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Abstract— In a multi-agent system, agents can cooperatively
learn a model from data by exchanging their estimated model
parameters, without the need to exchange the locally available
data used by the agents. This strategy, often called federated
learning, is mainly employed for two reasons: (i) improving
resource-efficiency by avoiding to share potentially large data
sets and (ii) guaranteeing privacy of local agents’ data. Ef-
ficiency can be further increased by adopting a beyond-5G
communication strategy that goes under the name of Over-
the-Air Computation. This strategy exploits the interference
property of the wireless channel. Standard communication
schemes prevent interference by enabling transmissions of
signals from different agents at distinct time or frequency
slots, which is not required with Over-the-Air Computation,
thus saving resources. In this case, the received signal is a
weighted sum of transmitted signals, with unknown weights
(fading channel coefficients). State of the art papers in the field
aim at reconstructing those unknown coefficients. In contrast,
the approach presented here does not require reconstructing
channel coefficients by complex encoding-decoding schemes.
This improves both efficiency and privacy.

I. INTRODUCTION

Over the last decade, topics related to machine learning
have attracted a great deal of attention due to their success
in many application areas (e.g., [1]–[3]). As computational
power increases, we have smaller but more intelligent and
powerful devices, which are able to handle big volumes of
data and more complex computations.

Data is often distributed over these intelligent devices
or agents, such as smartphones, personal computers and
distributed data centers. In a centralized learning approach,
all data are collected in a computationally powerful ma-
chine, such as a cloud-based unit or a server, on which the
model is trained [4]. However, this approach may not be
suitable for specific applications requiring privacy, resource
efficiency, and low-latency. For instance, due to privacy
concerns, smartphone users might not be willing to share
their data; moreover, with an increasing number of agents,
more communication resources must be allocated to share the
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agents’ data with the central unit. However, it is also possible
to train a model without centralized data collection. In this
case, agents individually train models on their respective
data and share their individually trained models (in the
form of parameter vectors) with the central unit. Sharing
parameter vectors is, in general, less expensive in terms of
communication resources than sharing all the local data sets.
This approach is often referred to as federated learning, and
allows more private and communication efficient learning
(see [5]–[8]).

Even though federated learning allows improved privacy
by avoiding to share individual data sets, sharing local
model parameters with the central unit might still reveal
sensitive information [9]–[11]. It is possible to tackle this
privacy problem with popular techniques like encryption or
differential privacy [12], but they come at the price of lower
efficiency and performance [9], [13].

As the number of agents and the number of model param-
eters increase, the communication load on the overall system
increases as well [10], [11], [14]. To cope with this problem,
one can carry out local training on agents for multiple steps
or utilize quantization and/or sparsification on the model
updates in order to accomplish an efficient compression;
another approach is allowing only a subset of agents to
transmit at specific time steps [15]–[19]. However, most
of these techniques are not resource efficient in the sense
that they increase the need of bandwidth or the number of
communication rounds, which in general leads to a decrease
in total throughput and learning speed as also observed in
[20], [21].

Instead, we consider the so-called Over-The-Air com-
putation approach, e.g., [22], to improve communication
efficiency. When multiple agents transmit at the same time
and in the same frequency band, signals are affected by the
physical phenomenon of interference. Standard communica-
tion protocols prevent interference by transmitting signals
orthogonally: in TDMA (Time Division Multiple Access),
agents are assigned different time slots when they can
transmit, whereas in FDMA (Frequency Division Multiple
Access), different frequency bands are allocated to different
users.

The philosophy of Over-The-Air Computation is to exploit
interference rather than combat it, to increase communication
efficiency. For example, in a system composed of N agents,
each of which has to transmit an m-dimensional parameter
vector θ ∈ ℜm to a central unit, TDMA or FDMA would
require mN orthogonal transmissions (multiplexed in time
or frequency), whereas Over-The-Air Computation requires
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only m orthogonal transmissions. Due to its advantages,
federated learning has been carried out by [23]–[25] via over-
the air computation.

With this in mind, the main contributions of this paper can
be summarized as follows:

• Unlike the studies by [23] and [25], we do not assume to
know (nor to be able to reconstruct) channel coefficients,
but we present an algorithm that can deal with their
unknown nature. We will not need extra pre-processing
to reconstruct the channel, which makes the proposed
scheme more time and resource efficient.

• Privacy is inherently guaranteed by the unknown nature
of the channel. The central unit will not be able to re-
construct information transmitted by individual agents.

The remainder of this paper is organized as follows: we
describe the problem setup in Section II. In Section III, we
present the proposed federated learning algorithm and prove
its convergence. A numerical example is presented in Section
IV. Concluding remarks are given in Section V.

Notation

The set of real numbers is denoted by ℜ, ℜm represents m-
dimensional Euclidean space. N and N0 respectively denote
the set of natural numbers and the set of nonnegative integers.
For a vector x ∈ ℜm, xT denotes its transpose. The 2-norm
of vector x is denoted by ||x||. The expected value of a
random variable p is denoted by E[p]. Given a finite set
S, its cardinality is denoted by |S|. For a differentiable
function f : ℜm → ℜ, ∇ f (x) represents the gradient of the
function f at x ∈ ℜm. The projection of x ∈ ℜm onto a
nonempty closed convex set S ⊂ ℜm is denoted by PS(x),
where PS(x) = argmins∈S ||s− x||.

II. PROBLEM DESCRIPTION

A. Federated Learning with Constraints

Consider a system of N agents connected to a server or
cloud based unit, whose objective is to carry out a machine
learning task. Each agent can access different portions
of the dataset, and has an individual local cost function.
We denote the set of data available to the i-th agent by
Di = {dn

i }
|Di|
n=1 and use Li(dn

i ,θ) to represent the value of
the cost function of a model with parameter θ ∈ Rm. In a
supervised learning setting, the dataset Di consists of pairs
of inputs and targets, i.e., dn

i = (un
i ,z

n
i ), where un

i and zn
i

represent, respectively, input and target data. Moreover, the
private local cost function of agent i can be expressed as

fi(θ) =
1

|Di|

|Di|

∑
n=1

Li(dn
i ,θ), (1)

If the global cost function is defined as the average of all
local cost functions, i.e.,

L(θ) =
1
N

N

∑
i=1

fi(θ), (2)

then, the objective of the overall system is to cooperatively
solve the following constrained optimization problem

Fig. 1: An illustration of a federated learning setting.

θ
∗ = argmin

θ∈Θ

L(θ) = argmin
θ∈Θ

1
N

N

∑
i=1

fi(θ), (3)

where Θ ⊂ ℜm is a nonempty constraint set. In what
follows, we denote L(θ ∗) by L∗. Moreover, the set of
optimal solutions is defined as

Θ
∗ = {θ ∈ Θ | 1

N

N

∑
i=1

fi(θ) = L∗}.

If the entire dataset, i.e.,

D = D1 ∪D2 ∪·· ·∪DN

were known to the server, one could employ a centralized
gradient descent based optimization to solve the above global
learning task [3]. However, in the considered federated learn-
ing approach, each agent can access only its own dataset,
on which it trains its own model. After local optimization
steps, the current versions of the local parameter estimates
are transmitted to the server, where they are aggregated. The
aggregated version is then transmitted to the agents for the
next optimization step (see Fig. 1).

B. Over-the-Air Communication

In wireless communication systems, the wireless multiple
access channel (WMAC) model has been extensively
used to characterize communication between multiple
transmitters and a single receiver over fading channels,
e.g., [26], [27]. Throughout this paper, we employ the
WMAC-based communication model described by [20],
[28]. In this model, multiple (say N) agents simultaneously
send information {si(k) ∈ ℜm}N

i=1 in the same frequency
band. This information is corrupted by the channel and
superimposed by the receiver, i.e., the received information is

rrec(k) =
N

∑
i=1

αi(k)si(k), (4)

where the αi(k) are unknown time-varying positive channel
coefficients.
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Algorithm 1: FedCOTA

Initialization: θ(0) ∈ Θ.
Learning Loop:

1: for each time step k ∈ N0 do
2: The server broadcasts θ(k)
3: Each agent i updates its local variables:

θi(k) = θ(k)−η(k)∇ fi
(
θ(k)

)
(5)

ρi(k) = 1 (6)

4: Each agent i transmits θi(k) and ρi(k)
5: The server receives:

θ
rec(k) =

N

∑
i=1

αi(k)θi(k) (7)

ρ
rec(k) =

N

∑
i=1

αi(k)ρi(k) (8)

6: The server updates:

θ(k+1) = PΘ

(
θ rec(k)
ρ rec(k)

)
(9)

7: end for

As indicated above, employing Over-the-Air computation
for federated learning provides the following benefits:

• privacy: the channel coefficients {αi(k)}N
i=1 in (4) are

unknown, thus it is impossible for the central unit to
individually reconstruct {si(k)}N

i=1 from rrec(k);
• efficiency: as shown by [21], Over-the-Air Computation

can achieve better-than-linear scaling of the communi-
cation cost as the number of transmitters grows.

Unlike the algorithm suggested by [25], our approach does
not require any knowledge of the channel coefficients, nor
do they need to be reconstructed at each time step, thus
removing one source of complexity.

III. FEDERATED CONSTRAINED OVER-THE-AIR
LEARNING (FEDCOTA) ALGORITHM

In this section, we first introduce the proposed algorithm
that allows agents to carry out federated learning via over-
the-air communication. Then, we will investigate the conver-
gence properties of the proposed algorithm.

A. Algorithm

The FedCOTA algorithm is summarized in Algorithm 1.
At the beginning, the server broadcasts to agents θ(0) ∈
Θ. Then, through iterations, each agent computes its own
parameter vector θi(k) by using the local update rule (5).
Afterwards, all agents transmit simultaneously (and in the
same frequency band) their local parameter vectors θi(k) to
the central unit. Then, again simultaneously and in the same
frequency band a constant ρi(k) = 1 is transmitted by all
agents. Because of the superposition property of the wireless
channel (see Section II-B), the server receives (7) and (8) at

time step k. Finally, the server computes (9) thus obtaining
θ(k+1), which can be written as

θ(k+1) = PΘ

(
θ rec(k)
ρ rec(k)

)
= PΘ

(
N

∑
i=1

αi(k)

∑
N
i=1 αi(k)

θi(k)

)

= PΘ

(
N

∑
i=1

hi(k)θi(k)

)
(10)

where PΘ is the projection operator onto the set Θ, the
αi(k) are the unknown time-varying positive real channel
coefficients, and the hi(k) =

αi(k)
∑

N
i=1 αi(k)

are the corresponding
normalized channel coefficients. By construction, the hi(k)
are positive and

N

∑
i=1

hi(k) = 1, (11)

for all k ≥ 0.

B. Preliminaries

The following assumptions, also made in similar papers
in the field, will hold throughout the paper.

Assumption 1: The constraint set Θ ⊂ ℜm is convex and
compact. As a consequence (see [29, Theorem 2.41, p.40]),
Θ is then also closed and bounded.

Assumption 2: The cost functions fi(θ) are continuously
differentiable and strongly convex with L-Lipschitz contin-
uous gradients, i.e., for any θ1,θ2 ∈ Θ ⊂ ℜm and for all
i = 1,2, . . . ,N, the following inequalities hold:
(i) ∃µi > 0 such that

fi(θ2)− fi(θ1)≥ ∇ fi(θ1)
T (θ2 −θ1)+

µi

2
||θ2 −θ1||2,

(12)
(ii) ∃Li > 0 such that

||∇ fi(θ1)−∇ fi(θ2)|| ≤ Li||θ1 −θ2||. (13)

Remark 1: Note that the global cost function L(θ) is
then also differentiable and strongly convex with L-Lipschitz
continuous gradient, i.e.,

L(θ2)−L(θ1)≥ ∇L(θ1)
T (θ2 −θ1)+

µ

2
||θ2 −θ1||2

||∇L(θ1)−∇L(θ2)|| ≤ L||θ1 −θ2||,

where µ = 1
N ∑

N
i=1 µi and L = 1

N ∑
N
i=1 Li (see [30]).

Remark 2: Note that Assumptions 1 and 2 imply that the
local and global cost functions have bounded gradients on
Θ.

Note that Assumptions 1 and 2 have been widely utilized
in the federated learning and distributed optimization litera-
ture to illustrate the existence of a solution to problem (3)
and convergence properties of the proposed algorithms (see
[3], [25], [31]–[35], and the references therein).

Assumption 3: For all k ≥ 0, the step size in Algorithm 1
is chosen as η(k) = ηc√

k+1
, where 0 < ηc ≤ 1

L .
Remark 3: Under Assumption 3, the step size η(k) is

decreasing and satisfies ∑
∞
k=0 η(k) =∞ and limk→∞ η(k) = 0.

Conditions similar to Assumption 3 on the step size
have also been utilized in many previous studies (e.g., [3],
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[34]–[40], and the references therein) to show the exact
convergence to an optimal solution.

Lemma 1: If f (·) is continuously differentiable, convex
with L-Lipschitz continuous gradients, then for any θ1,θ2 ∈
ℜm, the following inequality holds:

0 ≤ f (θ2)− f (θ1)−∇ f (θ1)
T (θ2 −θ1)≤

L
2
||θ1 −θ2||2.

Proof: The result is a direct consequence of [35,
Theorem 2.1.5].

Remark 4: From Lemma 1 and the definition of strong
convexity (12), we have µ ≤ L if a function is continuously
differentiable, strongly convex with L-Lipschitz continuous
gradients. Hence, ηc ≤ 1

L ≤ 1
µ

holds by Assumption 3.
Assumption 4: The unknown time-varying positive real

channel coefficients are assumed to be independent real-
izations (across time and agents) of the same probability
distribution, i.e., ∀k ∈ N0, αi(k) ∼ D

(
ᾱ,Var(α)

)
, where ᾱ

and Var(α) respectively denote the mean and variance of the
distribution D.

As in [20], [28], we refer here to [41, Ch 2.3, Ch 2.4]
and [42, Ch 5.4], thus considering channel coefficients inde-
pendent realizations of the same probability distribution (see
[43]).

Lemma 2: Under Assumption 4, E[hi(k)] = 1
N holds for

all i = 1,2, . . . ,N and k ≥ 0.
Proof: From (11), we have hi(k) = αi(k)

∑
N
i=1 αi(k)

and

∑
N
i=1 hi(k) = 1. Since each αi(k) is sampled from the same

distribution as stated in Assumption 4, the underlying dis-
tribution of each hi(k) is the same, i.e., E[hi(k)] = E[h j(k)]
holds for all i, j ∈ {1,2, · · · ,N} and ∀k ≥ 0. Moreover, due
to the linearity of expectation, we have

1 = E
[ N

∑
i=1

hi(k)
]
=

N

∑
i=1

E[hi(k)] = NE[hi(k)],

which implies E[hi(k)] = 1
N for all i = 1,2, . . . ,N.

C. Convergence Analysis of the FedCOTA Algorithm

First, we present preparatory results needed to show the
convergence of the FedCOTA algorithm. Consider

C(k) =Ck = 1−η(k)µ. (14)

Note that, under Assumption 3, Ck ≥ 0 holds ∀k ∈N0. As
η(k) is decreasing, Ck is increasing in k, hence it suffices to
show C0 ≥ 0. This immediately follows from C0 = 1−ηcµ

and ηc ≤ 1
µ

(see Remark 4), hence C0 ≥ 0. Note furthermore
that, as Ck is increasing, Ck > 0 holds for all k ≥ 1.

Lemma 3: Under Assumption 3, limk→∞(Ck)
k = 0.

Proof: By letting Ck = 1− Q√
k+1

, where Q = ηcµ > 0,
we write

lim
k→∞

(Ck)
k = lim

k→∞

(
1− Q√

k+1

)k
. (15)

Note that ∀x ∈ ℜ, we have 1+ x ≤ ex. Hence, ∀k ∈ N0

Ck = 1− Q√
k+1

≤ e−
Q√
k+1 . (16)

Moreover, as noted above, Ck ≥ 0, hence

0 ≤ (Ck)
k ≤ e−

Qk√
k+1 . (17)

As the term on the right hand side of (17) goes to zero
for k → ∞, we have established that limk→∞(Ck)

k = 0.

Lemma 4: Under Assumption 3,
∞

∏
k=0

Ck = 0.

Proof: By using the relation 1+ x ≤ ex, ∀x ∈ ℜ, we
write

k

∏
t=0

Ct =

k

∏
t=0

(
1−η(t)µ

)
≤

k

∏
t=0

e−η(t)µ = e−∑
k
t=0η(t)µ (18)

Taking the limit as k → ∞ on both sides gives

lim
k→∞

k

∏
t=0

Ct ≤ e−µ∑
∞

t=0η(t) = 0 (19)

since by Assumption 3, µ

∞

∑
t=0

η(t) = ∞.

Lemma 5: Under Assumption 3, for k → ∞,

k−2

∑
t=0

( k−1

∏
l=t+1

Cl

)
η

2(t)+η
2(k−1)

converges to an arbitrarily small positive value ε .
Proof: See Appendix.

We are now ready to present the main result.
Theorem 1: Let Assumptions 1, 2, 3, and 4 hold. Then,

∃θ ∗ ∈Θ∗ such that for k →∞, E
[
||θ(k)−θ ∗||2

]
is arbitrarily

small.
Proof: For any θ ∗ ∈ Θ∗, by using (5), (10), (11), and

the non-expansive1 property of the projection PΘ, we write

||θ(k+1)−θ
∗||2 =

∣∣∣∣∣∣PΘ

( N

∑
i=1

hi(k)θi(k)
)
−PΘ

(
θ
∗)∣∣∣∣∣∣2

≤
∣∣∣∣ N

∑
i=1

hi(k)
(
θ(k)−η(k)∇ fi

(
θ(k)

))
−θ

∗∣∣∣∣2
=
∣∣∣∣θ(k)−θ

∗∣∣∣∣2
−2η(k)

N

∑
i=1

hi(k)∇ f T
i
(
θ(k)

)(
θ(k)−θ

∗)
+
∣∣∣∣η(k)

N

∑
i=1

hi(k)∇ fi
(
θ(k)

)∣∣∣∣2.
(20)

1||PΘ(x)−PΘ(y)|| ≤ ||x−y|| holds for all x,y ∈ ℜm if Θ is a nonempty
closed convex set (see [44]).
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Note that boundedness of the constraint set Θ and
Lipschitz continuity of ∇ fi

(
θ(k)

)
imply that ∃DΘ,M > 0

such that

∣∣∣∣θ(k)−θ
∗∣∣∣∣≤ DΘ, (21)∣∣∣∣∇ fi

(
θ(k)

)∣∣∣∣≤ M. (22)

Then, an upper-bound for the last term on the right hand
side of (20) can be written as

∣∣∣∣∣∣η(k)
N

∑
i=1

hi(k)∇ fi
(
θ(k)

)∣∣∣∣∣∣2 = η
2(k)

∣∣∣∣∣∣ N

∑
i=1

hi(k)∇ fi
(
θ(k)

)∣∣∣∣∣∣2
≤ η

2(k)
N

∑
i=1

hi(k)
∣∣∣∣∣∣∇ fi

(
θ(k)

)∣∣∣∣∣∣2
≤ η

2(k)M2, (23)

which follows from (11), (22), and the convexity of the
function || · ||2. Subsequently, taking the expectations of both
sides of (20) and using the linearity of expectation results in

E
[
||θ(k+1)−θ

∗||2
]
≤ E

[∣∣∣∣θ(k)−θ
∗∣∣∣∣2]

−2η(k)E
[ N

∑
i=1

hi(k)∇ f T
i
(
θ(k)

)(
θ(k)−θ

∗)]
+η

2(k)M2, (24)

where the second term on the right hand side can be written
as

−2η(k)E
[ N

∑
i=1

hi(k)∇ f T
i
(
θ(k)

)(
θ(k)−θ

∗)]
=−2η(k)

N

∑
i=1

E
[
hi(k)∇ f T

i
(
θ(k)

)(
θ(k)−θ

∗)]. (25)

Note that the statistics of hi(k) (i = 1,2, · · · ,N) are inde-
pendent of hi(t) for t < k, which implies that θ(k) and hi(k)
are statistically independent at time k since the statistics of
θ(k) are dependent only of hi(t) for t < k and i = 1,2, · · · ,N.
Hence, by using (2), Lemma 2, and the linearity of the
expectation, we can further write (25) as

−2η(k)
N

∑
i=1

E
[
hi(k)∇ f T

i
(
θ(k)

)(
θ(k)−θ

∗)]
=−2η(k)

N

∑
i=1

E
[
hi(k)

]
E
[
∇ f T

i
(
θ(k)

)(
θ(k)−θ

∗)]
=−2η(k)

N

∑
i=1

1
N
E
[
∇ f T

i
(
θ(k)

)(
θ(k)−θ

∗)]
=−2η(k)E

[ N

∑
i=1

1
N

∇ f T
i
(
θ(k)

)(
θ(k)−θ

∗)]
=−2η(k)E

[
∇LT (

θ(k)
)(

θ(k)−θ
∗)]. (26)

Moreover, by Assumption 2 (strong convexity of fi(θ)
and L

(
θ(k)

)
), we have

−2η(k)∇LT (
θ(k)

)(
θ(k)−θ

∗)≤−2η(k)
(
L
(
θ(k)

)
−L

(
θ
∗))

−η(k)µ||θ(k)−θ
∗||2.

(27)

Note that L
(
θ(k)

)
−L

(
θ ∗)≥ 0 holds for all k ≥ 0 since

θ ∗ ∈ Θ∗ (optimal point in the constraint set), which together
with taking the expectations of both sides of (27) results in

−2η(k)E[∇LT (
θ(k)

)
(θ(k)−θ

∗)]≤−η(k)µE[||θ(k)−θ
∗||2].

(28)

By using (25)-(28), (24) can be rewritten as

E
[
||θ(k+1)−θ

∗||2
]
≤
(

1−η(k)µ
)
E
[∣∣∣∣θ(k)−θ

∗∣∣∣∣2]
+η

2(k)M2

=CkE
[
||θ(k)−θ

∗||2
]
+η

2(k)M2.
(29)

The recursive relation (29) can be written as

E
[∣∣∣∣θ(k)−θ

∗∣∣∣∣2]≤ (k−1

∏
t=0

Ct

)
E
[∣∣∣∣θ(0)−θ

∗∣∣∣∣2]
+M2

(k−2

∑
t=0

( k−1

∏
l=t+1

Cl

)
η

2(t)+η
2(k−1)

)
.

(30)

Note that by Lemma 4,
∞

∏
t=0

Ct = 0 holds. Moreover, by

Lemma 5, Assumption 3, taking the limits of both sides of
(30) completes the proof.

IV. NUMERICAL EXAMPLE

We now apply the FedCOTA algorithm to a federated
logistic regression problem, where a system of agents, each
with access to only its own local dataset, tries to accomplish
a global binary classification task. Let the dataset available
to the i-th agent be Di = {dn

i }
|Di|
n=1, where dn

i = (un
i ,z

n
i ) ∈

ℜm ×{0,1}, and un
i and zn

i respectively represent input data
and labels available to i-th agent. Notice that all the agents
have 2 different classes of data, labeled by 0 or 1, and their
objective is to find a separating hyperplane in ℜm by using
the existing data so that the agent is able to separate some
unseen data from different classes. In order to accomplish
this in a federated manner, each agent utilizes cross-entropy
as its local cost function, which can be expressed as

fi(θ ,di) = λ ||θ ||22 −
1

|Di|

(
|Di|

∑
n=1

zn
i log

(
S(θ T un

i )
)

+(1− zn
i ) log

(
1−S(θ T un

i )
))
(31)
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Fig. 2: Comparison of a global logistic regression and feder-
ated logistic regression models. While the former is trained
over the entire dataset, the latter is trained via FedCOTA and
FedAVG.

where ẑn
i = S(θ T un

i ) is the local estimate of the label zn
i

by the i-th agent, S(x) = 1
1+e−x is the sigmoid function,

||θ ||2 is the L2-norm of the parameter vector θ , and λ is
the regularization hyper-parameter, where λ = 0 means no
regularization while λ = 1 represents maximum level of
regularization. Note that λ = 0.0001 has been chosen in
simulations, and the overall cost function given in (31) is
strongly convex. Moreover, since the parameter vector θ

is always in a closed and bounded (constraint) set Θ, the
second order derivative of (31) is bounded and therefore
has a Lipschitz continuous gradient. Additionally, for each
agent, the step size is identically chosen as η(k) = 1√

k+1
,

and the overall cost function is then

L(θ) =
1
N

N

∑
i=1

fi(θ ,di) (32)

where N is the number of agents in the system. We consider a
system of 10 agents, each having a total number of |Di|= 100
training samples. The parameter vector has dimension m= 3,
i.e., θ ∈ℜ3, which also includes a bias term. The objective is
to find θ ∗ = argminθ∈ΘL(θ), where Θ= {θ ∈ℜ3| ||θ(k)|| ≤
15,∀k ≥ 0} is the constraint set.

In order to obtain a desired parameter vector θd , we have
trained a global logistic regression model, which has access
to the entire dataset. We would expect that the parameter
vector θ(k) tends to converge θd . This can be assessed by
computing ε(k) = log10

(
θ(k)−θd
θ(0)−θd

)
for each communication

round k ≥ 0. As it can be seen in Fig. 2, the parameter vectors
of agents utilizing the FedCOTA algorithm tend to converge
to θd .

Note that Fig. 2 also includes a comparison of the Fed-
COTA algorithm and the standard FedAVG algorithm [5],
for which the TDMA scheme is used for communication

between agents and the central unit. In this case, individual
time slots are allocated for each agent to transmit its param-
eter vector at each communication round. After receiving
parameter vectors, the server computes the average of them
and sends it back to the agents. Since we consider a system
with N = 10 agents, it takes 10 time slots per communication
round for each agent to transmit its updated parameter vector
while only 2 are needed for the FedaOTA algorithm (see (7)
and (8)), which makes it 5 times faster than the FedAVG
algorithm (see Fig. 2).

V. CONCLUSION

In this paper we have investigated the federated learning
problem via Over-the-Air Computation, which provides sig-
nificant improvements in terms of communication efficiency
and privacy. We have investigated the convergence properties
of the proposed gradient-based algorithm by considering
time-varying step sizes. Subsequently, we have presented
some numerical examples to illustrate our theoretical results.

Our current research is on the use of stochastic gradient
descent, which is more efficient when we have large num-
ber of training samples. In addition, future work will also
include cases where the communication between agents is
fully distributed and data distribution among users are not
independent and identically distributed (non-iid).

VI. APPENDIX: PROOF OF LEMMA 5

Due to Assumption 3, Ck is increasing and nonnegative.
Then, we have

k−2

∑
t=0

( k−1

∏
l=t+1

Cl

)
η

2(t)+η
2(k−1)≤

k−1

∑
t=0

(
Ck−1

)k−t−1
η

2(t).

(33)

Moreover, again by Assumption 3, η(k) is decreasing and
limk→∞ η(k) = 0. Thus, for an arbitrarily given ε > 0, there
exists a time step k0 > 0 such that η(k)≤ ε , ∀k ≥ k0. Since
η(k) is decreasing, we have

η(k)< η(k−1) =
1−Ck−1

µ
. (34)

Multiplying both sides of (34) with η(k) provides for all
k ≥ k0

η
2(k)<

(1−Ck−1)ε

µ
. (35)

For k > k0+1, the right hand side of (33) can be bounded
as

k−1

∑
t=0

(
Ck−1

)k−t−1
η

2(t)≤
k0

∑
t=0

(
Ck−1

)k−t−1
η

2(t)

+

k−1

∑
t=k0+1

(
Ck−1

)k−t−1
η

2(t).

(36)
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Decreasingness of η(k) implies η2(0)≥ η2(k) for k ≥ 0.
From (14), Ck−1 ≤ 1 for all k ≥ 1. Hence, the first term on
the right hand side of (36) can be written as

k0

∑
t=0

(
Ck−1

)k−t−1
η

2(t)≤ η
2(0)

k0

∑
t=0

(
Ck−1

)k−t−1

= η
2(0)

k0

∑
t=0

(
Ck−1

)k−k0+t−1

= η
2(0)

(
Ck−1

)−k0
(
Ck−1

)k−1
k0

∑
t=0

(
Ck−1

)t

≤ η
2(0)

(
Ck−1

)−k0
(
Ck−1

)k−1
(k0 +1),

(37)

where limk→∞(Ck−1)
k−1 = 0 holds by Lemma 3. Thus, we

have

lim
k→∞

k0

∑
t=0

(
Ck−1

)k−t−1
η

2(t) = 0. (38)

In addition, (35) holds for k > k0 +1, which allows us to
find an upper-bound for the second term on the right hand
side of (36) as

k−1

∑
t=k0+1

(
Ck−1

)k−t−1
η

2(k)≤ (1−Ck−1)ε

µ

k−1

∑
t=k0+1

(
Ck−1

)k−t−1

=
(1−Ck−1)ε

µ

(
1−
(
Ck−1

)k−k0−1

1−Ck−1

)
≤ ε

µ
. (39)

By using (37)-(39), and taking the limit of both sides of
(36) results in

lim
k→∞

k−1

∑
t=0

(
Ck−1

)k−t−1
η(t)≤ ε

µ
. (40)

Since ε is arbitrary, we complete the proof.
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