second,
the method can be further improved by integrating out some
state variables in addition to the system parameters. Our
previous work [21] can be beneficial for this extension, as it
successfully employed this idea to CTMCs.
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