
Federated TD Learning in Heterogeneous Environments with Average
Rewards: A Two-timescale Approach with Polyak-Ruppert Averaging

Ankur Naskara, Gugan Thoppea, Abbasali Koochakzadehb, and Vijay Guptab

Abstract— Federated Reinforcement Learning (FRL) provides
a promising way to speedup training in reinforcement learning
using multiple edge devices that can operate in parallel. Recently,
it has been shown that even when these edge devices have access
to different dynamic models, an optimal convergence rate that
has a linear speedup proportional to the number of devices is
achievable. However, this result requires that the stepsize in the
algorithm be chosen in a manner dependent on the unknown
model parameters. Also, it applies only to a discounted setting,
which has been argued to fit episodic tasks better than continuing
control tasks. In this paper, we obtain finite-time bounds for
heterogeneous FRL with average rewards. We show that the
optimal convergence rate with a linear speedup is possible even
with a universal stepsize choice, independent of the underlying
dynamics. To achieve our result, we modify the existing one-
timescale FRL method to a novel two-timescale variant that
additionally incorporates iterate averaging.

I. INTRODUCTION

With the proliferation of edge devices such as scanners,
smartphones, medical devices, scientific instruments, and
autonomous vehicles, there has been a massive growth in the
amount of data that could conceivably be used for training
Machine Learning (ML) models. However, transmitting this
data from the edge devices to a single centralized location
can easily overwhelm the network bandwidth and also
raise privacy concerns. The paradigm of Federated Learning
(FL) has evolved to address these concerns by allowing
model training to be done primarily by the edge devices
themselves [1], [2]. Fundamentally, FL consists of three steps
that are repeated in a cyclic manner. First, the edge devices
locally train an ML model. Next, the server gathers these
models, possibly by sampling the devices, and then aggregates
them. Finally, the server transmits this global model to the
edge devices. The core challenge of FL is that the edge
devices and their contributions may be heterogeneous. The
most obvious form of this heterogeneity is that of data
heterogeneity, meaning that the edge devices operate in
distinct environments and collect data from distributions that
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are not identical to each other. Much of the literature in FL
accordingly provides ways to combat such heterogeneity.

A branch of ML that has seen a surge of interest recently
is Reinforcement Learning (RL) [3], [4], [5], [6], [7], wherein
an agent is required to learn an optimal strategy (or a policy)
for a control system. This system’s dynamics is modeled as
a Markov Decision Process (MDP) so that its future state
(or its probability distribution) depends only on its current
state and an action performed by an agent. After each action,
the agent receives a scalar feedback, called the reward, that
quantifies the immediate gains under that action. The overall
goal in RL is to find a policy for the agent that optimizes
a suitable cumulative sum of these instantaneous rewards.
There are two main ways in which the above cumulative sum
(of rewards) has been defined in the literature. One way is to
look at a discounted sum of the instantaneous rewards (with
some discount factor γ ∈ [0, 1)) over some time horizon.
However, it has been argued that such discounting is suitable
for episodic tasks but leads to high near-term performance
rather than to high long-term performance in continuing or
infinite-horizon control tasks [8], [9], [10]. The alternative is
the average-reward setting, which is our focus.

Some recent works have merged the FL and RL paradigms
and studied Federated Reinforcement Learning (FRL) [11],
[12], [13], [14]. One advantage of FRL is that a ‘divide
and conquer’ approach to generating the usually enormous
amount of data required to explore the different aspects of the
environment becomes conceivable. Moreover, the different
edge devices can now perform computations in parallel,
leading to a possible speedup in terms of the number of
participating devices. Initial works show that this intuition is
true, at least in the case when each node has access to the
same model for the system process, e.g., [15].

However, as stated above, heterogeneity is a key concern in
FL. In FRL, this may manifest as different edge devices work-
ing with (slightly) different dynamic models. For instance,
to design a controller for an autonomous car, we can try to
utilize data from several cars; however, every car operates
in a different environment with different configurations. It is
important to note that, due to the global aggregation step in
FL, the designed controller may end up not being optimal
for the dynamic model at any single edge device. Hence, one
typically works with an alternative goal in heterogenous FRL,
which is to find a ‘universal’ controller that performs well
across all the edge models. An intriguing question is whether
the speedup from the homogeneous case can be achieved in
the heterogeneous case as well.

Some recent works [16], [17] have studied this question.
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Specifically, [17] considered policy evaluation with linear
function approximation using TD learning and proved that the
optimal convergence rate and a linear speedup persists even
with heterogeneity. However, their setup considers discounted
rewards, which as stated above, is less suitable for continuing
control tasks than average rewards. Moreover, for the optimal
rate, the algorithm in [17] is required to choose stepsizes in
a manner that depend on the unknown dynamic models at
the edge devices, which is practically infeasible.

In this paper, we consider heterogeneous FRL with an
average-reward criterion and show that the optimal rate with
a linear speedup is still possible by choosing stepsizes that
do not depend on the unknown dynamics at the edge devices.
A formal summary of our key contributions is as follows.
We propose a novel two-timescale variant of TD learning for
policy evaluation in heterogeneous settings with the average-
reward criterion and linear function approximation. In this
variant, we adapt iterate averaging from single-agent RL [18],
[19], [20] to a federated setup with heterogeneous MDPs. Our
main result shows that our algorithm achieves the optimal rate
with a linear speedup in sample complexity in terms of the
number of agents. Importantly, we show that this optimality
occurs for a universal stepsize choice that is independent of
the underlying dynamics.

The rest of the paper is organized as follows. We begin
with formulating the problem in Section II. Our proposed
algorithm and our main result (Theorem 3.1) are given in
Section III. We prove our main result in Section IV and
conclude with some open directions in Section VI.

II. SETUP AND PROBLEM FORMULATION

Our framework comprises N agents (also referred to as
clients or nodes), with the i-th agent having access to an
MDP Mi := (S,A,Ri,Pi). Here, S and A are the state
and action spaces, respectively, and are assumed to be finite
and common among all the MDPs. Further, Ri : S ×A → R
and Pi : S ×A → ∆(S) are the local reward and probability
transition functions at agent i ∈ [N ] and can potentially vary
from one agent to the other. The notation ∆(S) stands for
the set of distributions on S, and [N ] := {1, . . . , N}. Our
problem is to design an FRL algorithm that leverages the
above setup to estimate the value function of a stationary
policy µ : S → ∆(A). In particular, our algorithm’s output
should approximate µ’s value function in the column space
of a given feature matrix Φ ∈ R|S|×d for some 1 ≤ d ≪ |S|.

Under the average-reward criterion, µ’s value function with
respect to the MDP Mi can be measured using two notions.
First, the average reward rµi ∈ R|S| is given by

rµi (s) := lim inf
T→∞

1

T
E
[ T−1∑

t=0

Ri(st, at)|s0 = s

]
, s ∈ S,

(1)
where the expectation is with respect to the distribution of the
state-action trajectory s0, a0, . . . , sT−1, aT−1, in which at ∼
µ(·|st) and st+1 ∼ Pi(·|st, at). In contrast, the differential
value function V µ

i is the fixed point of the differential Bellman

Algorithm 1: Our proposed AvgFedTD(0) algorithm
Input : Policy µ, step-size sequence (βt), feature

vectors {ϕ(s) : s ∈ S}, initial average reward
estimate r0 ∈ R, and initial global model
parameter θ0 ∈ Rd.

1 Initialize: θ̄0 = θ0 and ri0 = r0,∀i ∈ [N ].
for each iteration t = 0, 1, . . . , T − 1 :

Each agent i ∈ [N ] in parallel
2 Observe (sit, a

i
t, ŝ

i
t), where sit ∼ dµi ,

ait ∼ µ(·|sit), and ŝit ∼ Pi(·|sit, ait).
3 Compute local TD error

δit+1 = [Ri(s
i
t, a

i
t)− rt]ϕ(s

i
t)

+ ϕ(sit)[ϕ
⊤(ŝit)− ϕ⊤(sit)]θt.

4 Update local average reward estimate
rit+1 = rit +

1
t+1 [Ri(s

i
t, a

i
t)− rit].

5 Send (δit+1, r
i
t+1) to central server.

Central server
6 Update global model parameter

θt+1 = θt +
βt

N

∑
i∈[N ] δ

i
t+1.

7 Update Polyak-Ruppert average
θ̄t+1 = θ̄t +

1
t+1 [θt − θ̄t].

8 Update average reward estimate
rt+1 = 1

N

∑
i∈[N ] r

i
t+1.

9 Send (θt+1, rt+1) to each agent i ∈ [N ].
10 end

operator Tµ
i : R|S| → R|S| which is given by

Tµ
i V = Rµ

i − rµi + Pµ
i V. (2)

Above, Rµ
i (s) =

∑
a∈A µ(a|s)Ri(s, a) and Pµ

i (s, s
′) ≡

Pµ
i (s

′|s) =
∑

a∈A µ(a|s)Pi(s
′|s, a). Throughout this work,

we presume that the data (i.e, the states and actions) observed
at different agents are independent. Additionally, we make
the following standard assumption [10], [17]:
A1) Ergodicity: For any i ∈ [N ], the Markov chain (S,Pµ

i )
induced by the policy µ is irreducible and aperiodic.

This assumption guarantees that the Markov chain (S,Pµ
i )

has a unique and positive stationary distribution dµi ; further,
this Markov chain is ergodic, and, for each s ∈ S, we have
rµi (s) = (dµi )

⊤Rµ
i =: r∗i . Note that r∗i is independent of s.

In the above notations, our FRL algorithm’s goals can be re-
stated as follows. It should output a vector θ ∈ Rd and a scalar
r ∈ R such that Φθ (resp. r) is simultaneously close to V µ

i

(resp. r∗i ) for each i. Moreover, our algorithm’s convergence
rate should be optimal and its iteration complexity—i.e., the
number of iterations needed to find such a θ and r—should
decrease linearly with the number N of agents. Finally, the
stepsize choice to achieve this optimal rate should not depend
on unknown problem-dependent constants.

III. PROPOSED ALGORITHM AND MAIN RESULT
Our novel algorithm for policy evaluation in the heteroge-

neous FL setup under the average reward criterion is given
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in Algorithm 1. There are two phases in each iteration of
this algorithm. In the first phase, all agents work in parallel
to compute their local TD errors and their local estimates
of the average reward, i.e., the δit’s and the rit’s, which are
then shared with a central server. In the second phase, the
server aggregates these quantities to obtain global estimates
for the differential value function and the average reward,
which are then broadcast to all the agents. To compute the
local TD error δit, we assume that agent i has access to the
current state sit ∼ dµi of its local MDP Mi, and can take
action ait ∼ µ(sit), after which it gets to see the subsequent
local state ŝit ∼ Pµ

i (·|sit, ait), and the local instantaneous
reward Ri(s

i
t, a

i
t). We assume that the tuple (sit, a

i
t, ŝ

i
t) is

independent across iterations and also agents. Note that the
information about the local states, actions, and rewards is not
shared directly with the server, following FL principles.

We now discuss how our algorithm differs from [17,
Algorithm 1] and also the latter’s limitation. First, note that the
algorithm in [17] addresses the exponentially discounted case,
whereas ours focuses on the average-reward scenario. Hence,
to enable comparison, we first naively extend the algorithm
in [17] to the average-reward setting by incorporating ideas
from [10, Algorithm1], which is tailored for policy evaluation
in the single-agent and average-reward context. The resulting
algorithm closely mirrors our Algorithm 1, with the following
crucial modifications: (i) in Step 4, the 1/(t+ 1) stepsize is
replaced by cαβt; and (ii) Step 7 is omitted.

Regarding limitation, it can be guessed from [10, Theo-
rem 1] and [17, Theorem 2] that the optimal convergence rates
for θt and rt in this naive extension—which will have a linear
speedup in terms of sample complexity—is guaranteed only
when the stepsize βt is of the form c1/(c2+t). Moreover, the
constants c1, c2, and cα need to be such that 2 < c1∆ < 2c2
and cα > ∆+

√
∆−2 − 1, where ∆ := minθ∈Rd\{0} θ

⊤Aθ
and A = 1

N

∑
i∈[N ] Ai with Ai := Φ⊤Dµ

i (I − Pµ
i )Φ and

Dµ
i := diag(dµi ) for all i ∈ [N ]. Clearly, this stepsize choice

is impractical, as it necessitates the knowledge of ∆, which
depends on Pµ

i , an a priori unknown matrix.
Our approach differs from the aforementioned naive

algorithm in the following two crucial ways. The first is
that we have the additional Step 7, wherein we perform a
Polyak-Ruppert [19], [18] running averaging of the global
θ-estimates, i.e., we compute θ̄t =

1
t

∑t−1
k=0 θk at each time

instance t. The second is in changing the updating approach of
θt and rit from one-timescale to two-timescales. Put differently,
in the naive extension, both θt and rit are updated using
stepsizes that differ only by a constant factor. In contrast, in
our algorithm, we update these quantities using the stepsizes
βt and 1/(t+1), respectively, and we assume that their ratio
goes to ∞ as t → ∞. As an example, this condition holds
for βt = 1/(t+ 1)β when β is some constant in (0, 1).

Because of the above two modifications, we now show
that our algorithm does not have the impracticality issue
inherent in the above naive algorithm. That is, it achieves
the optimal convergence rate and a linear speedup in the
associated sample complexity without requiring the stepsize
βt to depend on unknown problem-dependent parameters.

We need the following assumptions to formally state our
main result. Let ∥ · ∥ be the Euclidean norm.
A2) Heterogeneity bound: ∃ ϵp ≥ 0 and ϵr ≥ 0 such that

|Ri(s, a)−Rj(s, a)| ≤ ϵr and

|Pi(s
′|s, a)− Pj(s

′|s, a)| ≤ ϵp Pi(s
′|s, a)

∀i, j ∈ [N ], s ̸= s′ ∈ S, and a ∈ A.
A3) Bounded rewards: ∃Rmax > 0 such that |Ri(s, a)| ≤

Rmax ∀i ∈ [N ],∀s ∈ S, and ∀a ∈ A.
A4) Conditions on the feature matrix: The matrix Φ

has full-column rank with ∥Φ∥ ≤ 1. Additionally, the
column space of Φ does not contain the vector of all
ones, i.e., 1 /∈ {Φθ : θ ∈ Rd}.

Assumption A2 puts an upper bound on the heterogeneity
among the local environments. Separately, Assumption A4,
which is borrowed from [10], along with A1 is required for
the positive definiteness of each Ai [10, Lemma 2]. The
positive definiteness of A follows from that of the Ai’s.

We also need a few notations. For all i ∈ [N ], let
bi := Φ⊤Dµ

i R
µ
i , vi := Φ⊤Dµ

i 1, and θ∗i := A−1
i (bi − vir

∗
i ).

Separately, let b := 1
N

∑
i∈[N ] bi, v := 1

N

∑
i∈[N ] vi, and

r∗ := 1
N

∑
i∈[N ] r

∗
i . Finally, let θ∗ := A−1(b− vr∗).

We are now ready to state our main result on the finite-time
convergence of our AvgFedTD(0) algorithm.

Theorem 3.1: Assume conditions A1—A4. Let (θ̄t, rt) be
the iterates generated by Algorithm 1 with βt =

1
(t+1)β

for
a β ∈ (0, 1). Then, ∀i ∈ [N ] and T > 0,

E|rT − r∗i |2 ≤ C1

(T + 1)2
+

C2

N(T + 1)
+Hr(ϵp, ϵr)

and

E∥θ̄T − θ∗i ∥2 ≤ C3 ln(T )

(T + 1)2
+

C4

N(T + 1)
+Hθ(ϵp, ϵr),

where C1—C4 are some non-negative constants, while
Hr(ϵp, ϵr) and Hθ(ϵp, ϵr) are special constants called hetero-
geneity gaps and are given by the expressions in Table I.

Remark 3.2: Our result shows that the expected squared
error in our estimates for θ∗i and r∗i is O

(
1

NT

)
at time T,

modulo the constant heterogeneity gaps Hr and Hθ. These
gaps decay to 0 as ϵp, ϵr → 0. In the single-agent setting,
our algorithm would have converged to θ∗1 at the optimal
rate of O

(
1
T

)
. In contrast, when N > 1, our algorithm

guarantees convergence only to a Hθ-sized neighborhood
of θ∗1 (or alternatively of any θ∗i ), but with the optimal rate
and a sample complexity speedup proportional to N. Thus,
collaborating in a heterogeneous setup leads to a speedup at
the cost of accuracy, mirroring the conclusion in [17].

Remark 3.3: The most significant part of our result is that
we obtain the O

(
1

NT

)
rate without requiring our stepsize

βt to depend on unknown problem-specific constants. This
contrasts the results in [10] and [17] where, as discussed at
the beginning of this section, the optimal rate is guaranteed
only if βt = c1/(c2+t) and c1 and c2 satisfy some constraints
depending on the unknown A, A1, . . . , AN matrices. Thus,
our results hold for practically realizable stepsizes, while the
ones in [10] and [17] do not.
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TABLE I: Table of constants.

Constants Values

Cd(ϵp)
(

1+ϵp
1−ϵp

)|S|
− 1 = 2|S|ϵp +O(ϵ2p)

CA(ϵp) ϵp
√

|S|+ Cd(ϵp) (1 +
√

|S|)

Cb(ϵp, ϵr)
√

|S|[2ϵr + 3Cd(ϵp)Rmax]

Hr(ϵp, ϵr) 2|S|
[
ϵ2r +R2

maxC
2
d(ϵp)

]
Hθ(ϵp, ϵr) max

i∈[N ]

2κ2(Ai) ∥Ai∥2∥θ∗i ∥2

[∥Ai∥−κ(Ai)CA(ϵp)]2

[
C2

A(ϵp)

∥Ai∥2
+

C2
b (ϵp,ϵr)

∥bi−vir
∗
i ∥2

]
where κ(Ai) := σmax(Ai)/σmin(Ai)

Remark 3.4: While multi-timescale approaches have been
used and analyzed previously [21], [22], [23], [24], [25],
their motivation broadly was either to simplify the analysis
by decoupling the behavior of two or more iterates, e.g.,
[26], or to remove the correlation between the quantities
estimated using the same set of random observations, e.g.,
[27]. However, the algorithms in [26] and [27] run well even
in the one-timescale setting, showing that the use of two-
timescales was not strictly required. In contrast, our work
shows that the two-timescale approach leads to a practically-
realizable stepsize for optimal speedup, while the single-
timescale-based one does not.

IV. PROOF SKETCH OF MAIN RESULT

Due to space constraints, we provide only a sketch of the
arguments that we use for proving Theorem 3.1.

We begin by rewriting our update rules in Algorithm 1 in
a form that enables our analysis. For each i ∈ [N ], let

W
(i)
t+1 := Ri(s

i
t, a

i
t)− (dµi )

⊤Rµ
i (3)

M
(i)
t+1 := [Ri(s

i
t, a

i
t)ϕ(s

i
t)− bi]− [ϕ(sit)− vi]rt

− [ϕ(sit)(ϕ
⊤(sit)− ϕ⊤(ŝit))−Ai]θt, (4)

where Ai, bi, and vi are as in Section III, while dµi and Rµ
i

are as in Section II. Further, ∀t ≥ 0, let

ρt := rt − r∗, ∆t := θt − θ∗, and ∆̄t := θ̄t − θ∗. (5)

Then, we get the following alternative update rules:

ρt+1 =
(
1− 1

t+ 1

)
ρt +

1

t+ 1
Wt+1 (6)

∆t+1 = (I − βtA)∆t − βtvρt + βtMt+1 (7)

∆̄t+1 = ∆̄t +
1

t+ 1
[∆t − ∆̄t], (8)

where

Wt+1 :=
1

N

N∑
i=1

W
(i)
t+1 and Mt+1 :=

1

N

N∑
i=1

M
(i)
t+1.

Clearly, both (Wt+1) and (Mt+1) are Martingale-difference
sequences w.r.t. the filtration (Ft), where Ft is the σ-field
σ(θ0, r0, s

i
k, a

i
k, ŝ

i
k : i ∈ [N ], 0 ≤ k ≤ t− 1).

Next, we provide an explanation for the non-decaying
constants Hr(ϵp, ϵr) and Hθ(ϵp, ϵr) in Theorem 3.1, which
we refer to as the heterogeneity gaps. Applying stochastic
approximation theory [28, Chapter 2] to (6), the only potential

point that rt can converge to is r∗. Similarly, from (7) and
(8), the only point where ∆t and, hence, ∆̄t can converge
to is θ∗. In contrast, the standard single-agent TD(0) [10], if
run by any agent i without communication, would generate
a sequence (rt, θt) that would converge to (r∗i , θ

∗
i ). This

difference is due to the heterogeneity in our FL setup and is
the reason behind Hr(ϵp, ϵr) and Hθ(ϵp, ϵr) in Theorem 3.1.
Our first lemma shows that Hθ (resp. Hr) bounds the gap
between θ∗ (resp. r∗) and θ∗i (resp. r∗i ).

Lemma 4.1: For each i ∈ [N ],

|r∗ − r∗i | ≤
√
Hr(ϵp, ϵr)

∥θ∗ − θ∗i ∥ ≤
√
Hθ(ϵp, ϵr),

where Hr(ϵp, ϵr) and Hθ(ϵp, ϵr) are as defined in Table I.
Remark 4.2: The constants Hr(ϵp, ϵr) = Hθ(ϵp, ϵr) → 0

when the heterogeneity parameters ϵp and ϵr decay to 0. This
can be checked from Table I.

The proof mirrors, mutatis mutandis, the one used to
derive [17, Theorem 1], which provides a similar result
for the discounted case. Note that the TD(0) algorithm in
the discounted case does not involve (rt) updates; hence,
Theorem 1 in ibid does not have the Hr heterogenity gap.

The next two lemmas quantify the convergence rates of rt
and θt to r∗ and θ∗, respectively.

Lemma 4.3: For T ≥ 1, Eρ2T ≤ 4R2
max

NT = O
(

1
NT

)
.

Remark 4.4: Note that Eρ2T does not depend on ρ0. This
is not surprising since, from (6), we have ρ1 = W1 which
clearly does not depend on ρ0.

The proof follows by showing that for any t ≥ 0,

Eρ2t+1 =

(
t

t+ 1

)2

Eρ2t +
1

N2(t+ 1)2

N∑
i=1

E(W i
t+1)

2,

which using Assumption A3 yields

Eρ2t+1 ≤
(

t

t+ 1

)2

Eρ2t +
4R2

max

N(t+ 1)2
.

A simple inductive argument now gives the desired result.
Lemma 4.5: For t ≥ 1, we have E∥∆t∥2 = O

(
βt

N

)
.

The proof of this result mirrors the one used to derive
[29, Theorem 3.1], which looks at similar bounds for the
discounted case in the single-agent settting.

Next, we bound E∥∆̄T ∥2 which concerns the error in the
iterate average θ̄T .

Lemma 4.6: There exists constants K,CM ≥ 0 such that

E∥∆̄t∥2 ≤ 3K2E∥∆0∥2

t2
+

6|S|K2

t2
Eρ20

+
24|S|K2R2

max

Nt
+

3CM

Nt2

t−2∑
k=0

[1 + E∥∆k∥2 + Eρ2k] (9)

for any t ≥ 1.

To derive the above result, we make use of multiple steps.
First, we use [18, Lemma 2] to show that if (∆t) follows
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the linear stochastic approximation rule (7), then its Polyak-
Ruppert average (∆̄t) satisfies

∆̄t =
αt
0∆0

tβ0
− 1

t

t−2∑
k=0

αt−1
k vρk +

1

t

t−2∑
k=0

αt−1
k Mk+1, (10)

where

αℓ
k = βk

ℓ−1∑
i=k

i−1∏
j=k

(I − βjA).

Additionally, using Lemma 2 in ibid, we get that there exists
K ≥ 0 such that max0≤k≤ℓ ∥αℓ

k∥ ≤ K.

Next, by taking norms, squaring, and taking expectation
on both sides of (10), we show that

E∥∆̄t∥2 ≤ 3K2∥∆0∥2

t2
+

3

t2
E

∥∥∥∥∥
t−2∑
k=0

αt−1
k vρk

∥∥∥∥∥
2

+
3

t2
E

∥∥∥∥∥
t−2∑
k=0

αt−1
k Mk+1

∥∥∥∥∥
2

. (11)

To bound the last term, we do the following sequence of
steps. First, we use E[Mk2+1|Fk1

] = 0 to show that

E[(αk−1
k1

M⊤
k1+1)

⊤αk−1
k2

Mk2+1] = 0

for k1 ̸= k2. Next, we note that

E∥Mt+1∥2 ≤ CM [1 + E∥∆t∥2 + Eρ2t ]

for a suitable constant CM ≥ 0. We then use these two
relations to bound the last term in (11), which finally leads
to the last term on the RHS in (9). Finally, we bound the
second term on the RHS of (11) to get the third term on the
RHS of (9). The core idea is to leverage Lemma 4.3 and an
induction on k2 − k1 to get

|E[ρk1
ρk2

]| ≤ 4R2
max

Nk2

for 1 ≤ k1 ≤ k2.

Proof of Theorem 3.1. It follows by combining the inequalities
obtained in Lemmas 4.1, 4.3, 4.5, and 4.6. □

Remark 4.7: Although an optimal convergence rate of
O( 1

T ) was obtained for Eρ2T and E∥∆T ∥2 in the single-agent
average-reward setting even in [10], those results rely on
stepsizes that depend on unknown model parameters. On the
other hand, as shown in [29] which concerns the single-agent
discounted case, it is possible to get rid of this restriction and
obtain a convergence rate of O( 1

Tβ ) using a universal stepsize
1/(t+1)β . However, this only works for β < 1 giving a sub-
optimal convergence rate. We overcome this sub-optimality
by additionally using Polyak-Ruppert averaging. Specifically,
we show that the mean squared error of the averaged iterates
in our setup, i.e., E∥∆̄T ∥2, decays at the rate of O( 1

NT ).
Note that the additional terms of O( 1

(T+1)2 ) in Theorem 3.1
decay fast enough to not have significant impact.

V. EXPERIMENTS
In this section, we present some illustrative numerical

results. Each experiment below is specified by the number N
of agents and the heterogeneity bounds ϵp and ϵr. The state
and action spaces are common among the agents with |S| =
|A| = 100. Further, the feature matrix Φ ∈ R100×20, i.e., d =
20. The local reward and transition functions at all agents are
chosen randomly while following the heterogeneity bounds
(see Assumption A2). The number of agents considered are
N = 2, 5, 10, and 20, while the heterogeneity bounds are
either ϵp = ϵr = 0.1 or ϵp = ϵr = 0.7.

We compare two policy evaluation algorithms: our proposed
method (Algorithm 1), and the single-timescale algorithm
described in Section III, which is obtained by naively
combining the ideas from [17] and [10]. We shall refer
to the latter as NaiveFedTD(0). For Algorithm 1, we use
stepsize 1/(t+1) for updating rt and stepsize 1/(t+1)β with
β ∈ (0, 1) for updating θt. For NaiveFedTD(0), as suggested
in [10], we set βt := c1/(c2 + t) with 2 < ∆c1 < 2c2 and
cα > ∆+

√
1/∆2 − 1, where ∆ := minθ∈Rd θ⊤Aθ. Recall

from Section III that, in NaiveFedTD(0), the rit estimates are
updated using the stepsize cαβt, while θt is updated using
βt. We emphasize again that this c1, c2, and cα choices are
impractical since A depends on the different Pµ

i ’s which are
a priori unknown. However, if this knowledge is assumed,
then the speedup, in terms of sample complexity, that this
algorithm achieves is linear and the convergence rate optimal.
In that sense, it serves as a benchmark for our algorithm.

Our first set of experiments consists of comparing the mean
squared error as a function of the number of iterations for
the two aforementioned algorithms. Fig. 1 gives the plots for
various choices of N , ϵr, and ϵp. As can be seen, the two
algorithms achieve similar decay rate and a speedup that is
linear in the number of agents. In other words, the proposed
Algorithm 1 achieves similar performance as NaiveFedTD(0)
without relying on unknown problem parameters.

We note that the stepsize in Algorithm 1 depends on β. In
the plots in Fig. 1, this parameter was not optimized. Instead,
the parameter was chosen through a trial and error method
to mirror the performance of NaiveFedTD(0). Indeed, how
do we optimally choose β is an open question. Fig. 2 show
the evolution of mean squared error for two heterogeneous
setups when this parameter varies. It is evident that β should
be chosen to be a small value. However, this conjecture is
yet to be examined analytically.

VI. CONCLUSIONS
We considered the FRL problem when the models at

various nodes are different. It has been shown recently
that even in this heterogeneous case, a linear speedup in
sample complexity is achievable. However, such results are
known to hold only when discounted reward functions are
used, and stepsizes are chosen carefully in a manner that
depends on the unknown system parameters. In this work,
we considered the average reward case with linear function
approximation. By proposing and analyzing a novel two-
timescale variant of federated TD(0) learning, along with a
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Fig. 1: Comparison of the performance of our proposed Algorithm 1 with that of NaiveFedTD(0) obtained by a naive
combination of the methods in [17] and [10] as described in Section III. The y-axis shows the mean squared error, obtained
by averaging over ten runs, while the x-axis shows the iteration number. For our proposed Algorithm 1, the mean squared
error at iteration t refers to ∥θ̄t − θ∗1∥2, and for NaiveFedTD(0) , it refers to ∥θt − θ∗1∥2. The plots on the left depict the
error decay of Algorithm 1, while the ones on the right depict the error decay of NaiveFedTD(0) . The plots on the top
consider the choice ϵp = ϵr = 0.1 while the plots on the bottom consider the choice ϵp = ϵr = 0.7. The last 1000 iterations
are magnified in the right of each plot. In both cases, the error decays faster with increasing N. Further, the performance of
the two algorithms is comparable even though the naive single timescale algorithm requires knowledge of a priori unknown
problem parameters. In this plot, Algorithm 1 has been run with an arbitrary choice of β = 0.3. Although the desired
convergence rate of O( 1

NT ) is achieved, the choice of β is not optimized.

Polyak-Ruppert type averaging, we show that a linear speedup
in sample complexity continues to hold even with a universal
stepsize. For future work, we plan to extend these techniques
to federated SARSA and federated Q-learning and explore
tail-iterate averaging for potentially better convergence rates.
Another aspect to study is the communication efficiency under
iterate averaging.
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V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan, et al.,
“Towards federated learning at scale: System design,” Proceedings of
machine learning and systems, vol. 1, pp. 374–388, 2019.

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

392



Fig. 2: Performance of our proposed Algorithm 1 for different
choices of β. We consider the same setup as in Fig. 1 with
N = 5. Each curve is the mean squared error pertaining to
θ̄t, obtained by averaging across 10 runs. The left subplot
shows the mean squared error when heterogeneity parameters
are ϵp = ϵr = 0.1 and the right one shows them when
ϵp = ϵr = 0.7. In both cases, we observe that the performance
improves with a decrease in the β value.

[4] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” arXiv
preprint arXiv:2005.01643, 2020.

[5] B. Recht, “A tour of reinforcement learning: The view from continuous
control,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 2, pp. 253–279, 2019.

[6] M. Cheng, C. Yin, J. Zhang, S. Nazarian, J. Deshmukh, and P. Bogdan,
“A general trust framework for multi-agent systems,” in Proceedings
of the 20th International Conference on Autonomous Agents and
MultiAgent Systems, pp. 332–340, 2021.

[7] P. Kyriakis, J. V. Deshmukh, and P. Bogdan, “Specification mining and
robust design under uncertainty: A stochastic temporal logic approach,”
ACM Transactions on Embedded Computing Systems (TECS), vol. 18,
no. 5s, pp. 1–21, 2019.

[8] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,”
Advances in neural information processing systems, vol. 12, 1999.

[9] A. Naik, R. Shariff, N. Yasui, and R. S. Sutton, “Discounted
reinforcement learning is not an optimization problem,” CoRR,
vol. abs/1910.02140, 2019.

[10] S. Zhang, Z. Zhang, and S. T. Maguluri, “Finite sample analysis
of average-reward td learning and q-learning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 1230–1242, 2021.

[11] J. Qi, Q. Zhou, L. Lei, and K. Zheng, “Federated reinforcement
learning: Techniques, applications, and open challenges,” ArXiv,
vol. abs/2108.11887, 2021.

[12] C. Nadiger, A. Kumar, and S. Abdelhak, “Federated reinforcement
learning for fast personalization,” in 2019 IEEE Second International
Conference on Artificial Intelligence and Knowledge Engineering
(AIKE), pp. 123–127, IEEE, 2019.

[13] H. H. Zhuo, W. Feng, Y. Lin, Q. Xu, and Q. Yang, “Federated deep
reinforcement learning,” arXiv preprint arXiv:1901.08277, 2019.

[14] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-iid data with reinforcement learning,” in IEEE INFOCOM

2020-IEEE conference on computer communications, pp. 1698–1707,
IEEE, 2020.

[15] N. Dal Fabbro, A. Mitra, and G. J. Pappas, “Federated td learning over
finite-rate erasure channels: Linear speedup under markovian sampling,”
IEEE Control Systems Letters, vol. 7, pp. 2461–2466, 2023.

[16] H. Jin, Y. Peng, W. Yang, S. Wang, and Z. Zhang, “Federated
reinforcement learning with environment heterogeneity,” 2022.

[17] H. Wang, A. Mitra, H. Hassani, G. J. Pappas, and J. Anderson,
“Federated TD learning with linear function approximation under
environmental heterogeneity,” Transactions on Machine Learning
Research, 2024.

[18] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approxima-
tion by averaging,” SIAM journal on control and optimization, vol. 30,
no. 4, pp. 838–855, 1992.

[19] D. Ruppert, Stochastic approximation. In Handbook of Sequetial
Analysis, 1991.

[20] G. Patil, L. Prashanth, D. Nagaraj, and D. Precup, “Finite time analysis
of temporal difference learning with linear function approximation: Tail
averaging and regularisation,” in International Conference on Artificial
Intelligence and Statistics, pp. 5438–5448, PMLR, 2023.

[21] V. S. Borkar, “Stochastic approximation with two time scales,” Systems
& Control Letters, vol. 29, no. 5, pp. 291–294, 1997.

[22] A. Mokkadem and M. Pelletier, “Convergence rate and averaging of
nonlinear two-time-scale stochastic approximation algorithms,” Annals
of Applied Probability, vol. 16, no. 3, pp. 1671–1702, 2006.

[23] G. Dalal, G. Thoppe, B. Szörényi, and S. Mannor, “Finite sample
analysis of two-timescale stochastic approximation with applications to
reinforcement learning,” in Conference On Learning Theory, pp. 1199–
1233, PMLR, 2018.

[24] G. Dalal, B. Szorenyi, and G. Thoppe, “A tale of two-timescale rein-
forcement learning with the tightest finite-time bound,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3701–
3708, 2020.

[25] M. Kaledin, E. Moulines, A. Naumov, V. Tadic, and H.-T. Wai, “Finite
time analysis of linear two-timescale stochastic approximation with
markovian noise,” in Conference on Learning Theory, pp. 2144–2203,
PMLR, 2020.

[26] S. Ganesh, A. Reiffers-Masson, and G. Thoppe, “Online learning with
adversaries: A differential-inclusion analysis,” in 2023 62nd IEEE
Conference on Decision and Control (CDC), pp. 1288–1293, IEEE,
2023.

[27] R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver,
C. Szepesvári, and E. Wiewiora, “Fast gradient-descent methods for
temporal-difference learning with linear function approximation,” in
Proceedings of the 26th annual international conference on machine
learning, pp. 993–1000, 2009.

[28] V. S. Borkar, Stochastic approximation: a dynamical systems viewpoint,
vol. 48. Springer, 2009.

[29] G. Dalal, B. Szorenyi, G. Thoppe, and S. Mannor, “Finite sample
analyses for td(0) with function approximation,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, 04 2018.

393


