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Abstract— This work deals with linear continuous-time sys-
tems with delays, in the general case of time-varying matrices.
We first consider the special case of positive systems of such
class, introducing two different conditions of delay-independent
global exponential stability formulated by means of linear
inequalities. Moreover, guaranteed bounds on the exponential
convergence rate are given as a function of the largest admis-
sible delay. Then, employing a state-bounding approach built
on the properties of positive systems, we extend the analysis
to systems with no sign constraints. Due to the time-varying
nature of the systems, all such conditions involve infinite-many
tests. Hence, we discuss the significant special case of switching
systems with delays, for which the conditions can be finitely
tested.

Index Terms— Time-delay systems, Time-varying systems,
Positive systems, Linear Systems.

I. INTRODUCTION

Describing reality, in all its nuances, has always been one
of the main goals of applied sciences. In many engineering
applications, such as the ones investigated in systems and
control, accurate modeling of complex processes cannot be
achieved neglecting the inevitable time-delays arising due
to transport phenomena, data communication, and hetero-
geneous kinds of physical constraints. Accurate modeling
usually comes at a price: analyzing complex models is
a difficult task. This is especially true when time-varying
models are investigated, as is the case of this work, which
aims at analyzing the stability properties of a very general
class of continuous-time linear models with time-varying
matrices and multiple time-varying delays. Most of the well-
established results of the literature about time-delay systems,
in fact, deals with the analysis and control of time-invariant
delay systems, i.e. systems with both constant matrices and
constant delays (see, e.g. [1], [2]). Even in this apparently
simple special case, it is well-known that analysis and control
problems are far from being trivially solvable, and huge com-
plexities arise when time-varying behaviors are investigated.
Analyzing the stability of delay systems of time-varying
nature is a very difficult problem, which in most cases asks
for conservative approaches based on popular extensions of
the well-known classical Lyapunov theory, established by
Krasovskii and Razumikhin (see, e.g., the recent [3], [4],
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[5] and references therein); other recent approaches exploit
trajectory-based methodologies or Halanay-like inequalities
(see, e.g. [6], [7] and related works), or seek for a continuous-
time counterpart of the popular discrete-time approach based
on lifted switched representations (see, e.g. [8], [9], [10],
[11]).

Quite remarkably, analyzing stability of time-delay sys-
tems can be much simpler for positive systems [12], [13],
i.e. systems whose dynamics can only be non-negative at all
times provided that non-negative inputs and initial conditions
are given. For linear positive delay systems with constant
matrices, even in the usually difficult case of time-varying de-
lays, analyzing stability is trivial: straightforward necessary
and sufficient conditions exist on the system matrices (see,
e.g., [14]). Moreover, for various classes of linear positive
delay systems with constant matrices a remarkable property
holds: the stability is always delay-independent, meaning that
if the stability holds for a given value of the delays, it holds
for all possible values of the delays, even time-varying (see,
e.g., the notable works [15], [16], [17], [18], [19], [20], [21]).
Hence, it is natural to investigate how positivity impacts
on the stability analysis of delay systems with time-varying
matrices.

This is indeed the first contribution of this work: we derive
two different conditions of delay-independent global expo-
nential stability for continuous-time positive delay systems
with time-varying matrices and time-varying delays. The
conditions, albeit requiring infinite-many tests at least in the
most general case where no periodicity arises, are remarkably
simple, being formulated via linear inequalities. Moreover,
for both such stability conditions we also illustrate how a
guaranteed exponential bound can be derived as a function of
the maximum allowable delay on the system. The problem of
finding a guaranteed bound on the exponential convergence
rate for positive delay systems is a well-studied problem in
the literature (see, e.g., the recent [22], [23] and references
therein), yet in this work we address it in the general case
of system with time-varying matrices.

The second main contribution of the paper deals with
continuous-time general linear systems with time-varying
matrices and delays, dropping the positivity assumption. We
show that one of the aforementioned delay-independent con-
ditions can be applied to this general case, yielding sufficient
conditions of delay-independent global exponential stability.
Similarly to the positive case, also for general systems we
provide a guaranteed bound on the exponential convergence
rate as a function of the largest admissible delay. The key
tool exploited to apply results from positive delay systems
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also to general systems is the usage of so-called comparison
systems (see, e.g. [22], [24], [25]), here realized by means of
the Internally Positive Representation methodology, see e.g.
[26], [27], [28], [29], [30], [31] for recent applications.

Finally, we describe a significant special case in which
the aforementioned results become largely more treatable
(indeed, they provide finite tests): linear switching systems
with time-varying delays.

The work is structured as follows: the Introduction is
closed by a brief overview of the Notation used through-
out the work. Section II introduces the class of systems
investigated in this paper and their stability analysis, both
in the positive case and in the general case. Section III
illustrates the special case of switching systems with time-
varying delays. Conclusions follow.

Notation: The following notation is used throughout the
work. The symbols R+ and R++ respectively denote the
set of non-negative and positive real numbers. Rn

+ (Rn
++) is

the non-negative (positive) orthant of Rn. Rm×n
+ is the cone

of non-negative m × n matrices. 1n is the column vector
consisting of n ones, In is the n × n identity matrix and
0m×n is the m×n matrix consisting of all zeros. Inequalities
among vectors and matrices of the same dimensions are
meant to be understood component-wise, i.e. M ≤ N
(M < N ) if [M ]i,j ≤ [N ]i,j ([M ]i,j < [N ]i,j) for all
i, j, where [M ]i,j denotes the i, j entry of matrix M . In
this sense, a non-negative matrix M ∈ Rm×n

+ can also be
denoted by M ≥ 0m×n, or briefly M ≥ 0. We will also
denote |M | for the component-wise absolute value of matrix
M . A square matrix M is Metzler if all its off-diagonal
components are non-negative, i.e. [M ]i,j ≥ 0 for i ̸= j.
λ̄(M) denotes the spectral abscissa of the square matrix M ,
i.e. λ̄(M) = maxi{Re(λi)}, λi being the eigenvalues of M .

II. CONTINUOUS TIME SYSTEMS WITH TIME-VARYING
DELAYS

This work analyzes the stability properties of continuous-
time linear time-delay systems, with multiple time-varying
delays and time-varying matrices, described by:

ẋ(t) = A0(t)x(t) +

r∑
j=1

Aj(t)x(t− δj(t)), t ≥ 0,

x(t) = ϕ(t), t ∈ [−δ̄, 0],

(1)

where x(t) ∈ Rn, δj(t) are time-varying delays taking values
in [0, δ̄], for j = 1, . . . , r, and δ̄ ∈ R+. The function ϕ :
[−δ̄, 0] 7→ Rn, bounded and integrable, defines the initial
conditions of system (1). All matrices Aj(t), j = 0, . . . , r
are assumed to be integrable, so that the solution x(t), t ≥ 0,
exists.

For compactness, a dummy delay δ0(t) = 0, ∀t ≥ 0, can
be defined, so that the term A0(t)x(t) in the system equation
(1) can be included in the summation:

ẋ(t) =

r∑
j=0

Aj(t)x(t− δj(t)), t ≥ 0. (2)

This compact notation for the state equation of system
(1) will be used throughout the work, even though explicit
references to the system in statements may point to the
equivalent form (1).

Throughout the work, we will employ the usual definitions
of stability for system (1). We refer the reader to [3] for
further details. In particular, we will briefly write GES
to denote the global exponential stability. The terminology
‘delay-independent’ stability will be used to mean that the
stability of (1) holds regardless of the magnitude of the
bounded time-varying delays, that is, for any δj(t) ∈ [0, δ̄]
and any given δ̄ ∈ R+, j = 1, . . . , r.

The remainder of this section will provide a stability
analysis for the above-defined system. We will approach
the problem exploiting positivity-based results, and then
generalize the analysis removing any sign constraint.

A. Positive Systems

In order to provide a delay-independent stability condition
for system (1), we first provide a sufficient stability condition
that holds under the positivity assumption for the system.

The usual definition of positivity applies to system (1).
Namely, such system is positive if x(t) ≥ 0 at all times
provided that ϕ(t) ≥ 0 for all t ∈ [−δ̄, 0]. Trivial necessary
and sufficient conditions do exist on system matrices Aj(t)
to ensure that the aforementioned definition is fulfilled (see,
e.g., Lemma 1 in [32]).

Proposition 1: System (1) is positive if and only if A0(t)
is Metzler for all t ≥ 0 and Aj(t) is non-negative for all
t ≥ 0, j = 1, . . . , r.

We are now in a position to state the following delay-
independent stability criterion for a positive system (1).

Theorem 1: Consider system (1), where A0(t) is Metzler
and Aj(t) are non-negative, for j = 1, . . . , r. It there exist
β ∈ R++ and q ∈ Rn

++ such that( r∑
j=0

Aj(t)
)
q ≤ −β q, ∀t ≥ 0, (3)

then the system is delay-independent GES. Moreover, for
any given maximum delay δ̄ ∈ R+ the following exponential
bound holds true

x(t) ≤ q̄∥ϕ∥∞e−αt, ∀t ≥ −δ̄, (4)

where α is any positive real satisfying(
αIn +A0(t)

)
q ≤ −eαδ̄

( r∑
j=1

Aj(t)
)
q, (5)

and
q̄ =

1

qmin
q, with qmin = min

i∈[1,n]
(qi). (6)

Proof. Note first that if the inequality (3) holds true, then for
any δ̄ there exists ᾱδ̄ ∈ (0, β), such that (5) is verified for
all α ∈ [0, ᾱδ̄]. This can be easily proved by rewriting (3) as(

βIn +A0(t)
)
q ≤ −

( r∑
j=1

Aj(t)
)
q. (7)
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The inequality (3), written in the form (7), clearly implies
that (5) is strictly satisfied for α = 0. Since both terms of
inequality (5) are continuous functions of α, it follows that
there exists a positive ᾱδ̄ < β such that the strict inequality
holds true for any α ∈ [0, ᾱδ̄), and the non-strict version (5)
holds in [0, ᾱδ̄].

Given the assumptions on the matrices Aj(t), for any non-
negative initial condition ϕ, the solution x(t) of system (1)
is non-negative for all t ≥ −δ̄. Let us define the variable
η(t) ∈ Rn as follows

η(t) = q̄∥ϕ∥∞e−αt − x(t), t ≥ −δ̄. (8)

Note that q̄ defined in (6) is such that q̄ ≥ 1n, and therefore
ϕ(t) ≤ q̄∥ϕ∥∞, ∀t ∈ [−δ̄, 0]. Thus, the inequality (4) is
satisfied in [−δ̄, 0] and the function η(t) is non-negative in
the same interval [−δ̄, 0]. Computing the time derivative of
η(t), for t ≥ 0, we get

η̇(t) = −αq̄∥ϕ∥∞e−αt − ẋ(t)

= −αq̄∥ϕ∥∞e−αt −
r∑

j=0

Aj(t)x(t− δj(t)).
(9)

By the definition (8) of η(t) we have

x(t− δj(t)) = q̄∥ϕ∥∞e−α(t−δj(t)) − η(t− δj(t)). (10)

Substitution into (9) gives

η̇(t) = −αq̄∥ϕ∥∞e−αt − ∥ϕ∥∞
r∑

j=0

Aj(t)q̄ e
−α(t−δj(t))

+

r∑
j=0

Aj(t)η(t− δj(t)).

(11)
Let us define the function v(t), for t ≥ 0, as

v(t) = −α q̄∥ϕ∥∞ e−αt − ∥ϕ∥∞
r∑

j=0

Aj(t)q̄ e
−α(t−δj(t))

=
(
− α q̄ −

r∑
j=0

Aj(t)q̄ e
αδj(t)

)
∥ϕ∥∞e−αt.

(12)
Recalling that δ0(t) = 0 (dummy delay) and noting that

eαδ̄ ≥ eαδj(t), ∀δj(t) ∈ [0, δ̄], (13)

from inequality (5), which holds true by assumption, it easily
follows that

0 ≤

(
− α In −A0(t)− eαδ̄

( r∑
j=1

Aj(t)
))

q̄

≤
(
− α q̄ −

r∑
j=0

Aj(t)q̄ e
αδj(t)

)
,

(14)

so that the function v(t) defined in (12) is non-negative.
Thus, function η(t) obeys the following differential equation:

η̇(t) =

r∑
j=0

Aj(t)η(t− δj(t)) + v(t), t ≥ 0

η(t) = q̄∥ϕ∥∞ e−αt − ϕ(t) ≥ 0, t ∈ [−δ̄, 0],

(15)

which defines a positive system, with non-negative initial
condition and non-negative input v(t). Thus, η(t) ≥ 0, ∀t ≥
0, which implies the thesis (4), thanks to the definition (8)
of η(t). □

Remark 1: Note that (3) is a sufficient condition of delay-
independent exponential stability of positive time-varying
delay systems, while any α satisfying (5) is a guaranteed
exponential convergence rate. It is clear that there is a trade-
off between the maximum delay δ̄ and the size of α: the
smaller is δ̄, the larger can be α that satisfies (5).

Consider now the dual condition of (3):
∃β ∈ R++, ∃h ∈ Rn

++ such that

hT
( r∑

j=0

Aj(t)
)
≤ −β hT , ∀t ≥ 0, (16)

with A0(t) Metzler and Aj(t) non-negative for j = 1, . . . , r.
If a perfect analogy would hold with respect to the case of
positive systems with constant matrices (i.e., Aj(t) = Aj

in (1), for j = 0, . . . , r), one would expect that also (16)
may prove delay-independent GES for (1) with time-varying
matrices, since in the special case of constant matrices
conditions (3) and (16) can be shown equivalent (indeed, they
are both equivalent to showing that λ̄(

∑r
j=0 Aj) < 0 which

is necessary and sufficient for the delay-independent GES
[27]). Remarkably, for positive systems with time-varying
matrices condition (16) is in general not sufficient to prove
the delay-independent GES of (1). A stronger condition is
needed, as shown by the following theorem, whose proof is
omitted due to space limitation.

Theorem 2: Consider system (1), where A0(t) is Metzler
and Aj(t) are non-negative for j = 1, . . . , r, and bounded
initial state ϕ : [−δ̄, 0] 7→ Rn

+. If there exist β ∈ R++,
h ∈ Rn

++, and non-negative functions α̃j(t), j = 0, . . . , r
(possibly constant), such that ∀t ≥ 0

hTA0(t) ≤ −α̃0(t)h
T , (17)

hTAj(t) ≤ α̃j(t)h
T , j = 1, . . . , r, (18)

α̃0(t) ≥ β +

r∑
j=1

α̃j(t), (19)

then, the system is delay-independent GES, and any α > 0
such that

α̃0(t) ≥ α+
( r∑

j=1

α̃j(t)
)
eαδ̄ (20)

is a guaranteed exponential rate. More specifically:

∥x(t)∥1 ≤ hmax

hmin
ϕ̄ e−αt, t ≥ 0, (21)

where

hmax = max
i∈[1,n]

(hi),

hmin = min
i∈[1,n]

(hi),
ϕ̄ = sup

t∈[−δ̄,0]

∥ϕ(t)∥1. (22)

Remark 2: Note that conditions (17)–(19) imply condi-
tion (16), but the converse is not true.
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Remark 3: An analogous remarkable dissimilarity among
seemingly dual conditions of stability was recently discussed
also for the discrete-time case of delay systems with time-
varying matrices, in [11] and [33]. It is even more remarkable
that in the discrete-time case one of the two conditions is
delay-independent (Theorem 2 in [11]), while the other one
is intrinsically delay-dependent (Theorem 3 in [11]).

B. General Systems

Condition (3) of Theorem 1 can be adapted to provide
a sufficient criterion of delay-independent exponential sta-
bility for general delay systems of the type (1), without
any positivity assumption. This result is obtained exploiting
the technique of Internally Positive Representation (IPR) of
linear delay systems, presented in [27] for systems as in (1).
We remark that, while [27] introduced the IPR methodology
for delay systems with time-varying matrices, the stability
analysis reported in that work only considers the special
case of constant matrices. Hence, in this section we directly
generalize the stability results of [27] to the way more
general case of time-varying matrices. In order to briefly
present the IPR construction of [27] we need to recall some
operators that apply to square matrices.

The first operator is denoted (·)M, and transforms a square
matrix A into a Metzler matrix: for any given A ∈ Rn×n,
AM is the Metzler matrix obtained from A by replacing all
its off-diagonal entries with their absolute values, i.e.

AM = d(A) + |A− d(A)|, (23)

where d(A) is a diagonal matrix with the same diagonal
of matrix A. Moreover, let us denote with A+ and A− the
component-wise non-negative and non-positive parts of A,
respectively defined as:

[A+]i,j = max{[A]i,j , 0}, (24)

[A−]i,j = max{−[A]i,j , 0}. (25)

Then we can define the following operators:

µ̃(A) = d(A) +
(
A− d(A)

)+
, (26)

ν̃(A) =
(
A− d(A)

)−
, (27)

where we note that µ̃(A) is Metzler, ν̃(A) is non-negative,
and they allow to write

AM = µ̃(A) + ν̃(A), (28)

A = µ̃(A)− ν̃(A). (29)

Also, we define:

Γ(A) =

[
µ̃(A) ν̃(A)
ν̃(A) µ̃(A)

]
, (30)

Π(A) =

[
A+ A−

A− A+

]
. (31)

Note that Γ(A) is a 2n× 2n Metzler matrix, while Π(A) is
2n× 2n non-negative.

The following operator π : Rn 7→ R2n, and matrix ∆n are
also needed

π(x) =

[
x+

x−

]
, ∆n =

[
In −In

]
. (32)

It is easy to see that they are such that x = ∆nπ(x).
Note also that

|x| = x+ + x− = [In In]π(x). (33)

We refer the reader to Definition 3 in [27] for a precise
definition of Internally Positive Representation for the class
of systems under investigation. Namely, an IPR consists of:

• A novel system, of larger dimension, which is positive
by construction;

• a set of transformations which allow to shift from
the original system to its positive representation, and
viceversa.

The following theorem is a simplified version of Theorem 2
of [27] and introduces a simple IPR for system (1).

Theorem 3: Consider system (1), and let x(t) be the state
evolution for a given initial state function ϕ(t), t ∈ [−δ̄, 0].
The following system

Ẋ (t) = Γ
(
A0(t)

)
X (t) +

r∑
j=1

Π
(
Aj(t)

)
X (t− δj(t)), t ≥ 0,

X (t) = π
(
ϕ(t)

)
, t ∈ [−δ̄, 0], (34)

is such that
x(t) = ∆nX (t), t ≥ −δ̄. (35)

Theorem 3 states that system (34), together with forward
and backward state transformations T f

X(x) = π(x) and
T b
X(X ) = ∆nX , is an IPR for system (1), and is a

straightforward consequence of Theorem 2 of [27]. Indeed,
Theorem 3 is a simplified version of Theorem 2 of [27],
since the integral term considered in [27] is missing in (34).
Moreover, inputs and outputs are not considered in (34),
because in this work we are only interested in exploiting
the IPR (34) for the analysis of internal stability of (1).

Now we can give two preliminary Lemmas that will be
used to prove a delay-independent stability condition for
system (1) exploiting its above-defined IPR.

Lemma 1: Consider the matrices Aj(t) in (1). For a given
β ∈ R++, the following conditions are equivalent:

1) ∃p ∈ R2n
++, ∃β ∈ R++ :(

Γ
(
A0(t)

)
+

r∑
j=1

Π
(
Aj(t)

))
p ≤ −β p, ∀t ≥ 0.

(36)

2) ∃q ∈ Rn
++, ∃β ∈ R++ :(

AM
0 (t) +

r∑
j=1

|Aj(t)|
)
q ≤ −β q, ∀t ≥ 0.

(37)

Proof: (36) =⇒ (37). If (36) holds, it is easy to check that
(37) is verified with q = [In In]p, by simply left-multiplying
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both terms in (36) by [In In] and noting that[
In In

]
Γ
(
A0(t)

)
p = AM

0 (t)
[
In In

]
p,[

In In
]
Π
(
Aj(t)

)
p = |Aj(t)|

[
In In

]
p, j = 1, . . . , r.

(38)
(37) =⇒ (36). If (37) holds true, then (36) is verified with
p = [qT qT ]T , as it is easy to check, since

Γ
(
A0(t)

) [q
q

]
=

[
AM

0 (t) q

AM
0 (t) q

]
Π
(
Aj(t)

) [q
q

]
=

[
|Aj(t)| q
|Aj(t)| q

]
j = 1, . . . , r.

(39)

□
Lemma 2: Assume that inequality (37) holds true for

some β ∈ R++ and q ∈ Rn
++. Then, for any δ̄ ∈ R+ there

exists ᾱδ̄ ∈ (0, β) such that ∀α ∈ [0, ᾱδ̄]

α q +AM
0 (t)q + eαδ̄

( r∑
j=1

|Aj(t)|
)
q ≤ 0, ∀t ≥ 0. (40)

Proof. The thesis is obtained following the same steps done
in the first lines of the proof of Theorem 1. □

Remark 4: Thanks to Lemma 2, the inequality (37) also
implies that for any set of bounded delays δj(t) ∈ [0, δ̄]
(j = 1, . . . , r), ∀α ∈ [0, ᾱδ̄]

α q+AM
0 (t)q+

( r∑
j=1

|Aj(t)|eαδj(t)
)
q ≤ 0, ∀t ≥ 0, (41)

see inequalities in (14).
Now the main stability theorem for general systems (1)

can be given, as a direct generalization of the positive-only
Theorem 1.

Theorem 4: Consider system (1), with bounded delays
δj(t) ∈ [0, δ̄], j = 1, . . . , r. If there exist β ∈ R++ and
q ∈ Rn

++ such that(
AM

0 (t) +

r∑
j=1

|Aj(t)|
)
q ≤ −β q, ∀t ≥ 0, (42)

then the system is delay-independent GES. Moreover, let
α > 0 be any value satisfying (40); then, the following
exponential bound holds true:

|x(t)| ≤ 2q̄∥ϕ∥∞ e−αt, t ≥ 0, (43)

where q̄ = q/qmin, and α is a guaranteed exponential
convergence rate.

Proof. The proof is obtained by exploiting the IPR (34) for
system (1). The inequality (42) is equivalent to (36), thanks
to Lemma 1, and therefore the exponential stability of the
IPR is proved, with convergence rate α. Since ∥x(t)∥ ≤
∥X (t)∥ at all t ≥ −δ̄, the exponential convergence of the
IPR implies the exponential convergence of the system (1),
with the same rate α. In detail, (43) is obtained as follows.
Due to Theorem 1 the state of the IPR (34) satisfies:

[In In]X (t) ≤ [In In]

[
q̄
q̄

]
∥π(ϕ)∥∞e−αt, ∀t ≥ −δ̄. (44)

Since ∥π(ϕ)∥∞ = ∥ϕ∥∞, and noting the bound

|x(t)| ≤ [In In]X (t), ∀t ≥ −δ̄, (45)

we obtain the desired:

|x(t)| ≤ 2q̄∥ϕ∥∞e−αt, ∀t ≥ −δ̄. (46)

□
Remark 5: Also Theorem 2 lends itself to be extended to

general systems similarly to what done above for Theorem
1. Yet, due to space constraints and for simplicity, we have
chosen to only report an extension of Theorem 1.

III. SWITCHING SYSTEMS WITH DELAYS

For general systems with time-varying matrices described
by (1) it is not obvious how to check the stability condition
(42) of Theorem 4 for all t ≥ 0, since it requires infinite-
many tests. On the other hand, there are various significant
cases in which the aforementioned result can be finitely
tested. In particular, the analysis carried out in the previous
sections can be easily extended to a quite interesting class
of systems described by continuous-time switching models
with time-delays, described by:

ẋ(t) = A0,σ(t)x(t) +

r∑
j=1

Aj,σ(t)x(t− δj(t)), t ≥ 0,

x(t) = ϕ(t), t ∈ [−δ̄, 0], (47)

where σ(t) is a switching signal taking values on the set
{1, . . . ,m}. Note that the switching system (47), with r time-
varying delays, is defined by m(r+1) matrices Aj,i, with j =
0, . . . , r, and i = 1, . . . ,m. Many interesting work appeared
in the literature aiming at analyzing the stability properties
of this class of systems, based on different techniques. When
focusing the positive case, one should at least mention the
contributions of [34], [35], [36].

In the general case with no sign constraint, a sufficient
condition of delay-independent GES for (47) can be obtained
as a special case of Theorem 4. Notice that the stability
condition, in this special case, consists of a finite test.

Theorem 5: Consider a switching system with delays as
in (47). If there exist β ∈ R++, and q ∈ Rn

++ such that

(
AM

0,i +

r∑
j=1

|Aj,i|
)
q ≤ −β q, ∀i = 1, . . . ,m, (48)

then the system is delay-independent GES.
As already remarked above, we again note that in principle

also Theorem 2 could be generalized to yield conditions of
delay-independent GES for positive and general switching
systems (47), yet we leave the explicit statement of such
generalizations to future work due to space limitation.
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IV. CONCLUSION

This work introduced conditions of delay-independent
global exponential stability and guaranteed convergence rate
for linear continuous-time systems with time-varying ma-
trices and delays. We started from the case of positive
systems, and then generalized the analysis to systems with
no sign constraints. Furthermore, we discussed in some detail
a significant special case in which the proposed conditions
can be finitely tested: switching systems with time-varying
delays. Further investigation about implementation issues and
other special cases in which the conditions may be finitely
tested is left for future work.

In the near future, we will also address the possible
extension of the proposed stability analysis to input-to-state
stability, on the lines of the recent contribution [11] for the
discrete-time case.
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