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Abstract— The literature presents a vast array of advanced
metaheuristic methods for photovoltaic parameter estimation.
However, the focus of this study is not to introduce another new
method into this already crowded field. Instead, we examine
two important but often overlooked questions: (i) are existing
results globally optimal, and (ii) can a simpler method achieve
comparable performance. We conduct case studies using two
widely used I-V curve datasets. To address the first issue,
we develop a branch and bound algorithm that, despite its
sluggishness, either certifies the global minimum or provides a
tight upper bound. These values serve as useful benchmarks
for fair metaheuristic evaluation and further development.
To answer the second question, our extensive examination
and comparison surprisingly reveal that a basic differential
evolution (DE) algorithm can achieve the certified global min-
imum or obtain the best known result. Additionally, the DE
algorithm’s runtime is much shorter than that of current state-
of-the-art metaheuristic methods, making it a great choice for
time-sensitive applications. This remarkable finding suggests
that using increasingly complex metaheuristics in ordinary PV
parameter estimation problems might be unnecessary. Finally,
we discuss the implications of these outcomes and propose
the simple DE method as the premier choice for industrial
applications.

I. INTRODUCTION

Accurate modeling of solar photovoltaic (PV) systems is
necessary for their effective design, simulation, power fore-
casting, and optimal control [1]–[3]. The dominating method
to describe solar PV systems uses an analogous electrical
circuit model [4], which has been further specialized to the
single-diode model (SDM), the double-diode model (DDM).
Despite the intuitiveness of these circuit models, the main
difficulty lies in the accurate determination of unknown
parameters in the model [3]–[6].

PV parameter estimation is commonly formulated as a
nonlinear optimization problem from the perspective of I-V
(current-voltage) curve fitting. The problem has been widely
attempted with various metaheuristic algorithms. Most meta-
heuristics are population-based by exploiting a swarm of

Shuhua Gao is with School of Control Science and Engineering, Shan-
dong University, Jinan 250100, China shuhuagao@sdu.edu.cn

Cheng Xiang (corresponding author) and Tong Heng Lee are with
Department of Electrical and Computer Engineering, National University
of Singapore, Singapore 119077 elexc@nus.edu.sg

Ming Yu is with Power Automation Pte Ltd, 438B Alexandra Road,
Alexandra TechnoPark, 119968 Singapore

Kuan Tak Tan is with the Engineering Cluster, Singapore Institute of
Technology, 10 Dover Drive, 138683 Singapore

This work was supported partially by National Natural Science Founda-
tion of China under Grant 62303277, Young Experts of Taishan Scholar
Project (NO. tsqn202306067) and the Natural Science Fund of Shandong
Province under Grant 2023HWYQ-003 and ZR2023QF048 and partially by
the Energy Market Authority of Singapore through the EDGE Programme
under LA/Contract No: EDGE-GC2018-002.

interacting agents to search the solution space efficiently
[3]. Since metaheuristic algorithms are mostly not problem-
specific, any metaheuristic optimizer may be applied to PV
parameter estimation in principle. It is unsurprising that a
large number of metaheuristic methods have been proposed
for PV parameter estimation. Some recent examples include
guaranteed convergence particle swarm optimization [7],
improved JAYA optimization [8], performance-guided JAYA
[9], self-adaptive ensemble-based differential evolution [10],
teaching-learning-based optimization [2], [11], grey wolf
optimizer and cuckoo search based hybrid method [12],
among many others. We omit their technical details due to
space limit. Interested readers may refer to [1], [3], [6].

Despite the increasing interest in such metaheuristics,
none of them can guarantee or identify the discovery of
the global optimum [5]. Moreover, the minimal root mean
square error (RMSE) of curve fitting attained by different
metaheuristics has suffered from stagnation with no further
reduction in recent studies (see [2, Table 3], [9, Table 3],
and Table VI). Thus, one may wonder naturally whether
the best-known result is already the global minimum such
that we can avoid futile efforts by building more advanced
metaheuristics blindly. Also, since a variety of metaheuristics
can get the same RMSE value, another natural query is
how sophisticated a metaheuristic has to be to achieve
effective PV parameter estimation. An industrial practitioner
desires certainly an effective yet simple and fast algorithm.
In particular, the algorithm’s efficiency is critical for time-
sensitive applications, for example, the real-time monitoring
of solar cell degradation via photovoltaic curves telemetry
using a microprocessor on a satellite [13].

In this study, we attempt to answer the above two questions
through extensive investigations using the two most broadly
studied benchmark datasets (mainly to facilitate comparison)
[14]. The main contributions of this paper are listed below.

• The global minimum RMSE of the SDM has been
certified on both datasets for the first time using an
interval arithmetic based branch and bound method.
Besides, a useful upper bound of the global minimum
for the DDM is obtained. These values serve as valuable
references for assessing and developing metaheuristics.

• We show that an intentionally simple differential evo-
lution (DE) algorithm is adequate to attain the global
minimum for the SDM and achieve equally high ac-
curacy for the DDM compared with a variety of so-
phisticated metaheuristics. Moreover, the DE algorithm
excels in performance stability and incomparable time
efficiency owing to its simplicity and efficacy, making
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it particularly suitable for real-time applications.
• Based on our discoveries and comprehensive compar-

isons with state-of-the-art methods, we recommend the
simple DE algorithm to solar industry engineers as
the first choice in practical applications, particularly
time-sensitive ones. Furthermore, we provide useful
suggestions for researchers to reconsider perspectives on
PV parameter estimation and to avoid designing overly
complex metaheuristic methods.

It should be noted that the purpose of this paper, as
previously stated, is not to develop another new metaheuristic
method for PV parameter estimation. The simple differential
evolution method focused on in this study is an established
technique and certainly not new, but we choose it pur-
posefully to highlight the danger of over-engineering that
is often present in current metaheuristic approaches. Rather
than introducing another such method, this study aims to rig-
orously establish the limit of estimation accuracy achievable
through metaheuristic techniques. Additionally, we aim to
revive the use of the classic differential evolution algorithm
for PV parameter estimation, which has been unfortunately
overlooked in current literature.

II. SYSTEM MODELING AND PROBLEM FORMULATION

A. Modeling of PV systems

The electrical circuit corresponding to the SDM is shown
in Fig. 1(a). Specifically, the circuit contains a current source
Iph, which refers to the photocurrent generated by the PV
cell, a diode flowing current Id, and two resistors with
resistance Rp and Rs, respectively. We can calculate the
diode current Id using the Shockley equation as follows,

Id = I0

[
exp

(
q(V + IRs)

nkT

)
− 1

]
, (1)

where I0 is the reverse saturation current of the diode, n is
the diode ideal factor, T is the temperature in Kelvin, and V
is the output voltage of the cell. The others are just physical
constants: the electron charge q = 1.60217646 × 10−19 C
and the Boltzmann constant k = 1.3806503× 10−23 J/K.

The output current I is computed using first principles by

I = Iph − I0

[
exp

(
q(V + IRs)

nkT

)
− 1

]
− V + IRs

Rp
. (2)

There are five unknown parameters in (2), which are
collected into a parameter vector θS = [Iph, I0, n,Rs, Rp].

Despite the simplicity and usefulness of the above SDM,
it does not consider the effect of recombination current loss
in the depletion region [1], [6]. An additional diode can be
introduced into the circuit to compensate for this specific
loss to attain higher accuracy. The equivalent circuit of the
DDM is illustrated in Fig. 1(b). In analogy to the SDM (2),
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Fig. 1: Equivalent circuit of a PV cell. (a) SDM; (b) DDM.

the DDM is derived straightforwardly as follows:

I =Iph − Id1 − Id2 − Ip

=Iph − I01

[
exp

(
q(V + IRs)

n1kT

)
− 1

]
−

I02

[
exp

(
q(V + IRs)

n2kT

)
− 1

]
− V + IRs

Rp
, (3)

where I01 and I02 are the reverse saturation current of the
two diodes, and n1 and n2 denote the ideality factor of the
two diodes, respectively. The DDM has seven parameters in
total, denoted by θD = [Iph, I01, I02, n1, n2, Rs, Rp].

A PV module contains multiple PV cells connected in
series or parallel. It is standard to assume the same parameter
values for all cells for computational tractability purposes.
Then, all cells are lumped into a single, functionally equiv-
alent cell [9], [14], [15]. Thus, the same procedure is used
to fit either the SDM (2) or the DDM (3) to the I-V curve
of a PV module.

B. Optimization problem formulation

The fundamental principle of parameter estimation via I-V
curve fitting is to find appropriate parameter values such that
the current values calculated with either the SDM (2) or the
DDM (3) match the measurement values for a set of data
points [1]. Without loss of generality, we discuss below the
problem formulation using the SDM (2), termed fS hereafter,
with parameters θS , whose principle can be transplanted to
the DDM case seamlessly.

Note that we cannot write down a simple closed-form so-
lution I = f−1

S (V ) for the model fS (2) to compute I given
V . As a workaround, given a measurement (V m, Im) and a
tentative parameter vector θS , the majority of metaheuristic-
based studies compute the predicted current with the model
approximately but computationally economically as

I ≈ fS(V
m, Im;θS), (4)

and try to reduce the deviation between I and Im by
adjusting θS (see [2], [9], and [15] among others).

The root mean square error (RMSE) is widely used to
quantify the difference between computed current values and
the measurement values [10], [13]. Supposing there are N
data points in the I-V curve, we get the following constrained
optimization problem, which is known widely as nonlinear
least-squares regression in the literature.

minimize J(θ) =

N∑
i=1

(f(V m
i , Imi ;θ)− Imi )

2
, (5a)

subject to θ ∈ Θ. (5b)
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Algorithm 1 Interval branch and bound optimization
Input: objective function f : Rn → R and bound constraints X ⊂

Rn, precision parameters ϵf and ϵx
Output: lower and upper bounds of the global minimum value

[f, f̄ ], a list of boxes LS that contain all possible global
minimizers

1: initialize a list L← {[x]} with [x] corresponding to X
2: initialize an empty candidate solution list LS

3: f̄ ←∞ ▷ Upper bound of f∗

4: while L ̸= ∅ do
5: choose [x] ∈ L and remove [x] from L
6: contract [x]
7: evaluate f at the center of [x] and get value fc
8: Update f̄ by f̄ ← min{f̄ , fc}
9: if [x] satisfies criteria (6) then

10: append [x] to LS

11: else
12: split [x] into subboxes and add them to L
13: end if
14: end while
15: remove any box [x] ∈ LS from LS with f([x]) > f̄
16: f ← min[x]∈LS

f([x]) ▷ Lower bound of f∗

where f refers to either the SDM fS (2) or the DDM fD
(3), and θ is the corresponding parameter vector θS or θD.
(V m

i , Imi ) is the i-th data point in measurement. Θ denotes
the specified bound constraints of θ that take physical reality
into consideration (see Table I for examples).

III. OPTIMIZATION METHODS

In this section, we apply a branch and bound (B&B) based
deterministic global optimization technique for rigorous cer-
tification of the solution optimality. Then, we choose deliber-
ately a simple stochastic optimization algorithm, differential
evolution (DE), to compete the increasingly sophisticated
metaheuristic methods prevalent in the literature.

A. Deterministic global optimization with an interval arith-
metic based branch and bound algorithm

The fundamental task of deterministic global optimization
(DGO) is to determine rigorously (i.e., with theoretical
guarantees) the global minimum of an objective function
f subject to a set of constraints [16]. However, finding
the global minimum for a general nonconvex optimization
problem like (5) is NP-hard [16]. We are practically more
interested in identifying a solution sufficiently close to the
true global minimum, called the ϵ-global minimum [16].

The most popular algorithmic framework of DGO is the
branch and bound (B&B) method [16]. The search space
is divided recursively into smaller subspaces and forms
accordingly a tree structure of subproblems. The consequen-
tial pruning of search space is performed by eliminating
subproblems whose lower bound is no better than the best
upper bound found so far. Interval analysis is a handy tool
to estimate the lower and upper bounds of regions/branches
of the search space [17].

The general B&B framework with interval arithmetic is
depicted in Algorithm 1, where [x] denotes an n-dimensional

interval vector (also known as an interval box, whose com-
ponents are intervals). Applying a function f : Rn → R to
[x] yields another interval termed f([x]) = [f([x]), f̄([x])],
where f([x]) and f̄([x]) denote the lower and upper bounds
respectively and are calculated rigorously with interval anal-
ysis [17]. Each iteration is composed of three main com-
ponents: box selection (Line 5), box contracting (Line 6),
and box splitting (Line 12). In particular, the purpose of
contracting is to delete subboxes inside [x] that cannot
contain a globally optimal solution to reduce search space
[17, Chapter 12]. In order to be included in LS , a box [x]
must satisfy two conditions that are checked in Line 9:

width([x]) ≤ ϵx, width(f([x])) ≤ ϵf , (6)

where width(·) denotes the width of a box defined by its
largest diameter [16]. ϵx and ϵf are two tolerance parameters
provided by the user, often known as the precision. After the
main loop finishes, we post-process the solution list LS in
Line 15 to discard boxes which cannot contain the global
minimum x∗ according to the latest knowledge of f̄ .

At the end of Algorithm 1, we get the (usually very
tight) bounds of the global minimum f∗ ∈ [f, f̄ ]. It is
guaranteed that f̄([x]) − f∗ ≤ 2ϵf ,∀[x] ∈ LS [17]. Any
x inside the remaining boxes LS becomes an ϵ-global
minimum with ϵ = 2ϵf in this case [16]. Though the exact
global minimum x∗ and f∗ are still unknown and remain
computationally intractable, a reasonably tight bound by
setting small ϵf and ϵx in Algorithm 1 is usually enough
for practical purposes. Note that Algorithm 1 only sketches
out the basic skeleton of interval B&B algorithms. We resort
to a dedicated interval analysis library ibexopt (http:
//www.ibex-lib.org (v2.8)) in actual implementation.

B. Stochastic global optimization with a simple DE

Though an interval B&B algorithm can ascertain the
global optimum rigorously in theory, it is generally much
more computationally expensive than metaheuristic algo-
rithms, rendering itself impractical in industrial applications
[5]. We will report its intolerably long running time in
Section IV-B. In many engineering applications, it is ei-
ther unnecessary or computationally intractable to obtain
the exact global minimum [16], and metaheuristic methods
are particularly useful in these scenarios. In view of the
abundance of metaheuristics (recall Section I), we take an
elementary differential evolution (DE) algorithm on purpose
to investigate whether highly complicated metaheuristics are
really necessary for PV parameter estimation. Again, we
would like to emphasize that our objective is not to develop
yet another new metaheuristic but to investigate whether a
fundamental one is empirically sufficient for practical PV
parameter estimation tasks.

Each iteration of DE comprises three steps: selection,
crossover, and mutation. The distinguishing feature of DE
is its mutation with difference vectors [18]. To minimize a
function f : Rn → R with bound constraints X ⊂ Rn, we
outline the simple DE in Algorithm 2, whose main body
includes only five lines in agreement with its simplicity. The
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Algorithm 2 Simple differential evolution
Input: objective function f : Rn → R and bound constraints X ⊂

Rn, control parameters Np, Cr, F,G
Output: the best vector x̂ and the function value f̂

1: generate an initial population P 0 ← {x0
i }

Np

i=1 with (7)
2: for g from 0 to G− 1 do
3: for each vector xg

i ∈ P g do
4: generate a donor vector vg

i by (8) ▷ mutation
5: vg

i ← bounce-back(vg
i ) by (9)

6: ug
i ← crossover(vg

i ,x
g
i ) by (10)

7: xg+1
i ← select(ug

i ,x
g
i ) by (11)

8: insert xg+1
i into the new population P g+1

9: end for
10: end for
11: x̂← the best vector in PG and f̂ ← f(x̂)

initial population P comprises Np vectors, and each initial
vector x0

i , i ∈ [1, Np] is generated randomly by

x0
i,j = bj + rand(0, 1) · (b̄j − bj), (7)

where x0
i,j denotes the j-th component of x0

i , bj and b̄j
represent the lower and upper bound of the j-th variable
respectively, j ∈ [1, n]. Besides, rand(0, 1) generates a
random number between 0 and 1.

Several mutation strategies have been developed for DE
[18]. Here we adopt the most commonly used one called the
“DE/rand/1” scheme. For each vector in the g-th iteration, a
donor vector vg

i , i ∈ [1, Np], is produced by

vg
i = xg

a + F (xg
b − xg

c), a ̸= b ̸= c ̸= i, (8)

where a, b, c ∈ [1, Np] are randomly chosen, and F is the
scaling factor typically in the range [0.4, 1] [18].

Note that the donor vector vg
i in (8) may lie outside the

bounded region X . We adapt a simple bounce-back strategy
[18] to handle bound constraints in Line 5, which relocates
each infeasible component between the bound it violates and
the corresponding value of the target vector xg

i :

vgi,j ←

{
bj + rand(0, 1) · (xg

i,j − bj) if vgi,j < bj
b̄j − rand(0, 1) · (b̄j − xg

i,j) if vgi,j > b̄j
. (9)

In DE, the donor vector vg
i and the target vector xg

i mate
to produce a new vector ug

i named the trial vector. The
binomial crossover scheme is widely used as follows:

ug
i,j =

{
vgi,j if rand(0, 1) ≤ Cr or j = β

xg
i,j otherwise

(10)

where β ∈ [1, n] is a random integer that is generated anew
for each i, and Cr is the user provided crossover rate [18].
Eq. (10) says each entry of ug

i comes from either vg
i or xg

i .
Finally, DE imposes elitism by selecting the better one

between the target vector xg
i and the trial vector ug

i as the
i-th vector into the next generation according to their fitness:

xg+1
i =

{
ug
i if f(ug

i ) ≤ f(xg
i )

xg
i otherwise

. (11)

TABLE I: Parameter search range in numerical experiments.

Parameter RT PW

Lower Upper Lower Upper

Iph (A) 0 1 0 2
I0, I01, I02 (µA) 0 1 0 50
n, n1, n2 1 2 1 50
Rs (Ω) 0 0.5 0 2
Rp (Ω) 0 100 0 2000

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Datasets and experimental settings

The two PV I-V datasets [14] shown in Fig. 2 serve as
the de facto standard in evaluating algorithms’ performance
(e.g., [3], [13]). The first dataset named “RT” contains 26
data points for an RTC France solar cell (1000 W/m2, 33
◦C). The second dataset “PW” with 25 data points refers
to a Photowatt-PWP201 solar module (1000 W/m2,45 ◦C).
Combining the two datasets and two models, we consider
four cases in total. The naming rule is “model+dataset” for
simplicity, e.g., case “SDM+RT” fits the SDM to the RT
dataset. The parameter search range (i.e., Θ in (5)) in the
literature, as listed in Table I, is adopted for fair comparisons.

All metaheuristic algorithms are implemented in MAT-
LAB R2020a for a fair comparison of runtime. The results
presented below were obtained on a laptop with a 1.8 GHz
Core i7-8550U CPU, 8 GB RAM, and Windows 10.

B. Global optimality analysis via interval B&B

Despite the large number of metaheuristics for PV pa-
rameter estimation (see, e.g., [19, Table 1]), none of them
can certify the finding of the global minimum. This section
presents results regarding global optimality.

1) SDM results: Note that a B&B algorithm is generally
computationally intensive. Following [5], we limited the
runtime of ibexopt to 20000 seconds for “SDM+RT”.
Unlike [5], we set the absolute and relative precision to
smaller values (1E-13 and 1E-9) in order to obtain tighter
bounds of the global minimum (that is, [f, f̄ ] in Algorithm
1). The optimization results for “SDM+RT”’ are reported in
the first column of Table II. In particular, the bounds of the
RMSE enjoy a negligible gap. Results reported in existing
studies are mostly truncated to five significant digits. Hence,
we can certify safely, for the first time, that 9.8602E-4 is
indeed the global minimum RMSE value of “SDM+RT”.
The parameter values in Table II yield the upper bound of
RMSE, and those values match closely to results acquired
with various metaheuristics (like [19, Table 1]).

We next examine the “SDM+PW” case. The major differ-
ence is the considerably widened parameter search range for
PW in Table I, which may pose a big challenge to the interval
B&B algorithm and require an even longer runtime. In
contrast to [5], we increased the timeout to 40000 s. The best-
known RMSE (see, e.g., [12, Table 13]) is 2.4250E-3, which
shows exact agreement with the RMSE bounds reported in
Table II. Besides, as expected, the parameter values reported
therein are also extremely close to those in Table II. Again,
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TABLE II: Results for SDM using interval B&B.

Variable RT PW

Iph (A) 0.760779120136 1.03052020484
I0 (µA) 0.322873926858 3.48287904343
n 1.48113747635 48.6435574734
Rs (Ω) 0.0363792207867 1.20123680201
Rp (Ω) 53.7009537057 981.263690780

RMSE [9.860250397955652E-4,
9.860250417458982E-4]

[2.425076598320144E-3,
2.425076599532477E-3]

Gap 1.950333050615427E-12 1.2123329007351913E-12
Time (s) 13547 38924

(a)

(b)

Fig. 2: Measured and estimated I-V curves using parameter
values optimized by interval B&B. (a) RT; (b) PW.

such a consensus indicates the correctness of each other. The
measured and the reconstructed I-V curves using SDM and
parameters in Table II are shown in Fig. 2 with admirable
fitting accuracy. Note that the negative current and voltage
values therein simply imply a reverse direction [14].

2) DDM results: The DDM is more challenging due to its
two extra parameters. We decided to allow ibexopt more
time (24 hours) to get hopefully tighter optimality bounds.
The overall workflow is identical to the SDM case above.
The results are reported in Table III. Unfortunately, the lower
bound remains zero, even if we run ibexopt for another
5 hours. This failure is probably caused by the notorious
cluster effect in B&B methods [16].

Despite the zero lower bound, the revealed upper bound
of the RMSE is still informative since it is very close to the
best-known result, e.g., 9.8248E-4 for the “DDM+RT” case
(see [9, Table 3]). The upper bound 9.8358E-4 in Table III
implies that 9.8248E-4 is likely to be the global minimum
though there is no theoretical guarantee. We did not find
results reported for “DDM+PW” that are compatible with
our analysis here. Nonetheless, the result of “DDM+PW” in
Table III looks reasonable by comparing with the SDM coun-
terpart in Table II: the RMSE upper bound of DDM is even
smaller than the lower bound of SDM since, as expected,
the DDM can better fit the data because of its two additional
parameters [10]. Nonetheless, since the RMSE values of both

TABLE III: Results for DDM using interval B&B.

Variable RT PW

Iph(A) 0.760815738919 1.0339286971
I01(µA) 0.217867184041 1.86575472010E-23
I02(µA) 0.781454995330 0.535399234849
n1 1.44827388213 9.58860778809
n2 1.98183166760 42.6724488388
Rs(Ω) 0.0367359827333 1.63619822583
Rp(Ω) 55.8931982861 607.690281231

RMSE [0,
9.83581875679E-4]

[0,
1.61865668151E-3]

Gap 9.83581875679E-4 1.61865668151E-3
Time (s) 86400 43200

TABLE IV: Results of DE in a typical run.

SDM DDM
RT PW RT PW

Iph(A) 0.760775 1.03051 0.760781 1.03051
I0/I01(µA) 0.323021 3.48226 0.225974 9.8113E-3
I02(µA) — — 0.749344 3.47245
n/n1 1.481184 48.6428 1.45101 48.64282
n2 — — 1.99999 48.64283
Rs(Ω) 0.036377 1.20127 0.0367404 1.20127
Rp(Ω) 53.71852 981.982 55.4854 981.982
RMSE 9.8602E-4 2.4250E-3 9.8248E-4 2.4250E-3

models are pretty small, it is hard to differentiate visually the
two estimated I-V curves, which are highlighted in Fig. 2.

C. Optimization via simple differential evolution (DE)

The interval B&B algorithm is not suitable for regular PV
parameter estimation due to its excessively long execution
time. By contrast, various metaheuristic methods can obtain
a reasonably good solution in a far shorter time. However, an
interesting, practically important, yet rarely studied problem
is whether normal PV parameter estimation really demands
the increasingly complicated metaheuristics prevailing in the
recent literature. In this section, we try to get some empirical
insights by examining whether the intentionally simple DE in
Algorithm 2 can achieve comparable performance. Starting
with the canonical values recommended in [18, Section III],
we quickly determined appropriate control parameter values
for the simple DE as Np = 50, Cr = 0.6, F = 0.9, and
G = 800 (for SDM) or 2000 (for DDM)

Since DE is a stochastic algorithm, we conventionally
(e.g., [9], [15]) execute DE 30 times for each case and report
the statistic characteristics. For illustration purposes, we list
the DE results in a typical run in Table IV, whose estimated
I-V curves are visually almost identical to Fig. 2 (since all
RMSE values are likewise tiny) and thus omitted here. The
convergence curves of this simple DE for RT using both
models in a typical run are shown in Fig. 3. The DE usually
took far fewer generations to converge than the conservative
value G we specified. The convergence curves of DE with
the PW dataset share a similar character and is omitted here
but presented in the accompanying online materials.

The statistics of RMSE in 30 runs are reported in Table V.
Overall, the performance of our DE algorithm is remarkably
stable despite its inherent stochasticity. When applying to the
SDM on both datasets and to “DDM+PW”, the DE algorithm
always yields the same minimal RMSE in all 30 trials. Even
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Fig. 3: Convergence curves of DE with RT: (a) SDM (b)
DDM.

TABLE V: Statistics of RMSE values by DE in 30 runs.

SDM DDM
RT PW RT PW

Min 9.8602E-4 2.4250E-3 9.8248E-4 2.4250E-3
Mean 9.8602E-4 2.4250E-3 9.8267E-4 2.4250E-3
Max 9.8602E-4 2.4250E-3 9.8602E-4 2.4250E-3
Std 4.3929E-17 2.9525E-17 7.1027E-7 2.3955E-17

in the worst “DDM+RT” case, the gap between the maximum
and minimum RMSE values in 30 runs is still minor, as
implied by the slight standard deviation in Table V.

Table V tells that the simple DE managed to find the
global minimum RMSE, as identified by interval B&B,
for both SDM cases. As for the more challenging DDM
cases, DE achieved the best-known result for “DDM+RT”,
i.e., 9.8248E-4. However, the RMSE attained by DE for
“DDM+PW” is still above the identified upper bound
(2.4250E-3 vs 1.6186E-3 in Table III). The main reason is
presumably attributed to the extraordinarily small value of
I01 in the potential optimal solution (around 1.86E-23 in
Table III), which poses a overwhelming challenge to DE or
any metaheuristic method in general (see Table VI below).

D. Comparison with existing algorithms

We compare the performance of the simple DE (Algorithm
2) with more sophisticated metaheuristics, inspecting both
accuracy and efficiency. We select state-of-the-art algorithms
of distinct methodology and pick particularly DE variants for
a comprehensive comparison. The existing results have been
listed as they appear in four latest articles: [2, Table 12],
[9, Table 3], [15, Table 9], and [10, Table 9]. All results
are listed in Table VI. Since the hardest case “DDM+PW”
were not considered in these papers, we run the original
source code of two recent studies [9], [10] (see https:
//github.com/cilabzzu) and report their results for
fair comparisons. The statistics of the RMSE values in 30
runs are listed in Table VI.

To examine the statistical significance of performance
difference between the simple DE and the other methods,
we perform the Mann-Whitney U test [10] and report results
in the “U test” column of Table VI. The null hypothesis
H0 indicates equally good performance, and the level of
significance is 0.05. In the results reported in Table VI, the
symbol “+” indicates a statistically significant performance
difference, i.e., rejecting the null hypothesis, while “–” means

Fig. 4: Runtime comparison of different algorithms.

TABLE VI: Comparison of statistical results of various
algorithms in four cases. From top to bottom: “SDM+RT”,
“SDM+PW”, “DDM+RT”, and “DDM+PW”.

Method RMSE U testMin Mean Max Std

MLBSA [20] 9.8602E-4 9.8602E-4 9.8602E-4 7.0800E-11 +
TLABC [11] 9.8602E-4 9.9417E-4 1.0308E-3 1.1896E-5 +
IJAYA [8] 9.8602E-4 9.8605E-4 9.8684E-4 1.4931E-7 +
PGJAYA [9] 9.8602E-4 9.8602E-4 9.8603E-4 2.8029E-9 +
SATLBO [21] 9.8602E-4 9.8879E-4 1.0067E-3 4.8133E-6 +
SGDE [15] 9.8602E-4 9.8602E-4 9.8603E-4 2.4746E-9 –
SEDE [10] 9.8602E-4 9.8602E-4 9.8603E-4 4.2000E-17 –
CoDE [22] 9.8602E-4 9.8602E-4 9.8602E-4 2.3100E-17 –
Simple DE 9.8602E-4 9.8602E-4 9.8602E-4 2.9464E-17
MLBSA 2.4250E-3 2.4253E-3 2.4336E-3 1.5600E-6 +
TLABC 2.4250E-3 2.4254E-3 2.4287E-3 8.7464E-7 +
IJAYA 2.4250E-3 2.4251E-3 2.4253E-3 5.0766E-8 +
PGJAYA 2.4250E-3 2.4251E-3 2.4260E-3 1.7859E-7 +
SATLBO 2.4250E-3 2.4254E-3 2.4315E-3 1.1622E-6 +
SGDE 2.4250E-3 2.4250E-3 2.4250E-3 4.1697E-10 +
SEDE 2.4250E-3 2.4250E-3 2.4250E-3 3.1400E-17 –
CoDE 2.4250E-3 2.4250E-3 2.4250E-3 2.1700E-17 –
Simple DE 2.4250E-3 2.4250E-3 2.4250E-3 1.7547E-17
MLBSA 9.8248E-4 9.8506E-4 9.8613E-4 1.2400E-6 +
TLABC 1.0012E-3 1.2116E-3 1.9826E-3 2.1100E-4 +
IJAYA 9.8249E-4 9.8686E-4 9.9941E-4 3.2211E-6 +
PGJAYA 9.8260E-4 9.8603E-4 9.9599E-4 2.3666E-6 +
SATLBO 9.8282E-4 1.0054E-3 1.2306E-3 5.0271E-5 +
SGDE 9.8441E-4 9.8577E-4 9.8602E-4 4.0150E-7 +
SEDE 9.8248E-4 9.8289E-4 9.8602E-4 9.1700E-7 –
CoDE 9.8249E-4 1.0036E-3 1.5496E-3 1.0300E-4 +
Simple DE 9.8248E-4 9.8273E-4 9.8602E-4 8.9630E-7
PGJAYA 2.4250E-3 2.4272E-3 2.4485E-3 5.4346E-6 +
SEDE 2.4250E-3 2.4250E-3 2.4250E-3 6.6661E-17 –
Simple DE 2.4250E-3 2.4250E-3 2.4250E-3 2.7356E-17

there is no statistically significant evidence to conclude the
performance difference.

Overall, our simple DE (Algorithm 2) and several strong
competitors like SEDE can attain the best RMSE values.
Statistically, the Mann-Whitney U test indicates that the
accuracy of the simple DE is on par with the selected
state-of-the-art approaches such as SEDE. The result is
somewhat surprising given the extreme simplicity of the
simple DE. Unfortunately, such simple metaheuristics have
been largely overlooked in the current literature. Note that
we compare the simple DE intentionally with three more
complicated DE variants: SGDE, SEDE, and CoDE. In the
two SDM cases in Table VI, the four DE algorithms exhibit
almost identical accuracy in terms of RMSE values, while
CoDE demonstrates the highest stability measured by the
standard deviation and SGDE is the least stable one. By
contrast, in the more challenging DDM cases, our simple
DE outperforms both CoDE and SEDE with its enhanced
performance stability.
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The most apparent advantage of the simple DE is its
substantially reduced running time (< 1 s). This impressive
speedup is mainly brought by its extreme simplicity includ-
ing only four computationally cheap equations in Algorithm
2. Besides, note that the evaluation of the objective function
(5a) with a few dozens of data points is inexpensive, which
implies consequently that it is usually the algorithm’s in-
ternal computation burden that dominates the overall time
consumption. This claim is supported particularly by the
significantly longer runtime of the other three more complex
DE variants in Fig. 4.

As for the “DDM+PW” case in Table VI, we notice that
the best RMSE value attained by the three algorithms all
turns out to be 2.4250E-3, though this value is certainly
not the global minimum (recall the upper bound ascertained
in Table III). As mentioned in Section IV-C, this failure is
possibly caused by the excessively small true value of I01
(see Table III) that can challenge all metaheuristic methods.

In Table VI, the RMSE values attained by various meth-
ods, on the level of 1E-4 or 1E-3, seem sufficiently small for
practical applications. Such observations also justify the use
of a simpler algorithm from another angle: the excessively
high accuracy may be pragmatically unnecessary, and a
practitioner can opt to trade off accuracy with algorithmic
simplicity. Even better, extensive examinations above have
validated the competitive accuracy of the simple DE method
despite its extraordinary simplicity and efficiency.

V. CONCLUSION

In this paper, we tried to address two essential issues of PV
parameter estimation that have been largely ignored in the
current literature. With the two most widely used benchmark
datasets, the globally minimum RMSE for the SDM and a
reasonably tight upper bound for the DDM were certified
rigorously by an interval analysis based B&B algorithm.
However, the running time of this interval B&B algorithm
is overly long for practical usages despite its theoretical
guarantee. Next, we showed through extensive examinations
that, for the first time and somewhat surprisingly, a sim-
ple DE algorithm (Algorithm 2) was capable of locating
the global minimum or at least attaining the best-known
result. Moreover, the simple and easy-to-tune DE algorithm
is distinguished by its favorable performance stability and
unmatched efficiency. Our findings imply that, unfortunately,
many existing metaheuristics for PV parameter estimation
might be overly complicated and risk over-engineering. We
suggest that a practitioner start with the simple DE as the off-
the-shelf tool, especially in real-time parameter estimation
scenarios. Our code is available at https://github.
com/ShuhuaGao/rePVest to ease reproduction.
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