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Abstract— In this paper, we introduce a nonlinear distributed
model predictive control (DMPC) algorithm, which allows for
dissimilar and time-varying control horizons among agents,
thereby addressing a common limitation in current DMPC
schemes. We consider cooperative agents with varying compu-
tational capabilities and operational objectives, each willing to
manage varying numbers of optimization variables at each time
step. Recursive feasibility and a non-increasing evolution of the
optimal cost are proven for the proposed algorithm. Through
numerical simulations on systems with three agents, we show
that our approach effectively approximates the performance
of traditional DMPC, while reducing the number of variables
to be optimized. This advancement paves the way for a
more decentralized yet coordinated control strategy in various
applications, including power systems and traffic management.

I. INTRODUCTION

Distributed model predictive control (DMPC) has gained
considerable attention to address the inherent challenges
posed by the control of large-scale systems and overcome the
limitations of centralized and decentralized model predictive
control (MPC) architectures [1]. Centralized MPC employs a
single system-wide controller to achieve optimal global per-
formance, but presents significant scalability issues and lacks
redundancy. In contrast, decentralized MPC spreads decision-
making across multiple agents, each managing a subsystem.
The decentralized performance, however, degrades as the
coupling between subsystems becomes stronger, as it lacks
inter-agent coordination [2]. DMPC adopts a similar agent-
based decomposition and solves this issue at the expense of
increased communication and computational complexity.

A closer look at DMPC shows that each agent typically
manages a subset of control inputs, while recurrently sharing
information with its peers to achieve a certain level of global
coordination [3]. As reviewed by [1], a wide range of DMPC
approaches can be found in the literature with significant
differences on their basic assumptions, e.g., on the type of
coordination mechanism employed, the source of coupling
between agents (dynamics, objectives, or constraints), their
attitude (cooperative or non-cooperative), and the need for
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performing iterative computations. In this regard, some com-
parative works have pointed out a clear trade-off between
communication burden and performance [4], [5], which has
led to the development of clustering-based MPC strategies
where agents can merge and switch between decentralized
and distributed MPC strategies to save coordination efforts
with minimal effects on performance [6].

In this work, we deepen into the previously mentioned
trade-off in a different manner. In particular, a common
assumption across DMPC schemes is that all agents use
identical control horizons, which is somehow limiting for
heterogeneous systems [7]. For example, it is not difficult
to imagine agents with different computational capacities,
hence being able to handle different numbers of optimization
variables and problems complexities. Likewise, they may
possess varying levels of reactivity and proactivity in their
decisions, which may not align with those of their peers.
Moreover, the agents dynamics and objectives themselves
may require different prediction horizons, e.g., in traffic
freeways and irrigation canals agents manage segments of
variable lengths with the corresponding transport delays [8],
[9]. In all these situations, it is desirable to have a DMPC
scheme that can accommodate unequal, and potentially time-
varying, horizons according to their computational capacities
and yet enjoy the benefits of coordinated control actions.

Based on the above, we propose a novel nonlinear DMPC
algorithm inspired in [10], which is in turn based on the
linear DMPC proposed by [11]. Numerical results on a
system with three agents are presented, showcasing cer-
tain combinations of unequal control horizons can closely
approximate the performance achieved with equal longer
horizons. The latter comes with the added benefits of re-
duced computational and communication overheads, thereby
also approaching the decentralized simplicity. Note that
the proposed DMPC partially shares the underlying goal
of [12] and [13], which present event-triggered linear DMPC
methods with variable prediction horizons to reduce the
complexity of the optimization problem. We contribute to
this line of research focusing on nonlinear cooperative agents
with a different MPC problem formulation.

The remainder of this paper is organized as follows.
Section II formulates the problem. Section III presents the
DMPC formulation with dissimilar and time-varying control
horizons. Section IV includes our simulation results. Finally,
concluding remarks are given in Section V.

Notation: The set of non-negative natural numbers is
N = {0, 1, 2, . . .}, whereas N≥a = {a, a + 1, a + 2, . . .}
for any a ∈ N. Also, given two scalars a, b ∈ N with b > a,
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we define set N[a,b] = {a, a+1, ..., b}. In addition, [vi]i∈N[a,b]

denotes the column vector [v⊤a , v
⊤
a+1, ...., v

⊤
b ]

⊤ for any vari-
able v, and the notation v(t|k) indicates the predicted value
of v made at instant k for time instant k + t. Finally, ⊗
denotes the Cartesian product.

II. PROBLEM SETTING

This section introduces the system dynamics, presents
the distributed control architecture, and describes the goals
considered throughout this article.

A. System description

Consider a class of systems that can be partitioned into a
set N = {1, 2, ..., N} of coupled subsystems with dynamics

xi(k + 1) = fi(x(k), u(k)), (1)

where xi(k) ∈ Rni and ui(k) ∈ Rmi denote, respectively,
the state and input of subsystem i ∈ N at time instant k ∈ N,
and x(k) = [xi(k)]i∈N and u(k) = [ui(k)]i∈N are the global
state and input vectors. In addition, fi : Rn × Rm → Rni

is a possibly nonlinear function for all i ∈ N , with n =∑
i∈N ni and m =

∑
i∈N mi. Note also that, considering (1)

for all i ∈ N , the global system dynamics can be modeled as

x(k + 1) = f(x(k), u(k)), (2)

where f aggregates functions fi for all i ∈ N , i.e., f =
(f1, f2, . . . , fN ).

As for the constraints, we require the state and input of
every subsystem i ∈ N to satisfy

xi(k) ∈ Xi, ui(k) ∈ Ui, k ∈ N, (3)

where Xi and Ui are compact convex sets that contain the
origin in their interior.

Finally, let us define the stage performance cost of each
subsystem i ∈ N at time k ∈ N as ℓi(xi(k), ui(k)). Simi-
larly, the global stage cost will be given by ℓ(x(k), u(k)) =∑

i∈N ℓi(xi(k), ui(k)).

B. Multi-agent control architecture

In what follows, consider that the set of subsystems
in N is managed by a set of cooperative MPC agents.
Specifically, each subsystem i ∈ N is assigned to local MPC
agent i, which determines control input ui(k) at every time
instant k ∈ N.

The local decisions will be cooperatively negotiated to
optimize the global performance following an algorithm
inspired by [10]. To this end, the set of agents are allowed to
share data through a communication network as illustrated in
Fig. 1. For simplicity, let us assume that the topology of this
network is modeled by fully connected graph G = (N , E),
where E = {(i, j) : i, j ∈ N , i ̸= j}, and let us introduce
the following assumption:

Assumption 1. At every step k, all agents know the global
system state x(k).

Finally, notice that the assumption above is also considered
in [10], and can be relaxed by following [14], allowing
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Fig. 1. Distributed system with 4 subsystems managed by MPC agents.

agents to operate with partial knowledge of the system state.
However, the latter has been left out of the scope of this
paper and will be considered in future works.

C. Main goal

The underlying goal of this article is to develop a cooper-
ative nonlinear DMPC, where the agents manage efficiently
their computation resources while approximately minimizing
the following global cost:

∞∑
k=0

∑
i∈N

ℓi(xi(k), ui(k)). (4)

Efficiency will be measured considering the time required
by the agents to solve their MPC problems and the resulting
global performance. We will exploit the role of the control
horizons, allowing them to be adjusted unequally and dynam-
ically. Note that the control horizon determines the number
of optimization variables handled by each of the agents.

III. NONLINEAR DMPC WITH DISSIMILAR CONTROL
HORIZONS

This section presents the proposed DMPC and its prop-
erties. For its use as a reference, let us first introduce
the following centralized MPC problem for state x(k) and
time k ∈ N:

min
[ui(k)]i∈N

J(x(k), [ui(k)]i∈N )

s.t. x(0|k) = x(k), (5a)

x(t+ 1|k) = f(x(t|k), u(t|k)), ∀t ∈ N[0,Np−1], (5b)

xi(t|k) ∈ Xi, ∀t ∈ N[0,Np−1], (5c)

ui(t|k) ∈ Ui, ∀t ∈ N[0,Np−1], (5d)

x(Np|k) ∈ Xf , (5e)

∀i ∈ N .

Here, the objective function is given by

J(x(k), [ui(k)]i∈N ) =∑
i∈N

Np−1∑
t=0

ℓi(xi(t|k), ui(t|k)) + Vf(x(Np|k)),
(6)

where ui(k) = [u⊤
i (0|k), u⊤

i (1|k), . . . , u⊤
i (Np−1|k)]⊤

for all i ∈ N , and Np is the prediction horizon. Also, Xf
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and Vf : Rn → R≥0 represent respectively a terminal set and
terminal cost designed considering the following assumption:

Assumption 2. There exist a state-dependent control law
κ(x) = [κi(x)]i∈N , a function Vf : Rn → R≥0, and a set
Xf = {x ∈ Rn : Vf(x) ≤ α, x ∈ X , Kx ∈ U} such that
for all x ∈ Xf ,

Vf(f(x, κ(x))) + ℓ(x, κ(x))− Vf(x) ≤ 0, (7)

where α ∈ R, X = ⊗i∈NXi, and U = ⊗i∈NUi.

A. Control algorithm

This article explores a nonlinear DMPC inspired by the
cooperation-based approach presented in [10], [15]. In this
setting, all agents optimize through an iterative procedure
plant-wide performance function J(·), thus taking into ac-
count the global effect of the local decisions. To enumerate
the iterations, let us use in what follows subscript p ∈ N,
i.e., up

i (k) represents the value of ui(k) at iteration p.
The pseudocode of the distributed strategy proposed in

this article is given in Algorithm 1. As can be seen, at every
time step, the agents perform an iterative negotiation, where
every iteration comprises the following steps:1

(i) All agents i ∈ N solve (in parallel) nonlinear MPC
problems (8). By doing so, they obtain local input
sequence u∗

i , together with scaling factors λ∗
i , which

are introduced to guarantee recursive feasibility. Notice
that only the local inputs associated with agent i are
optimization variables in (8), whereas those of all j ̸= i
are fixed to their values at iteration p− 1.

(ii) The agents solutions are optimally combined (if neces-
sary) by a supervisory entity using weights [γi]i∈N as
will be detailed below (see (9)).

Regarding (i), note that the control horizons used to
solve problem (8) can differ among the set of agents. In
particular, for any agent i ∈ N , its control horizon is denoted
as Nc,i and is such that Nc,i ≤ Np. From instant Nc,i

of the prediction, the local inputs are defined as a linear
combination of the previously obtained solution and a given
predefined control law (see (8a)). For simplicity, we have
considered control law κi (recall Assumption 2), but notice
that a different approach can also be used, e.g., the inputs
may be kept constant from instant Nc,i.

Regarding (ii), let us remark that the resulting combination
of solutions u∗

i for all i ∈ N may not be globally feasible. To
illustrate this, consider problem (8) with a simplified scenario
involving only two agents. In this context, we have that
(u∗

1,u
p−1
2 ) and (up−1

1 ,u∗
2) constitute solutions satisfying the

constraints of (5) at every iteration p. However, the same
cannot be guaranteed for the solution (u∗

1,u
∗
2). This is the

reason motivating the introduction of weights [γi]i∈N , which
allow steering the inputs towards those of iteration p−1 when
it is globally advantageous.

1For the sake of clarity, we omit time step k in the rest of this subsection
when it can be clearly inferred from the context.

Algorithm 1
Let k be the current time instant, and define an initial
feasible input sequence u0

i (see Remark 1), and a control
horizon Nc,i, for all i ∈ N . Then, starting from p = 1,
proceed as follows:

1: All MPC agents i ∈ N compute (in parallel) u∗
i by

solving:

[u∗
i , λ

∗
i ] = arg min

ui,λi

J(x(k),ui, [uj ]j∈N−i)

s.t. (5a) to (5e),

ui(t|k) = λiκi(x(t|k)) + (1−λi)u
p−1
i (t|k),

∀t ∈ N[Nc,i,Np−1],
(8a)

uj = up−1
j , ∀j ∈ N−i, (8b)

λi ∈ [0, 1], (8c)

where N−i = N \ {i}. As for the objective function
above, note that we can rewrite J(x(k), [ui]i∈N ) =
J(x(k),ui, [uj ]j∈N−i

).
2: All MPC agents i ∈ N share u∗

i with the supervisor.
3: The supervisor defines weights [γ∗

i ]i∈N as follows:

[γ∗
i ]i∈N = arg min

[γi]i∈N
J(x(k), [ui]i∈N )

s.t. (5a) to (5e),

ui = γiu
∗
i + (1− γi)u

p−1
i , (9a)

γi ∈ [0, 1], (9b)

∀i ∈ N . (9c)

4: All MPC agents i ∈ N define their input sequence for
iteration p as up

i = γ∗
i u

∗
i + (1 − γ∗

i )u
p−1
i , and share it

with the other agents.
5: Set p = p+ 1 and go back to Step 1 until convergence

(or a maximum number of iterations) is reached.
6: All agents implement inputs up̄

i (0|k), where p̄ denotes
the last iteration index.

In addition, let us mention that, although Algorithm 1 is
inspired by [10], there are significant differences to highlight.
Specifically, both the formulation of problem (8) and the
final definition of sequences [up

i ]i∈N at every iteration p
differ from those in [10]. The main differences are as
follows. Firstly, the agents not only consider input constraints
but also account for state constraints (see (5c) and (5e)).
Secondly, we introduce constraint (8a), which is formulated
not to compromise recursive feasibility while facilitating the
reduction of the number of optimization variables. Thirdly,
the set of agents may work with dissimilar (and possibly
dynamic) horizons Nc,i. Lastly, the final sequences [up

i ]i∈N
are determined as an optimal combination of new and
previous solutions by solving (9).

Remark 1. By construction of Algorithm 1, input se-
quences up

i (k) for i ∈ N constitute a feasible solution of
problem (5) at any time instant k ∈ N and iteration p ∈ N.
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Therefore, given the definition of terminal set Xf (recall
Assumption 2), we can build a candidate solution for any
agent i at instant k + 1 as

ũi(k + 1) =

[
[u

p̄(k)
i (t|k)]Np−1

t=1

κi(x
p̄(k)(Np|k))

]
. (10)

This will be used to define u0
i (k+1) at every time instant k.

Remark 2. Problem (9) and step 4 of Algorithm 1 could be
omitted without compromising its essence and the properties
indicated in the next subsection. In particular, note that,
after solving (8), each agent i proposes global solution
(u∗

i , [u
p−1
j ]j∈N−i

), which is feasible by definition of the
constraints in (8). Following the game-theoretic notion of
dominant-strategies, the solution providing greater global
benefits may also be chosen. That is, the proposal dom-
inating the rest could be selected as the input sequences
of iteration p. Nevertheless, solving (9) allows for greater
reductions of the cost function along the iterations.

B. Properties
This subsection proves recursive feasibility and a non-

increasing evolution of the cost function for the pro-
posed DMPC. In the following theorems, we define se-
quences [u·

i(k)]i∈N as globally feasible at instant k, if they
satisfy the constraints of (5). That is, the inputs and resulting
states belong in the corresponding constraints sets (see (3)),
and the terminal state is in the terminal set.

Theorem 1 (Recursive feasibility). If the initial sequences
[u0

i (0)]i∈N are globally feasible, then problems (8) for all
agents i ∈ N and problem (9) will be recursively feasible.

Proof. To prove this theorem, let us first consider any time
instant k ∈ N and two consecutive iterations, say p−1 and p.
Then, note that if sequences [up−1

i (k)]i∈N are globally
feasible, the following holds at iteration p:

i. For all i ∈ N , up−1
i (k) provides a feasible solution

of (8). That is, the agents can always keep the input
sequence of the previous iteration. Particularly, note
that if we set λi = 0, then ui(t|k) = up−1

i (t|k) for
all t ∈ [Nc,i, Np − 1].

ii. By construction of problem (9), a feasible solution can
be built simply by setting γi = 0 for all i ∈ N . Note
that this translates into up

i (k) = up−1
i (k).

As a consequence, if u0
i (k) is globally feasible, u1

i (k) will
also be globally feasible. By induction, we have that for
any p ∈ N≥1 both problems (8) and (9) will have feasible
solutions at time instant k.

We are left to prove that, at any k ∈ N≥1, it is possible
to find globally feasible input sequences for iteration 0. To
prove this, consider (10) and note that the latter can be
obtained by setting u0

i (k + 1) = ũi(k + 1) for all i ∈ N .
This concludes the proof.

Theorem 2 (Non-increasing objective function). The value
of cost function J(x(k), [up

i (k)]i∈N ) is non-increasing with
respect to both time k and iterations index p.

Proof. Consider an agent i ∈ N and note that, by optimality
of [u∗

i (k)]i∈N and construction of problem (9), we have that

J(x(k), [up
i (k)]i∈N ) ≤ J(x(k), [up−1

i (k)]i∈N ). (11)

In particular, by setting γi = 0 for all i ∈ N , the previous
inequality holds as an equality. In addition, considering
initialization (10), together with the properties of the terminal
components, we have that:

J(x(k + 1), [u0
i (k + 1)]i∈N ) ≤ J(x(k), [u

p̄(k)
i (k)]i∈N ).

Therefore,

J(x(k + 1),[u
p̄(k+1)
i (k + 1)]i∈N )

≤ J(x(k + 1), [u0
i (k + 1)]i∈N )

≤ J(x(k), [u
p̄(k)
i (k)]i∈N ).

(12)

That is, the value of the global objective function after the
iterative negotiation does not increase over time.

Note that the properties above depend on the existence
of input sequences satisfying the constraints of (5) only at
initial time instant 0. Besides, these initial sequences do
not have to consider any predefined control law as later
introduced in (8). Finally, notice that these proofs are not
straightforwardly derived from the results in [10] due to the
differences introduced in the proposed Algorithm 1.

C. Extension to dynamic control horizons

This subsection introduces a heuristic approach to allow
the agents to reduce their control horizons in (8) over time,
and thus their number of optimization variables, in case they
are not providing significant performance benefits. Note that
the solution of (8) at any iteration has the following form:

u∗
i =



u∗
i (0|k)

...
u∗
i (Nc,i − 1|k)

λ∗
i κi(x(Nc,i|k)) + (1− λ∗

i )u
p−1
i (Nc,i|k)

...
λ∗
i κi(x(Np − 1|k)) + (1− λ∗

i )u
p−1
i (Np − 1|k)


.

Considering this, we can build a slightly different input
sequence, say ûi, where control law κi(·) starts being
considered one instant before, that is,

ûi =



u∗
i (0|k)

...
u∗
i (Nc,i − 2|k)

λ∗
i κi(x(Nc,i − 1|k)) + (1− λ∗

i )u
p−1
i (Nc,i − 1|k)

...
λ∗
i κi(x(Np − 1|k)) + (1− λ∗

i )u
p−1
i (Np − 1|k)


.

If ûi is feasible, then it provides a upper bound on the
objective function value of (8) when using control hori-
zon Nc,i − 1. Using this new candidate sequence ûi, we
establish that if

J(x(k), ûi, [u
p−1
j ]j∈N−i

)− J(x(k),u∗
i , [u

p−1
j ]j∈N−i

) ≤ ϵ,
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agent i can reduce its control horizon by one unit, i.e.,
Nc,i ← Nc,i− 1. Above, ϵ ∈ R≥0 is a tuning parameter that
can be chosen arbitrarily close to 0. This heuristic approach
will be implemented along the iterations starting from a
given horizon, say N0

c,i. Note that, given the introduction of
scalars λi and the definition of problem (9), the properties
introduced in the previous subsection are not compromised
by dynamic changes of the control horizons.

Finally, let us also remark that, instead of building a
candidate input sequence, learning methods are also useful to
optimize when and how to update Nc,i for all agents i ∈ N .

IV. SIMULATION RESULTS

In this section, we apply the DMPC scheme with varying
control horizons to a system with three masses connected
by springs and dampers [16], [17]. The system dynamics are
given by

m1

[
ṙ1
v̇1

]
=

[
m1v1

u1 − k0r1e
−r1 − hdv1 − kc(r1 − r2)

]
,

m2

[
ṙ2
v̇2

]
=

[
m2v2

u2−k0r2e−r2−hdv2−kc(r2−r1)− kc(r2−r3)

]
,

m3

[
ṙ3
v̇3

]
=

[
m3v3

u3 − k0r3e
−r3 − hdv3 − kc(r3 − r2)

]
,

(13)
where ri, vi and ui denote respectively the position, velocity
and input of subsystem i ∈ {1, 2, 3}. Likewise, k0 = 1.1
N/m, kc = 0.25 N/m, and hd = 0.30 Ns/m are the springs
stiffnesses and damping coefficients, and the masses are
given by m1 = 1.5 kg, m2 = 2 kg, and m3 = 1 kg. Sys-
tem (13) has been discretized using a sample time of 0.15 s.
In addition, the controller’s objective function is defined by
weighting matrices Q = diag(2, 0.05, 2, 0.05, 2, 0.05)
and R = diag(0.1, 1, 0.1), and the constraint sets are

Ui = {ui : −1.5 ≤ ui ≤ 1.5},

Xi =

{[
ri
vi

]
:

[
−5
−2

]
≤

[
ri
vi

]
≤

[
5
2

]}
,

(14)

for i ∈ {1, 2, 3}. To design the terminal components, we have
considered that they take the form κ(x) = Kx and Vf(x) =
x⊤Px, being K and P matrices designed to satisfy (7).2

We have first tested Algorithm 1 with different combi-
nations of Nc,2 and Nc,3, with Nc,2, Nc,3 ∈ {8, 12, ..., 24},
while fixing Nc,1 = 10 and defining Np = maxi Nc,i. Sub-
sequently, we have implemented the time-varying approach
described in Section III-C using ϵ = 5·10−6. Our simulations
assess the different settings in terms of performance and
computation time as illustrated below.

As for the system performance, Fig. 2 shows a heat-map
with the values of index

Jcc =

Tsim∑
k=0

ℓ(x(k), u(k)), (15)

2For the design of gain K and matrix P we have used Matlab®

LMI Control Toolbox, and for solving the MPC problems the solver
ipopt. All simulations have been carried out in a 2.3 GHz 11th Gen Intel®
CoreTM i7/16 GB RAM computer.
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Fig. 2. Heat-map with the values of index Jcc for different combinations
of Nc,2 and Nc,3.

Fig. 3. Box chart with the time required to solve problem (8) with different
values of horizon Nc,i.

where Tsim denotes the number of simulated time steps, for
the mentioned combinations of Nc,2 and Nc,3. As expected,
increasing Nc,i brings performance benefits. Minor discrep-
ancies may also stem from both the convergence tolerance
defined in Algorithm 1 and the solver not providing the
exact minimizers of the optimization problems. Nevertheless,
it can be seen that there are combinations of Nc,2 and
Nc,3 that provide superior performance than others while
involving the same number of variables. For instance, if we
set Nc,2 = 8 and Nc,3 = 16, the cost decreases in 0.29 units
in comparison with the case in which Nc,2 = Nc,3 = 12.
Similarly, Nc,2 = 8 and Nc,3 = 20 emulates the performance
of Nc,2 = Nc,3 = 20. Likewise, it can be seen that greater
relative benefits are obtained when increasing Nc,i from 8
to 12, or 12 to 16, than when going from 20 to 24.

As for the computation times, Fig. 3 provides a box chart
with the time spent in solving nonlinear problem (8) with
different values of Nc,i. This figure has been obtained consid-
ering all simulations and iterations performed. Additionally,
as an example, Fig. 4 shows the state and input evolution
over time for the case in which Nc,2 = 8 and Nc,3 = 20.

Finally, Fig. 5 illustrates the evolution of Nc,i over the iter-
ations performed at the initial 12 time steps when simulating
the approach described in Section III-C. Specifically, at each
time step and for i ∈ {1, 2, 3}, N0

c,i is set to its mean during
the iterations conducted at the preceding time step, starting
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Fig. 4. System state and input over time for Nc,2 = 8 and Nc,3 = 20.

Fig. 5. Evolution of Nc,i for i ∈ {1, 2, 3} over the iterations implemented
in the first 12 time steps.

from the values shown in Fig. 5 at time instant 0. As can be
seen, the agents gradually reduce their control horizons and
consequently the number of optimization variables. The grey
vertical lines indicate time step changes, while each marker
corresponds to an iteration for each of the agents. Note that
the uneven spaces between these lines are due to the potential
differences in the number of iterations performed at each
time step. As a reference, the resulting performance cost in
this simulation was 9.254.

V. CONCLUSIONS

In this work, we have introduced a nonlinear cooperative
DMPC approach to accommodate different control horizons
for sets of agents. Our analysis and simulations, particularly
focusing on a 3-agent system, have validated the feasibility of
this approach and also highlighted its potential. In particular,
we have shown that dissimilar control horizons can reduce
the number of optimization variables while emulating the
global performance of equal longer horizons. This can be
beneficial for systems with limited computational resources
and/or where the cost of computation is a critical factor.

Our simulations also point out that there is a phenomenon
of diminishing returns as additional decision variables are ne-
gotiated. While this is not surprising because each extra vari-
able corresponds to a farther time within the prediction hori-
zon, it suggests that beyond a certain point, the incremental
benefits in performance gained from increasing coordination
can be outweighed by the additional computational burden
it brings. This can open up new possibilities for optimizing

the DMPC framework, especially in terms of dynamically
adjusting the level of coordination to achieve an optimal
balance between performance and resources utilization.

Our current efforts are indeed aligned with this idea,
for we plan is to develop a DMPC framework that not
only adapts to the varying capabilities and requirements of
individual agents but also dynamically modulates the level
of cooperation among them.
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