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Abstract— Recent advances in sensor network localization
have enabled sensor nodes to localize themselves by using
the measurements of inter-node angles. According to our
earlier work, the proposed angle-based localization algorithms’
performance, particularly, the convergence rate, is relatively
poor, which, however, has not been adequately addressed in the
existing literature. Motivated by this, this paper aims to improve
the performance of angle-based localization algorithms, specif-
ically, the stability margin, convergence rate and robustness
against measurement noises. Firstly, we show that the stability
margin, convergence rate and robustness of angle-based local-
ization algorithms are commonly determined by one parameter,
namely, the minimum eigenvalue of the network’s localization
matrix. Secondly, we formulate the performance optimization
problem as an eigenvalue optimization problem, and show the
non-differentiability of the eigenvalue optimization problem.
By carefully choosing the decision variable, we utilize interior-
point methods to obtain an optimal solution to the eigenvalue
optimization problem. Finally, simulation examples validate the
improvement of the algorithms’ performance.

I. INTRODUCTION

Sensor network localization is one of the fundamental
problems in many multi-agent coordination tasks [1], [2].
For a static network consisting of anchor nodes and free
nodes, the aim of network localization is to determine the
positions of the free nodes using their sensor measurements
with respect to their neighbors and the positions of the
anchor nodes. The existing localization algorithms can be
mainly categorized into three classes according to the sensor
measurements among the nodes: distance-based [3], [4],
bearing-based [5], [6], [7], [8] and angle-based [9], [10],
[11].

With the development of sensor technology, such as
antenna array-based Bluetooth 5.1 [12], inter-node angle
measurements become more and more accessible, due to
which the angle-based network localization has received
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intensive attention recently. The existing works on angle-
based network localization mainly focus on two problems:
network localizability conditions and distributed localization
algorithms. Conditions for the localizability of an angle-
based network have been studied in [9], [11], [10]. Sufficient
localizability conditions for angle-based networks in 2-D
space are obtained in [11]. For triangular sensor networks
in 2-D space, a topological, necessary and sufficient localiz-
ability condition is proposed in [9], which is developed by
using the theory of triangular angle rigidity. When the mea-
surements consist of angles and displacements, localizability
conditions are proposed in [10]. Only when an angle-based
network is localizable, it is possible to develop a localization
algorithm to estimate all the free nodes’ positions. For 2-
D sensor networks, distributed localization algorithms are
proposed in [9], [11], in which measured angles and esti-
mated positions are needed in the communication between
neighboring nodes. The network localizability conditions
and distributed localization algorithms in 3-D space or even
higher dimensions can be found in [13], [10], [6].

In addition to the above mentioned two aspects, we also
pay special attention to the performance of angle-based
localization algorithms, since it is a fundamental concern in
engineering practices. From existing works [9], [10], [14],
the stability margin, convergence rate and robustness are
three important performance indices of angle-based localiza-
tion algorithms. Firstly, the stability margin not only verifies
localization algorithms’ stability, but also quantifies how
much system uncertainties can be tolerated before system
instability occurs. According to the stability analysis for the
proposed angle-based localization algorithm in [9], the value
of the stability margin equals the minimum eigenvalue of
the network’s localization matrix. Secondly, it is expected
that the localization error could converge to zero as fast as
possible, which is determined by the minimum eigenvalue
of the localization matrix, according to the proposed angle-
based localization algorithms [9], [14], [10]. Thirdly, when
considering the existence of measurement noises, the angle-
based localization algorithm proposed in [10] is globally and
exponentially stable, provided that the norm of a defined
error matrix is less than the minimum eigenvalue of the
localization matrix. This indicates that the robustness of
an angle-based localization also depends on the minimum
eigenvalue of the localization matrix.

From the above introduction, we conclude that the per-
formance of angle-based localization algorithms is mainly
determined by the minimum eigenvalue of the network’s
localization matrix. However, according to the simulation
examples in our earlier work [14], the minimum eigenvalue
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of the triangular angle-based network’s localization matrix
approximately equals 0.03, which indicates that the angle-
based localization algorithm is of poor robustness and low
convergence rate, that is, the position estimation error needs
more than 300 seconds to decay to 10% of the initial error.
Therefore, it is crucial to increase the minimum eigenvalue
of the localization matrix. It is worth mentioning that due to
the nonlinearity from decision variables, such as nodes’ posi-
tions, to the minimum eigenvalue of the localization matrix,
how to increase the minimum eigenvalue of the localization
matrix is a challenging problem. We address the problem by
formulating it as an eigenvalue optimization problem. One of
the main difficulties of the eigenvalue optimization problem
is that the problem is not differentiable when the eigenvalue’s
algebraic multiplicity is greater than one. Surprisingly, we
will show that each eigenvalue’s algebraic multiplicity of
the angle-based network’s localization matrix is at least two,
which shows that the eigenvalue optimization problem is
non-differentiable. In order to overcome the difficulty of non-
differentiability, we reformulate the eigenvalue optimization
problem as a linear semidefinite program (SDP). Further-
more, we will use the interior-point approach to obtain an
optimal solution to the SDP. The main contributions of this
paper are summarized as follows.

1) We show that the performance of angle-based localiza-
tion algorithms is mainly determined by the minimum
eigenvalue of the network’s localization matrix.

2) We formulate the performance optimization problem as
an eigenvalue optimization problem, which is shown to
be non-differentiable. By choosing a proper decision
variable, we utilize the interior-point method to obtain
an optimal solution.

The remainder of this paper is organized as follows.
We provide preliminaries in Section II. The main results
are shown in Section III. Section IV provides simulation
examples to validate our method.

II. PRELIMINARIES

A. Notations

Consider a 2-D static sensor network consisting of na
anchor nodes and n f free nodes. Let Va = {1, · · · ,na}, V f ={

na +1, · · · ,na +n f
}

and V = Va ∪ V f denote the sets of
anchor nodes, free nodes, and all nodes, respectively. The
number of all nodes is |V| = na + n f = n. The positions
of the anchor nodes are denoted by pa =

[
pT

1 , · · · , pT
na

]T ∈
R2na . The positions of the free nodes are denoted by p f =[

pT
na+1, · · · , pT

na+n f

]T
∈ R2n f . Let

∑
g be the fixed global

coordinate frame. All the positions of the nodes are respect
to

∑
g. We assume that no overlapping points exist in p =[

pT
a , pT

f

]T
∈R2n. Let I2, 1n, ⊗, λmax and λmin be the 2-by-2

identity matrix, n× 1 column vector of all ones, the Kro-
necker product, the maximum eigenvalue and the minimum
eigenvalue of a symmetric real matrix, respectively. Let ∥·∥
be the Euclidean norm of a vector or the spectral norm of a

matrix. Denote the 2-D rotation matrix with rotation angle
θ by R̄(θ) ∈ R2×2.

B. Description of angle-based localization algorithms’ per-
formance

For ∀i, j ∈ Va∪V f , define the bearing from node i to node
j in

∑
g by bi j := (p j − pi)/

∥∥p j − pi
∥∥, where pi and p j

represent the coordinates of i and j in
∑

g, respectively.
Assume that each node i measures the angle αki j ∈ [0,2π)
with respect to its neighboring nodes k, j ∈Va∪V f under the
counterclockwise direction, which can be calculated by [15]

αki j =

 arccos
(

bT
i jbik

)
, if bT

i jb
⊥
ik ≥ 0,

2π − arccos
(

bT
i jbik

)
, otherwise,

(1)

where b⊥ik := R̄
(

π

2

)
bik =

[
0 −1
1 0

]
bik, j,k ∈ Ni, and Ni

denotes the neighbor set of node i. Note that αki j can be
obtained using local bearing measurements bi

i j and bi
ik, which

are measured in the node i’s local coordinate frame
∑

i.
We recall the definition of angularity from [15] to

describe a network with triple-vertex angle constraints.
Let an angularity be denoted by A(V,A, p), where A =
{(i, j,k)|i, j,k ∈ V, i ̸= j ̸= k} denotes an angle set. We say
that A is a triangular angle set if for every (i1, j1,k1) ∈ A,
there also exists {( j1,k1, i1),(k1, i1, j1)} ⊆ A. Denote the
trigraph [9, Subsection 2.3] and the total number of triangles
in the trigraph by T (V,A) and m, respectively.

For the triangular angularity A(V,A, p), let α∗ :=[
· · · ,α∗

i jk,α
∗
jki,α

∗
ki j, · · ·

]T
∈ R|A|, (i, j,k) ∈ A, where these

constant angle constraints defined by A are calculated by the
position p. An angle-induced linear equation is established
as [9]

A△i jk
i (α∗)pi +A△i jk

j (α∗)p j +A△i jk
k (α∗)pk = 0, (2)

where A△i jk
i (α∗) :=

(
sinα∗

jkiI2 − sinα∗
i jkR̄T(α∗

ki j)
)
∈ R2×2,

A△i jk
j (α∗) :=

(
sinα∗

i jkR̄T(α∗
ki j)

)
∈ R2×2, and A△i jk

k (α∗) :=(
−sinα∗

jkiI2

)
∈R2×2. According to (2), the triangular angle

rigidity matrix RA(α
∗) can be written as [9]

· · · Vertex i · · · Vertex j · · · Vertex k · · ·


1st △ ·· · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

△i jk 0 A△i jk
i · · · A△i jk

j · · · A△i jk
k 0

· · · · · · · · · · · · · · · · · · · · · · · ·
mth △ ·· · · · · · · · · · · · · · · · · · · ·

.

Let D(α∗) := RT
A (α∗)RA (α∗) ∈ R2n×2n and partition the

matrix RA =
[
Ra
A R f

A

]
into anchor nodes’ part Ra

A ∈
R2m×2na and free nodes’ part R f

A ∈ R2m×2n f , under which
the matrix D(α∗) can be rewritten in the form of

D(α∗) = RT
A (α∗)RA (α∗) =

[
Daa Da f
D f a D f f

]
, (3)

where Daa = (Ra
A)

T Ra
A ∈ R2na×2na , Da f = (Ra

A)
T R f

A ∈
R2na×2n f , D f a =

(
R f
A

)T
Ra
A ∈ R2n f ×2na , and D f f =
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(
R f
A

)T
R f
A ∈ R2n f ×2n f . We define D f f as the network’s

localization matrix since it plays a key role in network
localization.

According to [9, Section 5], a distributed localization
algorithm can be designed as

˙̂p f (t) =−D f f p̂ f (t)−D f a pa =−D f f
(

p̂ f (t)− p f
)
, (4)

where p̂ f denotes the estimated positions of the free nodes,
and p f =−D−1

f f D f a pa if the network is localizable and D f f
is nonsingular.

Now we give the stability condition for the distributed
localization algorithm (4).

Lemma 1: [9, Theorem 8] If A(V,A, p) is localizable and
p is generic [15, Definition 4], p̂ f (t) converges to p f globally
and exponentially under the distributed localization algorithm
(4). The estimation error

∥∥p f − p̂ f (t)
∥∥ satisfies∥∥p f − p̂ f (t)

∥∥≤
∥∥p f − p̂ f (0)

∥∥e−λmin(D f f )t .
When considering the existence of measurement noises,

we denote the error matrices due to measurement noises by
∆D f f and ∆D f a, and define D̂ f f := D f f +∆D f f and D̂ f a :=
D f a +∆D f a. Then, the distributed localization algorithm (4)
becomes

˙̂p f (t) =−D̂ f f p̂ f (t)− D̂ f a pa =−D̂ f f

(
p̂ f (t)+ D̂−1

f f D̂ f a pa

)
,

(5)
which holds if D̂ f f is nonsingular.

Now, we give the condition for the nonsingularity of D̂ f f .
Lemma 2: [10, Theorem 10] Given a localizable network

A(V,A, p) with nonsingular D f f , then D̂ f f is nonsingular if
the error matrix ∆D f f satisfies∥∥∆D f f

∥∥< λmin
(
D f f

)
. (6)

Combining Lemma 1 and Lemma 2, one has the following
proposition.

Proposition 1: For a triangular sensor network A(V,A, p)
with the localization algorithm (4), the following statements
hold.

1) The localization algorithm (4) is asymptotically stable
if and only if the network is localizable which holds if
and only if D f f is nonsingular, i.e., λmin(D f f )> 0;

2) The convergence rate of the localization error p̃ f (t) =
p̂ f (t)− p f to zero is higher if λmin(D f f ) is larger;

3) The robustness of (4) against measurement noises is
higher if λmin(D f f ) is larger.

Proposition 1 indicates that a larger λmin(D f f ) will make
positive effects on the performance of the angle-based local-
ization algorithm (4).

III. MAIN RESULTS

In this section, we design an algorithm to optimize the
performance of the angle-based localization algorithm.

A. Selection of the decision variable

It is expected to maximize λmin(D f f ) since a larger
λmin(D f f ) implies better performance of angle-based lo-
calization algorithms according to Proposition 1. Note
that if A△s

i (α∗)pi + A△s
j (α∗)p j + A△s

k (α∗)pk = 0 given

in (2) is an angle-induced linear equation, where
s ∈ {1, · · · ,m}, denotes the sth triangle in T (V,A),
and i, j,k denote the vertices of the sth triangle,√

βs

(
A△s

i (α∗)pi +A△s
j (α∗)p j +A△s

k (α∗)pk

)
= 0,βs ∈ R+

is also an angle-induced linear equation, which can be written
in the compact form of(

diag
[√

β1, · · · ,
√

βm

]
⊗ I2

)
RA(α

∗)p = 0. (7)

From (7), the new D f f is modified to

D f f (β ) =
((

diag
[√

β1, · · · ,
√

βm

]
⊗ I2

)
R f
A(α

∗)
)T

·
((

diag
[√

β1, · · · ,
√

βm

]
⊗ I2

)
R f
A(α

∗)
)

=β1eT
1 e1 + · · ·+βmeT

mem

=β1E1 + · · ·+βmEm,

(8)

where β = [β1, · · · ,βm]
T ∈ Rm, RA(α

∗) = [eT
1 , · · · ,eT

m]
T, ei ∈

R2×2n f , and Ei := eT
i ei ∈R2n f ×2n f , i∈ {1, · · · ,m}. The matrix

D f f in (8) is a linear combination of symmetric matrices
Ei with coefficients βi, i = 1, · · · ,m, which indicates that
the function D f f (β ) is convex. Taking β as the decision
variable for the eigenvalue optimization problem provides us
freedoms to adjust the structure of D f f so that λmin(D f f ) can
be optimized. The parameter vector β can also be considered
as a weighted vector of triangles in the network, as shown in
Fig. 1. Note that a normalization is needed for β to guarantee
the feasibility of the problem, namely βi > 0 and

∑m
i=1 βi = 1,

since if there is no constraint on β , λmin(D f f (β )) could be
changed arbitrarily. Under the definition of D f f (β ) in (8)
and constraints on β , the eigenvalue optimization problem
can be formulated as

max
β

λmin(D f f (β )) = λmin(β1E1 + · · ·+βmEm)

s.t β > 0, β
T1m = 1.

(9)

Indeed, the parameter vector β is not the only type of
decision variables that can be chosen for the eigenvalue
optimization problem. For example, if we take the positions
of the anchor nodes, namely pa, as the decision variable, the
eigenvalue optimization problem could be formulated as

max
pa

λmin(D f f (pa)).

Firstly, the optimal solution p∗a for the above eigenvalue
optimization problem may be a local solution since the
convexity of λmin(D f f (pa)) cannot be guaranteed, which is
caused by the nonlinearity of the function D f f (pa) [16].
Secondly, the number of saddle points will increase as the
network scale increases [17], which makes it much difficult
to obtain a global and optimal solution.

Another alternative is that we could take the feedback gain
kc ∈R+ as the decision variable, which can be added in (4)
[9], [13], i.e.,

˙̂p f (t) =−kcD f f
(

p̂ f (t)− p f
)
.
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Then, the eigenvalue optimization problem can be formulated
as a linear matrix inequality (LMI) form [18], i.e.,

Find kc > 0,

s.t D f f (kc) := kcD f f ⪰ λ̄ I2n f ,

where λ̄ ∈ R+ is a given desired minimum eigenvalue for
D f f . Note that this eigenvalue optimization problem can be
considered as a special case of (9) when taking βi = kc, i =
1, · · · ,m and freeing the equality constraint

∑m
i=1 βi = 1.

However, this solution βi = kc, i = 1, · · · ,m may not be
optimal.

According to the above discussion, taking β as the deci-
sion variable has several advantages. Firstly, the solution to
the problem (9) is globally optimal since the cost function
and constraints are all convex. Secondly, the vector β has a
physical meaning which can be interpreted as the importance
of the triangles in A(V,A, p). Thirdly, due to the smoothness
of the problem (9), powerful methods from smooth analysis
[19] can be applied.

B. Properties of the localization matrix’s eigenvalues
In this subsection, we analyze the algebraic multiplicity

of λmin
(
D f f (β )

)
. We first present the following lemma.

Lemma 3: For βi > 0, i = 1, · · · ,m, D f f (β ) can be de-
scribed by

D f f (β )

=


a1I2 b12R̄(θ12) · · · b1n f R̄(θ1n f )

b12R̄T(θ12) a2I2 · · · · · ·
· · · · · · · · · · · ·

b1n f R̄T(θ1n f ) · · · · · · an f I2

 ,
(10)

where ai =
∑m

s=1 βsε
△s
i , ε

△s
i ∈ R+, bi j ∈ R+ and θi j ∈ R

denote the corresponding coefficient and rotation angle after
normalizing

∑m
s=1 βsε

△s
i j R̄

(
θ
△s
i j

)
, ε

△s
i j ∈ R, θ

△s
i j ∈ R, i ̸= j,

respectively.
The proof of Lemma 3 can be found in APPENDIX V-A.
Theorem 2: Suppose that βi > 0, ∀i = 1, · · · ,n f . The alge-

braic multiplicity of λ j
(
D f f (β )

)
is equal to the geometric

multiplicity of λ j
(
D f f (β )

)
,∀ j = 1, · · · ,2n f , which is always

an even number.
The proof of Theorem 2 can be found in APPENDIX V-B.

C. Eigenvalue optimization approach
Combining Theorem 2, we can derive that λmin

(
D f f (β )

)
is non-differentiable according to [20], [21]. To overcome the
difficulty due to the non-differentiability of (9), we transform
the problem into a SDP [22], [20], i.e.,

min
x

f (x)

s.t E(x) := λ I +
m∑

i=1

xiEi ⪰ 0,

xi ≥ 0, i = 1, · · · ,m,

bTx = 1,

(11)

where f (x) := aTx, x :=
[
β T,λ

]T ∈Rm+1, a= [0, · · · ,0,1]T ∈
Rm+1, and b = [1, · · · ,1,0]T ∈ Rm+1. In (11), we trans-
form the max-min eigenvalue optimization problem into

a typical min-max eigenvalue optimization problem us-
ing the min-max principle, namely maxλmin

(
D f f (β )

)
=

minλmax
(
−D f f (β )

)
, since D f f (β ) is positive definite when

the localization algorithm (4) is asymptotically stable accord-
ing to Proposition 1. The optimization objective for (11) is
the scalar λ under the LMI constraint λ I +

∑m
i=1 xiEi ⪰ 0,

which is equivalent to minimizing the maximum eigenvalue
of −D f f (β ) [22]. Importantly, the problem (11) is still
convex since the cost function f (x) and all constraints are
linear.

We use the interior-point method [22], [20], [23] to
solve the problem (11). By utilizing the logarithmic barrier
functions log(·) and logdet(·), we approximately reformulate
the constrained optimization problem (11) as

min
x

t f (x)+φ(x)

s.t bTx = 1,
(12)

where t ∈ R+, and φ(x) := −
∑m

i=1 logxi − logdetE(x).
Denote the domain of φ(x) by dom φ ={

x ∈ Rm+1
∣∣xi > 0, i = 1, · · · ,m,E(x)⪰ 0

}
. Note that

if x is a strictly feasible solution to (12), namely,
x ∈ dom φ ∩

{
x|x ∈ Rm+1,bTx = 1

}
, it also satisfies all

the constraints in (11). The cost function t f (x) + φ(x) is
convex since the sum of convex functions t f (x) and φ(x)
is also convex, which indicates that the problem (12) has a
global optimal solution. Besides, since the cost function in
(12) is second-order differentiable due to the second-order
differentiability of t f (x) and φ(x), we can use Newton’s
methods [23, Section 9.5] to solve (12) when t is fixed. The
scalar t denotes a weighted parameter, which is updated
according to

tk+1 = µtk, (13)

where µ > 1 and k = 1,2, · · · denotes the iteration sequence
number. The choice of the parameter µ involves a trade-off
in the numbers of inner and outer steps required in Algorithm
1. According to [23, Section 11.3], for µ in a range from
around 3 to 100 or so, the total number of steps, namely
the result of the number of the inner steps multiplies the
number of the outer steps, remains approximately constant,
which indicates that choice of µ is not particularly critical.

The complete process of the interior-point method is
shown in Algorithm 1. At each iteration k, we compute the
central point x∗(tk) starting from the previously computed
central point by utilizing the Newton’s method to solve (12)
when t = tk. Then we calculate tk+1 following (13). The
scalar ε ∈ R+ denotes the accurate threshold and the stop
criterion mc

tk
< ε , where mc denotes the number of inequality

constraints in (11), is developed in Proposition 3.
Denote the optimal value of f (x) by f ∗. Note that the

problem (12) is an approximation of (11), and x∗(t) is the
optimal solution to (12). The gap between f ∗ and f (x∗(t))
is described in the following proposition.

Proposition 3: [23, Section 11.2] Consider the optimiza-
tion problem (12). Assume t > 0, µ > 1 and ε > 0. For
every strictly feasible initial x(t0), under Algorithm 1, the
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Algorithm 1 Interior-point method
Require: Strictly feasible x, initial t0 > 0, factor µ , and

tolerance ε .
for k = 1,2, · · · do

Compute the central point x∗(tk) by minimizing (12),
starting at x.
Update x by x = x∗(tk).
if mc

tk
< ε then

Quit the loop.
end if
Calculate tk+1 following (13).

end for
return The optimization solution x to the problem (11).

gap associated with x∗(t) is described as

f (x∗(t))− f ∗ ≤ mc

t
, (14)

i.e., x∗(t) is no more than mc
t -suboptimal.

Proposition 3 shows that the gap mc
t converges to zero

when t goes to infinity, which indicates that the optimal
solution x∗(t) of (12) is close enough to that of (11) when
the gap mc

t is less than the specified accurate threshold ε .
Remark 1: We give a complexity analysis for Algo-

rithm 1. According to Proposition 3, the accurate thresh-
old ε is achieved after

⌈
log(mc/εt0)

log µ

⌉
centering steps. At

every centering step, the required number of Newton steps
is mc(µ−1−log µ)

γ
+ c, where γ,c ∈ R are constants [23,

Section 11.5]. Using mc = m + 1, the total number of
Newton steps in relation to the scale of the network is⌈

log((m+1)/εt0)
log µ

⌉(
(m+1)(µ−1−log µ)

γ
+ c

)
, which indicates that

the total number of Newton steps increases as m, i.e., the
number of triangles in the network, increases.

Remark 2: The initial value x(t0) may only affect the
dynamic characteristics of the convergent process when
executing Algorithm 1 according to [23, Section 11.3].
The proposed eigenvalue optimization method in this paper
is centralized. When applying the proposed performance
optimization method to engineering practices, it requires
to calculate the optimal β offline and modify D f f in the
distributed angle-based localization algorithm (4) according
to (8). Developing a distributed form for the proposed
eigenvalue optimization method is one of our future works.

IV. SIMULATION
The sensor network is shown in Fig. 1, which consists of

m= 6 triangles: △234,△346,△467,△457,△578 and △167.
The positions of the two anchor nodes are p1 = [0.3,−1.0]T

and p2 = [−2.7,2.7]T, and the positions of the free nodes
are p3 = [−6.0,2.1]T, p4 = [−0.6,2.2]T, p5 = [0.3,1.2]T, p6 =
[−3.0,0.3]T, p7 = [0.1,−0.1]T and p8 = [0.7,0.0]T. The ini-
tial decision variable β = 1

m · 1m and λmin
(
D f f (β (0))

)
=

0.0075. Let the initial estimation p̂ f (0) = 1.5p f .
Through Algorithm 1, we obtain the optimal solution

β ∗ = [0.4686,0.0978,0.1011,0.0907,0.0507,0.1911]T and

λmin
(
D f f (β

∗)
)
= 0.0183 ≈ 2.46λmin

(
D f f (β (0))

)
, which

has been improved effectively by our method. The weights
β1 and β6 corresponding to △234 and △167 have been
obviously increased a lot with respect to β1(0) and β6(0).
One physical interpretation for this is that the eigenvalues of
E1 and E6 defined in (8) are relatively small, which is one of
the reasons that makes the minimum eigenvalue of D f f (β )
small. If large coefficients β1 and β6 are given in the front
of E1 and E6, the minimum eigenvalue of D f f (β ) can be
increased.
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Fig. 1. Network topology with 8
nodes and 6 triangles.
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Fig. 2. Position estimation errors
without measurement noises.

Fig. 2 shows the evolution of the position estimation
error

∥∥p̂ f (t)− p f
∥∥ without the existence of measurement

noises under the angle-based localization algorithm (4). The
convergence rate of the position estimation error to zero is
faster after optimization.
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Fig. 3. Position estimation errors
when

∥∥∆D f f
∥∥= 0.0037.
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Fig. 4. Position estimation errors
when

∥∥∆D f f
∥∥= 0.0129.

To simulate noisy sensor environments, each element of
the error matrices ∆D f f and ∆D f a is generated by using
white noises. When

∥∥∆D f f
∥∥= 0.0037< λmin

(
D f f (β (0))

)
<

λmin
(
D f f (β

∗)
)
, Fig. 3 shows that the position estimation

error is less after optimization. When λmin
(
D f f (β (0))

)
<∥∥∆D f f

∥∥ = 0.0129 < λmin
(
D f f (β

∗)
)
, Fig. 4 shows that the

angle-based localization algorithm (5) has better robustness
against larger measurement noises after performance opti-
mization. These two simulation examples validate that our
performance optimization method can improve the stability
margin and robustness of the angle-based localization algo-
rithm (5).

V. CONCLUSIONS
This paper has developed an optimization method to

improve the performance of the angle-based localization
algorithm. Firstly, we have shown that the performance of
angle-based localization algorithms is mainly determined by
the minimum eigenvalue of the network’s localization matrix.
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Secondly, we have formulated the performance optimization
problem as an eigenvalue optimization problem, and shown
the non-differentiability of the eigenvalue optimization prob-
lem. We have utilized the interior-point method to obtain an
optimal solution to the eigenvalue optimization problem.

APPENDIX
A. Proof of Lemma 3

Proof: Conducting basic trigonometric calculations for
the angle-induced coefficient matrix A△s

i defined in (2),
where s denotes the sth triangle in T (V,A), one has(

A△s
i

)T
A△s

i = ε
△s
i I2,(

A△s
i

)T
A△s

j =

[
ε
△s
i j,1 ε

△s
i j,2

−ε
△s
i j,2 ε

△s
i j,1

]
= ε

△s
i j R̄

(
θ
△s
i j

)
,

(15)

where i, j ∈
{

1, · · · ,n f
}

, i ̸= j, ε
△s
i ∈R+, ε

△s
i j,1 ∈R, ε

△s
i j,2 ∈R,

and ε
△s
i j ∈ R are constants related to those interior angles

within △s, and θ
△s
i j ∈ R denotes the corresponding rotation

angle. Then according to the definition of D f f (β ) in (8), the
2-by-2 diagonal blocks and off-diagonal blocks of D f f (β )
can be described by

D f f [i, i] =
m∑

s=1

βsε
△s
i I2,D f f [i, j] =

m∑
s=1

βsε
△s
i j R̄

(
θ
△s
i j

)
, (16)

respectively. Consequently, we can conclude the result.

B. Proof of Theorem 2
Proof: Since D f f (β ) = DT

f f (β ), D f f (β ) is diagonaliz-
able. Then the algebraic multiplicity of λ j

(
D f f (β )

)
is equal

to its geometric multiplicity.
We then prove that the multiplicity of each

λ j
(
D f f (β )

)
, j = 1, · · · ,2n f is an even number. According

to [9, Theorem 6], if the network A(V,A, p) is localizable
and βi > 0, D f f (β ) is positive definite. Therefore,
λmin(D f f (β )) > 0 and all the eigenvectors of D f f (β )
are nonzero. According to Lemma 3, suppose that

x =
[
x1, · · · ,x2n f

]T
∈ R2n f is the eigenvector corresponding

to an eigenvalue λ j(D f f (β )), j = 1, · · · ,2n f , i.e.,(
λ j(D f f (β ))I2n f −D f f (β )

)
x = 0, whose component

form is
(λ j −a1)I2 −b12R̄(θ12) · · · −b1n f R̄(θ1n f )

−b12R̄T(θ12) (λ j −a2)I2 · · · · · ·
· · · · · · · · · · · ·

−b1n f R̄T(θ1n f ) · · · · · · (λ j −an f )I2

x = 0.

(17)
Now we construct a new vector x̄ =[
x2,−x1,x4,−x3, · · · ,x2n f ,−x2n f −1

]T
∈ R2n f . It can be

easily verified that
(

λ j(D f f (β ))I2n f −D f f (β )
)

x̄ = 0. This
implies that x̄ is also an eigenvector of D f f (β ) corresponding
to the eigenvalue λ j(D f f (β )). Since x ̸= 0 and x ̸= x̄, the
multiplicity of λ j(D f f (β )) is at least two. Since this holds
for an arbitrary j = 1, · · · ,2n f , the multiplicity of each
eigenvalue of D f f (β ) is an even number.
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