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On Small-Gain Theorem for Interconnected Finite/Fixed-Time
Input-to-State Stable Systems*

K. Zimenko', D. Efimov*, A. Polyakovi, X. PingJr

Abstract— The paper addresses the problem of input-to-state
stability analysis for interconnected systems with accelerated
convergence, namely, for interconnected nonlinear systems
composed of two finite-time or (nearly) fixed-time input-to-state
stable subsystems. Under additional mild restrictions, small-
gain theorems are proposed for a class of such systems that
guarantee the preservation of accelerated convergence for the
interconnection.

I. INTRODUCTION

The problem of stability and robustness analysis with
respect to external inputs is in the focus of many research
works (see, e.g., [1], [2], [3], [4], [5], [6] references therein).
Input-to-State Stability (ISS) concept, proposed by E. Sontag
over 30 years ago, offers a comprehensive set of conditions,
extends the Lyapunov function method, and provides diverse
concepts applicable to various stability analysis, control and
estimation problems (see, e.g., books and surveys on the
ISS concept framework [6], [7], [8], [9]). One important
application of the ISS concepts is in interconnected and
networked systems stability analysis. Indeed, under certain
conditions (small-gain theorems) the ISS property is pre-
served for systems connected in feedback loops (see, e.g.,
[10], [11], [12], [13], [14]). Such results are based on one
of two approaches: estimating interconnected subsystems
solutions (as, e.g., in [10]) or using the concept of ISS
Lyapunov functions (e.g., [12]).

Over the past decades, systems with accelerated, i.e.,
finite-time and fixed-time convergence, have attracted con-
siderable attention (see, e.g., [15], [16], [17]). This is because
finite/fixed-time controllers and observers provide fast con-
vergence and high precision as well as significant robustness
properties. The trajectories of the finite-time stable systems,
initiated in a neighbourhood of the origin, settle at that
equilibrium after a finite-time transient, while for fixed-time
dynamics their approach the zero in a bounded time uni-
formly on initial conditions. Extensions of the ISS concept
to the systems with accelerated convergences (namely, Finite-
Time Input-to-State Stability (FT-ISS), (nearly) Fixed-Time
Input-to-State Stability ((n)FxT-ISS)) are presented in [18],
[19], [20]. There are several results devoted to small-gain
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theorem for interconnected FT-ISS systems formulated in
[13], [21] that use the Lyapunov function method. To the best
of the authors’ knowledge, there are no small-gain theorem
results for FT/FxT-ISS systems based on the estimate on
solutions and not on existence of Lyapunov functions (the
paper [19] contains a claim that such a result should be valid
for FT-ISS systems, but without a detailed proof).

In this paper we propose a (nearly) fixed-time version
of small-gain theorem for interconnected nonlinear systems
composed of two (n)FXT-ISS subsystems. A new small-gain
theorem for FT-ISS interconnected subsystems is presented
as well in this paper. It is noteworthy that to guarantee
accelerated convergence rates, we need to impose additional
constraints on the gains of the system together with the con-
ventional small-gain condition y; 0 %5(s) < s for s # 0, where
Y1, € JHe are asymptotic gain functions of interconnected
subsystems.

The paper is organized in the following way. Notation
used in the work is introduced in Section II. Section III
presents preliminaries used in the paper. Small-gain theorems
for (n)FxT-ISS and FT-ISS interconnected subsystems are
proposed in Section IV. An illustrative example is given in
Section V. Finally, conclusions are given in Section VI.

II. NOTATION

Through the paper the following notation will be used:

e R (Ry) is the set of real (nonnegative) numbers;

« The class of continuous functions X — Y is denoted by
¢ (X,Y) for two metric spaces X and Y;

o R" denotes the n dimensional Euclidean space with
vector norm |- ||;

o [[dllj ) = ess5up,ci ) Id(s)]| for [1o,1) C Ry and
1|0 = esssupgg [[d(s)]];

o 7 is the set of essentially bounded measurable func-
tions R — R” with the norm || - ||e;

e For 71,7 : Ry — Ry, the expression ¥; o > represents
their composition function, i.e., 7 01(s) = 71 (12 (s)) for
any s € Ry.

ITII. PRELIMINARIES

A. Comparison functions

Through the paper the following comparison functions will
be used:

o A function o € ¥(R,R) belongs to class 7 if it is
strictly increasing and ¢(0) = 0; it belongs to class %%
if it is also unbounded.
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o A function § € € (R x R4, R ) belongs to class #.%
if B(-,r) € 4 and B(r,-) is decreasing to zero for any
fixed r > 0.

e A function y € €(Ry x R;,R;) belongs to class
FxLif x(-,0) € A, x(r,-) is decreasing to zero for
any fixed r > 0 and there is a so called settling time
function T € ¢ such that (r,7) =0 for all > T(r). A
function y € .7 ¢ % with sup,~T(r) < 4+ belongs
to the class Zx.# .Z. N

e A function y € €(Ry x Ry, R;) belongs to class
nFxx L if x(-,0) € #, x(r,-) is decreasing to zero
for any fixed r > 0, and there is 7 € ¥ such that
x(r,t) < p for any p >0, for all t > 7 (p~!) and all
reR,.

B. Stability notions

Consider the system:

xX(t) = f(x(2),d (1)), x(0) = xo, ey

where x(1) eR" and d(¢) e R™, d € £, f € € (R" xR™ R")
ensures forward existence and uniqueness of solutions of the
system at least locally in time, f(0,0) = 0. For any xy € R"
and d € .Z the respective solution is denoted by x(z,x0,d)
with x(0,x0,d) = x.

Definition 1 [2] System (1) has the asymptotic gain (AG)
property, if there exists 'y € K, such that for all initial states
x0 ER" and all d € L the estimate

t>0,

lim sup [|x(,x0,d)|| < y(||d[|-)
t—o0
holds.
The function 7 is called AG function.
Definition 2 The system (1) is called ISS, if there exist
Be XL and ye X such that

[lx(2,x0,d) || < max {B(|lxoll,2), ¥(lldllj0.) } 2

for all xo e R", d € L7 and t > 0. It is called FT-ISS or
(WEXT-ISS if e FH L or B e FxH L (BenFxH L),
respectively.

The above properties are called local if they are satisfied
for a restricted set of initial conditions and inputs, i.e., ||xo|| +
ld]| < K for some x > 0.

The results on FT-ISS, (n)FxT-ISS and its Lyapunov
characterizations can be found in [18], [19], [20]. When
the input d is set to zero, the condition (2) implies that
the system (1) is globally finite-time or (nearly) fixed-time
stable, respectively.

Remark 1 Note that finite-time stability implies fast
convergence near the origin, while nearly fixed-time stability
implies accelerated convergence outside the vicinity of the
origin. Therefore, combining local finite-time stability with
global asymptotic stability ensures global finite-time stability,
and combining global finite-time stability with nearly fixed-
time stability ensures global fixed-time stability. Similar
conclusions can be drawn for ISS versions (the convergence
rates are inherited from disturbance-free scenarios):

o ISS and local FT-ISS properties imply FT-ISS;

o FT-ISS and nFxT-ISS properties imply FxT-ISS.

Definition 3 The set M is said to be finite-time attractive
Sor (1) if any solution x(t,xo,d) of (1) reaches M in a
finite instant of time t < Ty (||xo||) and remains there ¥t >
Tar(||xo]|), where Ty € X is a settling-time function. The set
M is called fixed-time attractive if sup, cpn T ([[x0]|) < +oo.

C. ISS small-gain theorem

Consider an interconnected system composed of two sub-
systems (see the scheme in Fig. 1)

X1(t) = fi(xi (), x2(t),di (1)),
X2 (1) = fa(x2(r),x1(2),da(t)),

where x;(r) € R", i = 1,2 is the state vector, d;(r) € R™,
di € L% represents the external disturbance input, and
fi i Rt x R™ — R™ is a continuous function satisfying
£:(0,0,0) =0.

Define x = (xﬂx%), f= (flT,sz), d= (le,dZT) and the
complete system by

(3a)
(3b)

i= flx.d). @)

Theorem 1 [10] (Small-gain theorem) Assume each sub-
system of (3) is ISS with the corresponding AG functions
Vi, Ya; € Heo, i =1,2: there exists B; € X L such that for all
xi(to) € R and d; € LM the following estimate holds for
all t >ty > 0:

[l (2,xi(t0), di) |
< max { B;([|xi(0) ||, —10), Yi(lx3—ill 1)) Y (il 1y 0)) } -

If the small-gain condition Yy o Y(s) < s for all s >0 is
satisfied, then the system (4) is ISS.

dl YV : T
& %1 = fi1(z1, 22,d1)
gi! Y2
: Va, do
Lo = f?(xlax27d2) .
L2
Fig. 1. Feedback interconnection of two ISS systems with AG functions

s V2 Yays Yoy

IV. MAIN RESULT

The main goal of the paper is to provide small-gain
theorems for FT-ISS and (n)FxT-ISS analysis of the inter-
connected system (3) utilizing the estimates of the form (2)
and the restrictions on the AGs.

Assumption 1 Systems (3a) and (3b) are FT-ISS
(FxT-ISS, nFxT-ISS) with the corresponding AG functions

’}/17’)/27 '}’dl Y ’de € %0

llx: (2, xi(t0),di) ||
< max { B;([|xi(0) [, —10), %i(llx3—ill 1)) }/d,'(HdiH[tO,z))}(’s)
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for i =1,2 and some B; € F XL (Bie€ FxH L, Bi €
nFxH L), for all x;(ty) € R" and d; € L and t >ty > 0.

Assuming that each of the subsystems in (3) to be (n)FxT-
ISS (FT-ISS), we are interested in conditions guaranteeing
that the system (4) is (n)FxT-ISS (FT-ISS).

First, let us consider the case f; € .F.#Z. For f; €
FH L, denote by T; € £ the settling time function satisfy-
ing B;(s,T;(s)) =0 for any s € R... The function §; € & % ¥
can be (locally) upper bounded by y; omax{0,T;(s) —¢} for
some Y € He: xi(s) > s and T; € 2 : Ti(s) < Ti(s) <
2T;(s), Vs € Ry (see [20, page 130] for more details), and
further in this work we may assume that f; are in this
canonical form. Let us define the function f € #. %% as

B(s,t) = max (Bi(5,1)) < omax{0,T(s) =1}, (©)

for some x € ., (for example, x(s) = max;=12(xi(s))) and
T € # : maxi=1 2(Ti(s)) < T(s) < 2max;=12(Ti(s)), Vs €
R;.

Theorem 2 Let the FT-ISS part of Assumption 1 be valid
with the corresponding AG functions y,7» satisfying small-
gain condition

Yiops—i(s) <s forall s>0, (7a)
Yoy i(s) <T lox 1(0.55) forse(0,5), (7b)
Y:2x(T(s))) <s forse<(0,5), (7¢)

for some § >0 and i = 1,2. Then the system (4) is FT-ISS.
Remark 2 Due to 3(s5,0) = y o T(s) the small-gain con-
dition (7) can be rewritten in the form

Yioys—i(s) <s
B(¥iop-i(s),0) <0.5s
%(2B(s5,0)) <s

Hence, (7a) (or the first inequality in (8)) is the standard
small-gain condition, while two other requirements, (7b)
and (7c), are needed to guarantee the preservation by the
interconnection (4) of the convergence rate originated in the
subsystems (3). As we can conclude from (8), the condition
(7b) requires that the common gain 7; o y5_; should be not
simply smaller than the identity function, but ensures a suf-
ficient decay on the trajectories of the system. The condition
(7c), looking on its counterpart in (8), can be interpreted as
the requirement for each gain 7; to be sufficiently small, in
addition to its combination to be small as in (7a). In this
way, (7c) may implicitly imply (7a).

Remark 3 Note that in [19] the conditions (7b) and
(7¢) are not introduced, and it is claimed that under (7a)
the finite-time convergence rates can be preserved for (4)
having their analogues in (3). The proof in [19] just states
that the result follows the conventional small-gain analysis
arguments. Therefore, further investigation of the necessity
of the additional restrictions introduced in Theorem 2 is
required.

FT-ISS (FxT-ISS) systems provide fast convergence in the
vicinity (and away of the vicinity as well) of the origin. In the
presence of a high level of disturbances and sufficiently big
AG functions, the rate of convergence in the vicinity of the

for all s > 0,
for s € (0,$), 8
for s € (0,3).

origin may not be so important. In this sense, the nFxT-ISS
property that provides fast convergence out of the vicinity
of the origin (e.g., fixed-time attractiveness of a compact
set) may be of most interest. As the following result shows,
if subsystems of an interconnected system are nFxT-ISS,
one can obtain the same property for (4) under small-gain
conditions similar to (8).

Let the nFxT-ISS part of Assumption 1 hold, i.e., B;(s,?) €
nFxx Z. Define B(s,t) = max;—12 (Bi(s,1)) € nFxH L.
According to [20] B € nFxJ¢ £ can be bounded as follows

x(s)
Pet) < T 70
for some x € o : x(s) > s, T € He and the argument of
s € Ry sufficiently big and B(s,0) < x(s).
Theorem 3 Let nFxT-ISS part of Assumption 1 hold with
the corresponding AG functions V1,7 satisfying small-gain
condition

(€))

YioYs—i(s) <s forall s>0, (10a)
Yiovs—i(25) < x ' (s) for s € (5,+eo), (10b)
%(2s) < x ' (s) for s € (5+o), (10c)

for some § >0, i =1,2. Then the system (4) is nFxT-ISS.
Remark 4 Due to (s,0) = x(s) the small-gain condi-
tion (10) can be rewritten in the form

Yiovs—i(s) <s
B(¥%ion-i(2s),0) <s
B(%(2s5),0) <s

which is close to (8).

Consider the case, where the FXT-ISS part of Assumption
1 is valid, ie., B; € Fx# L, i = 1,2. Define B(s,1) =
max;—12 (Bi(s,2)). According to (6), (9) the fuction f can
be represented as

B(s,1) < grr omax{0,T(s) — 1}
for s € (0,5) and some §> 0, xpr € Ho: xpr(s) > s, and

X (5)
POt S 7 T e
for s € (§,400) and some § > 0, Xpir € Hoo : XFar(8) > 5.
Since FT-ISS and nFxT-ISS jointly provide the FxT-ISS
property, the following result can be obtained:

Theorem 4 Let (3a) and (3b) are FxT-ISS with the
corresponding AG functions Y, satisfying small-gain con-
ditions (7) with x(-) = xrr(:) and (10) with x(-) = xrr (*).
Then the system (4) is FxT-ISS.

for all s >0,
for s € (5, +o0),
for s € (5, +o0),

V. EXAMPLE

For a brief illustration, consider the following intercon-
nected system

+)C1

. . l
%1 =—|x1 | 2sign(x;) — 3x3sign(x; )+ x+d;, (lla)

) 1
Xy = —2|x2|'Psign(xy) — 2:3 + >M1+dz, (11b)

where x1,x,d;,d, € R.
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Take Vi (x1) =x7 as a Lyapunov function candidate for the
subsystem (11a). For |x;| > %|x2\ and |x;| > |d;| we have

Vl = —2|x1|3/2 — 6|x1 |3 +X1(1 +x1)x2 +2x1df
< —0.9|X1|3/2 — |)C1|3
= 0.9Vt — v,

i.e., for xp =0, d; =0 the subsystem (1la) is fixed-time
2 0.5

stable with yrr, (s) = %sz, Ti(s) = 4(§T and Xr.r, (5) = 5.

Similarly, for the subsystem (11b), |x;| > %|x1 x| > |da]

and V, = x% one can obtain

s

V, = 74|x2|4/3 74x£21 +x0x1 + 2x2d5
_‘x§/|;1/3 _x‘z‘

_ 2

==V -V;

IN

and Yrr,(s) = (%) ' Ta(s) = 35*/3, xp.r,(s) = s. Thus, the
FxT-ISS part of Assumption 1 is valid with ¥y, (s) = 74,(s) =
s, 71(s) = p2(s) = %, and the condition y; 07 (s) <s for all
s >0 is satisfied. For f;(s,t) = xrr; omax{0,T; —¢} we have
B(s,t) = max;— o(xrr, omax{0,T; —}) and B(s,0) =s, and
according to Remark 2 the condition (7) is satisfied. Finally,
for xr.r(s) = Xrxr, (s) = XFx7,(s) = s the condition (10) is
also satisfied, and the system (11) is FXT-ISS by Theorem
4.

Fig. 2, Fig. 3 present the simulation results for different
initial conditions for the case di = 0, d> = 0 that confirm
fixed-time stability of the system (11). Fig. 4 presents the
simulation results for the case d; = sint, d» = 2cost. The
simulation results in Fig. 3, Fig. 4 are shown with using the
logarithmic scale in order to demonstrate fast convergence
rate.

08+
06 \ il
04t \ .
g2 "\\ .
of B
g
7
02 // b
04/ £ .
06 £ .
08 F .
A . . L
0 0.5 1 1.5 t
Fig. 2. States of the system (11) for the disturbance-free case and xp =
[1', - 1]1-

VI. CONCLUSIONS

In the paper small-gain theorems are presented for the
interconnected system (3) composed of FT-ISS or (n)FxT-
ISS subsystems. It is shown that to guarantee accelerated
convergence rates, additional constraints on AG functions
of the interconnected system, in line with the conventional
small-gain condition, should be satisfied.

[ll]

10°

Fig. 3. State norm of the system (11) for the disturbance-free case
(]
1021 1
10° 1
-2 L L
105, 5 10 t
Fig. 4. State norm of the system (11) for the disturbed case

Possible directions for future research include relaxation
of the small-gain condition (7), extension for network of
FT-ISS/(n)FxT-ISS systems (considering also mixed systems
with different kinds of convergences), Lypunov-based small-
gain theorems design and extension of the results for hyper-
exponential rates of convergence. Application of the obtained
conditions for controller/observer designs is also of great
interest.
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