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Abstract— Multi-Horizon model predictive control (MPC) is
a method that uses time coarsening to increase the predic-
tion horizon by using several models, each with a different
sampling time that gradually increases later in the horizon.
This facilitates having a longer prediction interval without
significantly impacting the computational load or compromising
the response time. However, the use of models with different
granularity make guaranteeing recursive feasibility challenging
as conventional approaches cannot be applied directly. This
work proposes a constraint tightening strategy to enforce recur-
sive feasibility in time-invariant multi-horizon MPC schemes.
The state constraint in the optimization is replaced by adaptive
state and input constraint at each time step that depend
on the sampling time to ensure that the trajectory remains
feasible between two sampling points even as the sampling
time increases. An extensive numerical study illustrates the
effectiveness and scalability of our approach and compares
its performance to standard MPC and multi-horizon MPC
controllers without any constraint tightening.

Keywords: Multi-horizon MPC, constraint tightening, opti-
mization, recursive feasibility

I. INTRODUCTION

MPC has been well established in various applications for
the optimal control of constrained systems due its ability to
explicitly incorporate hard state and input constraints in the
optimization. MPC uses a dynamic model of a system along
with real-time feedback to repeatedly optimize control inputs
by making predictions of future responses. MPC operates in
a receding horizon manner wherein at each time step, the
optimal control inputs are obtained by solving a constrained
finite horizon optimal control problem for the current state
of the plant and only the first control input is applied to the
system. MPC has been shown to improve the performance of
the overall system as the repeated optimization brings feed-
back into the process through the measurements and allows
the controller to continuously adapt to updated measurements
and estimations, and suppress the effect of model mismatch,
disturbances, and exogenous inputs [2] [3].

The key trade-offs of the MPC problem are the sampling
time and prediction horizon. Ideally, one would like to make
the prediction horizon as long as possible to give more
preview to the decisions with an small sampling time to
detect changes in the system and provide a fast response;
on the other hand, doing so requires solving to a larger
optimisation problem which is more difficult to solve in
real time [8]. Methods such as move blocking MPC have
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previously been used to extend the horizon while reducing
the computational complexity by fixing the control inputs to
be constant over several steps in the horizon [11]. Multi-
horizon MPC (MHMPC) addresses this trade-off by using
models of different granularities to extend the horizon with-
out increasing the computational load, that is, covering a
longer horizon span with fewer states. It results in less
conservatism in the solution than move blocking MPC as
it does not restrict the inputs. Each model predicts system
responses for different parts of the horizon. These predictions
are combined to predict system responses of the entire
horizon. The sampling time is small at the start of the horizon
thereby maintaining a high resolution and gradually increases
later in the horizon which allows us to increase the length
of the prediction interval. MHMPC has been proposed in
various works [4][5][9] for several applications and further
extended in [8] with distributed MPC. This approach relies
on the exponential decay of sensitivity [6], [7] property of
optimal control problems which states that the impact of
perturbations in the future on the current control action is
inversely proportional to how far in the future it occurs.

One key aspect of MPC is recursive feasibility which states
that if the solution of the MPC exists at the initial time, then
the MPC remains feasible at all future time steps and the
closed loop trajectories never reaches infeasible states [18].
It has been studied extensively for discrete-time systems
and standard move-blocking MPC with different prediction
horizons [10]. Recursive feasibility is typically enforced by
constraining the terminal state of the finite-horizon optimal
control problem to a controlled invariant set [12][13]. How-
ever, this strategy does not work for MHMPC as it does
not ensure adherence to the state constraints between two
states in the horizon with increasing sampling time. The
optimization is implemented with a receding horizon and
propagated forward with the smallest sampling time so it is
crucial to guarantee that the trajectory does not violate the
state constraints at any sampling time and does not steer
into a direction where the problem becomes infeasible at a
later time. Another common technique is the soft constraint
method where the state constraints are relaxed or simply
removed for some portion of the prediction horizon and the
size of the violation is penalized in the cost function [15].
This however may result in large closed-loop violations of
the state constraints which are unsuitable for application
where state constraints are hard.

In [4], the authors propose a strategy to ensure recursive
feasibility by imposing that the state at the end of the 1st
sub-interval with the smallest sampling time should be in
the maximally control invariant set. While this method does
ensure recursive feasibility, it is an extremely restrictive
approach and gravely reduces the feasible set and results
in an extremely conservative solution. Other approaches
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for ensuring recursive feasibility for sub-optimal MPC are
presented in [16][17]. However, these techniques rely on time
invariant system matrices in the optimization problem or are
conservative in their approach as they consider the maximum
worst case input.

The main contribution of this paper is to provide a
practical solution to the problem of guaranteeing recursive
feasibility for an MHMPC scheme via constraint tightening.
We formulate the problem of MHMPC to showcase how
it differs from standard MPC and propose a strategy to
compute a tightened constraint set to replace the original
state constraints in the optimization. Constraint tightening
approaches to guarantee recursive feasibility have previously
been adopted for continuous time MPC [22] as well as to
mitigate disturbances and uncertainty in robust MPC [20] and
stochastic MPC [21]. In this study, we impose adaptive joint
state and input constraints that get more restrictive as the
sampling time gets larger. For each sampling time, a different
constraint set is determined which ensures that the trajectory
is also feasible when the optimal input is sampled with the
smallest sampling time. In a numerical example, we compare
the performance of the MHMPC both with and without the
tightened constraint set to the standard MPC illustrating the
need for constraint tightening in MPC and the impact of the
additional constraints on the cost and computation time.

The paper is structured as follows. Section II presents
the problem setting, and Section III presents the MHMPC
scheme. Section IV presents our main result, a sufficient con-
dition for recursive feasibility and the modified constrained
set. Our strategy is illustrated by numerical examples in
Section V and conclusions are given in Section VI.

II. PRELIMINARIES

A. Notation

The set of real numbers and integers are denoted by R
and Z, respectively. Za:b denotes the set of numbers {a, a+
1, ..., b}. The set of all non-negative integers is denoted Z≥0.
Rn denotes the n-dimensional real vector space.

B. System Model

Consider a discrete-time, time-invariant linear system with
n states and m inputs:

xk+1 = Akxk +Bkuk (1)

where xk ∈ Rn and uk ∈ Rm are the state and input
variables at time k, respectively. Ak ∈ Rn×n and Bk ∈
Rn×m are the time-varying state and input matrices of
appropriate dimensions that may depend on sampling time.

The states and control inputs are required to satisfy the
general constraints:

xk ∈ X ⊆ Rn, ∀k ∈ Z≥0

uk ∈ U ⊆ Rm, ∀k ∈ Z≥0
(2)

where X and U are polytopic state and input constraint sets
containing the origin in their interior:

X = {x ∈ Rn|Gxx ≤ Wx},
U = {u ∈ Rm|Guu ≤ Wu}.

(3)

The control objective is to determine an input trajectory,
which minimizes the finite horizon quadratic cost over the
total prediction time T divided into N prediction time steps

JT =

N−1∑
k=0

(
x⊤
k Qkxk + u⊤

k Rkuk

)
+ x⊤

NQHxN (4)

where Qk ∈ Rn×n, Qr ≻ 0, and Rk ∈ Rm×m, Rk ≻ 0
are possibly time varying state and input cost matrices,
respectively.

Definition 2.1: Controlled Invariance A non-empty set
XI ⊆ Rn is a controlled invariant set of the system (1) if
and only if for all x ∈ XI, there exist u ∈ U such that
Ax + Bu ∈ XI [14][13]. The maximal controlled invariant
set of the system (1) within X is defined by XCI ≡

{
x0 ∈ X |

∃uk ∈ U s.t. xk+1 = Axk +Buk ∈ X ∀k ∈ Z≥0

}
.

III. MULTI-HORIZON MPC
MHMPC is a variant of the MPC in which the prediction

horizon is divided into multiple sub-intervals, each with a
different sampling time. Several dynamic models are used,
each discretized with a different sampling time that gradually
increases further down the horizon. Each model predicts
system responses for different parts of the horizon and the
predictions are combined to predict system responses over
the entire horizon.

We consider H sub intervals labeled by i ∈ H :=
{1, . . . ,H}. The system and cost matrices differ in each
sub-interval owing to the different sampling time and
{Ai, Bi, Qi, Ri} are the corresponding matrices associated
with the sub-interval i with the sampling time ti. Let Ki be
a set of all the time steps k within the sub-interval i and Ni

be the cardinality of set Ki. The set Ki only includes the
initial state for each sub-interval and excludes the terminal
state as the terminal state is included in the set of the next
sub-interval. The terminal state of the complete optimization
k = N is not included in any sub-interval. The total time
spanned by sub-interval i is Ti. Hence,

∑
i∈H Ni = N − 1

and
∑

i∈H Ti = T and the N non-uniform prediction time
steps cover the complete prediction interval T . Here, XCI ⊆
X is the control invariant set.

The MHMPC problem can be compactly written as:

min
{xk,uk}N

k=0

∑
i∈H

( ∑
k∈Ki

(
x⊤
k Qixk + u⊤

k Riuk

))
+ x⊤

NQHxN

s.t. xk+1 = Aixk +Biuk, ∀k ∈ Ki, ∀i ∈ H
xk ∈ X, ∀k ∈ Z0:N

uk ∈ U, ∀k ∈ Z0:N−1

xN ∈ XCI,
(5)

Let the sampling time of the 1st sub-interval i = 1 be t1
and assume that the sampling time of the ith sub-interval is
ti = αit1 (α1 = 1) where αi ∈ Z≥1 and increasing such
that α1 < α2 · · · < αH−1 < αH . Then set,

Ai = Aαi
1 , Bi =

αi−1∑
j=0

Aj
1B1,

Qi = αiQ1, Ri = αiR1

(6)
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Fig. 1. Sketch of the MHMPC control scheme. A detailed model is used
in sub-interval 1 with a small sampling time t1 predicting the outcome for
T1. The models gets progressively coarser as the sampling time increases
in subsequent sub-intervals as α1 ≤ α2 < α3 < · · · < αH . The largest
sampling time of tH is used in final sub-interval H.

This assumption only requires the sampling time to be
increasing (t1 < t2 < · · · < tH) and does not impose any
restrictions on the number of time steps and length of each
sub-interval. Fig. 1 illustrates how MHMPC is formulated by
splitting the prediction interval into several sub-intervals and
the corresponding sampling times and time steps associated
with each sub-interval.

A. Recursive Feasibility

Definition 3.1: Recursive Feasibility An MPC problem is
called recursively feasibly if and only if for all initially
feasible states x0, the closed loop trajectory remains feasible
for all time [10].
Recursive feasibility implies that if an MPC optimization
has a solution at k = 0, then there exists a solution at
k = 1, . . . ,∞. This is classically obtained by introducing
a terminal constraint at the end of the prediction horizon of
the form xN ∈ XCI. Summarising briefly, starting from an
initially feasible state, the optimal input sequence computed
and the resulting trajectory remains feasible throughout the
prediction interval even as the horizon moves forward. The
terminal constraint guarantees all future states stay within
the controlled invariant set after the end of the prediction
interval and a feasible control input can be computed. Hence,
a feasible trajectory at time k can be extended by appending
a feasible input at its end at time k + 1. Therefore, the
optimization is recursively feasible.

Conversely, terminal constraints are not sufficient for en-
forcing recursive feasibility for MHMPC. Although the state
constraints are satisfied at each time step, the trajectory may
not be feasible with a smaller sampling time in between
two time steps when the sampling time is large later in
the horizon. As the horizon moves forward in each time
step, the optimal control input computed at the first time
step can no longer be applied to the system directly with
the smallest sampling time as it does not guarantee state
constraint satisfaction in the subsequent sub-intervals. This
can eventually result in a trajectory reaching an state in the
future where the optimization has no feasible solution. This
is also illustrated using the numerical example in Fig. 5.

IV. RECURSIVE FEASIBILITY VIA CONSTRAINT
TIGHTENING

This section describes the proposed strategy to ensure
recursive feasibility for the MHMPC scheme. To achieve

this, a tightened constraint set is used that guarantees re-
cursive feasibility and stability of the control problem as the
sampling times increase.

The goal is to design a constraint set XRF ⊆ X such that
the MHMPC is recursively feasible if and only if {x}Tk=0 ∈
XRF. The constraint set requires that for the optimal input,
the state constraints are satisfied at time steps of duration
t1 throughout the prediction interval irrespective of the
sampling time. The trajectory remains feasible between two
time steps in all sub-intervals, Ti, when propagated forward
with time steps of t1. This ensures that the optimal input
computed at the initial time step can directly be applied at
each step without violating any state constraints even as the
horizon shifts forward by t1 at the next iteration of MPC.
Hence, the same solution continues to remain feasible within
the complete prediction interval. Similar to the standard
MPC, the terminal constraint imposes that the final state must
lie in a control invariant set so that the state trajectory stays
within this set. The control invariant set is computed with
the dynamics corresponding to the sampling time t1. Hence,
recursive feasibility is guaranteed for MHMPC.

Consider the MHMPC problem formulated in Section III.
In each sub-interval i ∈ H≥2 with sampling time ti, the time
ti can be divided into αi intervals of time t1 which results
in αi − 1 intermediate time steps between any two points
when discretised with t1. To ensure the constraints are met
with the smallest sampling time, the following constraints
are imposed on all states k associated with sub interval i:As

1xk +

s−1∑
j=0

Aj
1B1uk

 ∈ X, ∀s ∈ Z1:αi
,∀k ∈ Ki (7)

These constraints ensure that any state within the sub-
interval i when propagated forward with the system dy-
namics associated with t1 will continue to satisfy the state
constraints until the next state is reached. At s = αi, the
constraint (7) when imposed on all the sub-intervals results
in the following:Aαi

1 xk +

αi−1∑
j=0

Aj
1B1uk

 ∈ X, ∀k ∈ Ki, ∀i ∈ H

From (6)
≡ (Aixk +Biuk) ∈ X, ∀k ∈ Ki, ∀i ∈ H

≡ xk+1 ∈ X, ∀k ∈ Ki, ∀i ∈ H
≡ xk ∈ X, ∀k ∈ Z1:N

(8)

Hence, starting from an initially feasible state x0 ∈ X, the
constraint set (7) is a subset of the state constraint set in the
MHMPC optimization (5).

In addition to the states, the constraints (7) at each step
also depend on the corresponding input. To integrate this
input constraints into the MHMPC problem, we define the
following joint input and state constraint for each sub interval
i by substituting the constraint definition from (3) in (7):

XRF
i ≡

{
x ∈ Rn

u ∈ Rm

∣∣∣∣ Gx

(
As

1x+
∑s−1

j=0 A
j
1B1u

)
≤ Wx,

∀s ∈ Z1,αi

}
.
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The constraint set can then be compactly written as (9).
The matrices G̃i and W̃i can be computed offline for each
sub-interval i and remain constant within a sub-interval.

XRF
i ≡

{
x ∈ Rn

u ∈ Rm

∣∣∣∣ G̃i

[
x
u

]
≤ W̃i

}
, (9)

where G̃i =



GxA1 GxB1

...
...

GxA
s
1 Gx

∑s−1
j=0 A

j
1B1

...
...

GxA
αi
1 Gx

∑αi−1
j=0 Aj

1B1


∀s ∈ Z1,αi

,

W̃i =


Wx

...
Wx


}
αi rows

The resulting recursively feasible MHMPC (rf-MHMPC)
problem is:

min
{xk,uk}N

k=0

∑
i∈H

( ∑
k∈Ki

(
x⊤
k Qixk + u⊤

k Riuk

))
+ x⊤

NQHxN

s.t. xk+1 = Aixk +Biuk, ∀k ∈ Ki, ∀i ∈ H
(xk, uk) ∈ XRF

i , ∀k ∈ Ki, ∀i ∈ H
uk ∈ U, ∀k ∈ Z0:N−1

x0 ∈ X,
xN ∈ XCI

(10)
Note that control invariant set XCI in (9) is computed

with the dynamics corresponding to the sampling time t1.
The state constraint in (5) is replaced by the rf-MHMPC
constraints (9) resulting in (10). This structure increases the
number of constraints compared to the original MHMPC
formulation and decreases the number of decision variables
compared to standard MPC. Constraint reduction methods
proposed in the literature [23] can be applied to reduce
the resulting constraint set to increase the computational
efficiency of the optimization.

The modified constraint set replaces the state constraints
in the original MHMPC problem with joint state and input
constraints which increases the complexity of the constraints.
Ideally, the additional constraint would only depend on the
states independent of the inputs and the resulting linear
matrices of the tightened constraints could be computed
offline. This would minimize the additional computational
overload and complexity. One strategy to achieve this would
be to restrict the states in each sub-interval by considering
the worst case input. This, however, may result in a very
small feasible set in the later sub-intervals and an extremely
conservative sub-optimal solution or the problem to become
infeasible and would therefore restrict the maximum sam-
pling time that can be used. Another approach would be to
restrict the maximum input that can be used in each sub-
interval. Exploring these strategies is a topic of future work.

V. NUMERICAL EXAMPLE

In this section, we demonstrate the proposed approach
in simulation for guaranteeing recursive feasibility and the
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Fig. 2. Illustration of the mass spring damper system used in simulation:
(a) Single mass spring damper (b) Ten mass spring dampers in series.

resulting impact on the performance by comparing the rf-
MHMPC to two standard MPC and the MHMPC without
any constraint tightening. All simulations were performed
in MATLAB 2022a with YALMIP using the Gurobi solver.
Consider the following linear mass spring damper sys-
tem [19] shown in Fig. 2(a) with:

A =

[
0 1
−ks

m
−b
m

]
, B =

[
0
1
m

]
(11)

where m = 0.5 kg is the mass, ks = 0.5N/m is the spring
constant and b = 0.25Ns/m is the damping constant. The
system is subject to the state and input constraint sets:

X ≡
{
x ∈ R2 | |x| ≤ 20

}
,

U ≡
{
u ∈ R | |u| ≤ 0.5

}
.

(12)

The system is discretized with the smallest sampling time
t1 = 0.05 s. For MHMPC, we consider 5 sub-intervals with
sampling times ranging from up 0.05 s to 0.8 s over the
complete prediction interval of 4.8 s. The number of time
steps in each sub interval with different sampling times is
presented in Table I and the total number of states N , is 21
including the terminal state. The system is simulated for a
total of 20 s. The initial state x0 is [18,-14].

Sub-interval i ti [s] Ni Ki Ti [s]
1 0.05 4 [0,3] 0.2
2 0.1 6 [4,9] 0.6
3 0.2 4 [10,13] 0.8
4 0.4 4 [14,17] 1.6
5 0.8 2 [18,19] 1.6

TABLE I
SPECIFICATIONS OF ALL THE SUB-INTERVALS IN MHMPC COVERING A

TOTAL PREDICTION INTERVAL OF 4.8S.

Fig. 3 compares the optimal trajectory obtained using
MHMPC and rf-MHMPC with the two standard MPC
controllers with a sampling time of t1. A standard MPC
controller is used with the same prediction interval of 4.8 s
which has almost 4 times as many decision variables as the
MHMPC as well as with a smaller prediction interval of
1 s that has the same number of decision variables as the
MHMPC optimization problem. The figure shows that the
trajectory of the MHMPC and rf-MHMPC controllers match
the optimal standard MPC controller with the small sampling
time and a long prediction interval whereas decreasing the
prediction interval in the standard MPC to reduce the number
of decision variables to match the MHMPC results in a
different trajectory.

Table II compares the total closed loop cost and aver-
age computation time of these controllers as well as other
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Fig. 3. Optimal trajectory obtained using MHMPC, rf-MHMPC and two
standard MPC controllers with a sampling time of t1. The green area is the
feasible states and x1 and x2 are the first and second state respectively.

standard MPC controllers for the complete simulation period
of 20s. The controllers were chosen to have either the
same prediction horizon or the same number of decision
variables as the MHMPC controllers. The cost is computed
by summing the cost of the first state and input at each time
step as it is the only input applied to the system. Hence,
only the cost for optimal input sequence and optimal state
trajectory is considered at the end of the simulation. The
average computation time (Avg. time) is obtained by dividing
the total computation time of the complete simulation period
by the total number of time steps. For example, with a
sampling time t1 = 0.05s and simulation time of 20s, the
total number of time steps is (20/0.05) = 400. Then, the Avg.
time[s] = (Total computation time[s]/400).

The table shows that MHMPC and rf-MHMPC achieve
the lowest cost similar to the best standard MPC controller
whereas the avg. time is much smaller. The computation time
matches the time of the standard MPC controllers with the
same number of decision variables, however, these controller
have a higher cost due to a shorter prediction interval and
increased sampling time. While the rf-MHMPC controller
requires a slightly longer time than MHMPC due to the
presence of additional constraints in the optimization, the
time increase is negligible.

Original X in (12) Reduced X in (13)
Method T N Cost Avg. time[s] Cost Avg. time[s]

MPC t = 0.05 1 21 1.4507e4 0.0059 Infeasible
4.8 97 1.4499e4 0.0092 1.4524e4 0.0092

MPC t = 0.1 2 21 1.4765e4 0.0052 1.4786e4 0.0053
4.8 49 1.4763e4 0.0068 1.4786e4 0.0069

MPC t = 0.2 4.8 25 1.5297e4 0.0061 1.5334e4 0.0055
MHMPC 4.8 21 1.4499e4 0.0053 Infeasible
rf-MHMPC 4.8 21 1.4499e4 0.0059 1.4518e4 0.0060

TABLE II
COMPARISON OF COST AND COMPUTATION TIME OF DIFFERENT

STANDARD MPC CONTROLLERS WITH MHMPC AND RF-MHMPC FOR

BOTH THE ORIGINAL X AND THE REDUCED X.

To see the benefits of rf-MHMPC over MHMPC, consider
a reduced state constraint set:

X ≡
{
x ∈ R2

∣∣∣|x1| ≤ 20,−20 ≤ x2 ≤ 6

}
. (13)
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Fig. 4. Optimal trajectory obtained using MHMPC, rf-MHMPC and
standard MPC controllers with a sampling time of t1 and prediction interval
of 4.8s with the reduced X.

Fig. 4 shows the optimal trajectory obtained with the
reduced X. The performance of the rf-MHMPC and the stan-
dard MPC with prediction interval of 4.8s remains largely
unchanged, however, the MHMPC results in a trajectory that
eventually reaches a point where the optimization becomes
infeasible. A better understanding of why this happens can
be obtained by observing the optimal trajectory computed
by both the MHMPC and the rf-MHMPC optimization at
the initial time step in the first iteration shown in Fig.
5. For MHMPC, while the solution is within the state
constraint set, it is not a recursively feasible solution. The
optimal input applied to the system with a sampling time
of t1 = 0.05s would result in the state constraints being
violated for the state x2 when the sampling time is larger.
The optimization eventually becomes infeasible when such
inputs are repeatedly applied to the system at each time step.
Thus, the MHMPC controller does not guarantee recursive
feasibility. Contrarily, the additional constraints in the rf-
MHMPC ensure that any solution of the optimization is also
implementable and satisfies constraints at every t1 even as
the sampling time in the subsequent sub-interval increases
(ti > t1) and therefore, the optimization remains feasible.

Comparing the cost and computation time of the con-
trollers with the reduced X in Table II shows that some stan-
dard MPC controllers are also infeasible due to their small
prediction horizon. The cost of the rf-MHMPC matches the
optimal standard MPC controller cost whereas the average
computation time is still significantly lower and remains
unchanged compared to the original X. This shows the
superior performance of the rf-MHMPC.

Finally, the performance of the rf-MHMPC was also
compared to the standard MPC for a larger system with 10
mass spring dampers placed in series as shown in Fig.2(b),
giving rise to 20 states. The system is simulated for a
total of 60s to allow all states to converge. The results are
shown in Table III. rf-MHMPC achieves the lowest cost and
requires on average less than a third of the computation
time compared to the standard MPC controller with sampling
time t1. The average computation time is comparable to the
standard MPC controllers with the same N . That however
lead to a larger cost.
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Fig. 5. The optimal trajectory computed by both the MHMPC and the
rf-MHMPC optimization at the initial time step in the first iteration of the
MPC and the result of implementing the computed optimal inputs with a
sampling time t1. The figure on the right zooms in on state x2 when it
approaches the limit of the state constraint set. It shows that presence of
the additional constraints in rf-MHMPC ensure that the trajectory remains
feasible even between two points whereas the MHMPC solution violates
the constraints when implemented with a sampling time of t1.

Method T N Cost Avg. time

MPC t = 0.05 1 21 5.47e4 0.015
4.8 97 5.23e4 0.093

MPC t = 0.1 2 21 5.48e4 0.02
4.8 49 5.24e4 0.037

MPC t = 0.2 4.8 25 5.27e4 0.024
rf-MHMPC 4.8 21 5.14e4 0.029

TABLE III
COMPARISON OF COST AND COMPUTATION TIME OF DIFFERENT

STANDARD MPC CONTROLLERS WITH RF-MHMPC FOR A LARGER

SYSTEM WITH 10 MASS SPRING DAMPERS IN SERIES.

VI. CONCLUSION

A constraint tightening scheme to enforce recursive fea-
sibility in MHMPC is proposed. The method constrains
the states and inputs in each sub-interval of the MHMPC
problem based on the corresponding sampling time and the
constraint sets gets progressively more restrictive for each
sub-interval as the sampling time increases. The additional
constraints ensure that the system remains feasible within
the prediction interval even as the horizon moves forward
with the smallest sampling time and always satisfies the state
constraints between any two sampling points with a larger
sampling time. Hence, along with the terminal constraint, the
proposed strategy guarantees recursive feasibility. Numerical
examples demonstrate the effectiveness and scalability of this
approach and show that the recursively feasible controller has
a superior performance in terms of both cost and computation
time compared to standard MPC controllers. Future work
aims to extend this method to non-linear systems.
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