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Abstract— This paper proposes a secure state estimation
scheme with asynchronous non-periodic measurements for con-
tinuous LTI systems under false data attacks on measurement
transmission channels. Each sensor transmits the measurement
information in a triple comprised of its sensor index, the
time-stamp, and the measurement value to the fusion center
via unprotected communication channels. A malicious attacker
can corrupt a subset of sensors by (i) manipulating the time-
stamp and the measurement value, (ii) blocking transmitted
measurement triples, or (iii) injecting fake measurement triples.
To deal with such attacks, we propose a secure state estimator
by designing decentralized local estimators and fusing all the
local states by the median operator. The local estimators receive
the sampled measurements and update their local state in
an asynchronous manner, while the fusion center triggers the
fusion and generates a secure estimation in the presence of a
local update. We prove that local estimators of benign sensors
are unbiased with stable error covariance. Moreover, the fused
secure estimation error has bounded expectation and covariance
against at most p corrupted sensors as long as the system is
2p-sparse observable. The efficacy of the proposed scheme is
demonstrated through a benchmark example of the IEEE 14-
bus system.

I. INTRODUCTION

Recent reports have shown the disastrous consequences
of malware for an industrial control system in Iran and
a Ukrainian power grid [1], [2]. Motivated by these and
many other examples in [2], security is an essential element
of cyber-physical systems. In particular, the challenge of
securely estimating unmeasured states under malicious activ-
ities has been widely addressed [3]–[9], given the crucial role
of state estimation in control systems. This challenge, known
as secure state estimation of control systems, is mainly
addressed through considering asynchronous non-periodic
sampled systems in this paper.

In asynchronous non-periodic sampled systems, where
measurement data is sampled at different rates, data packages
of the measurement, sent to the estimator over unprotected
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Fig. 1. The general state estimation scheme with a measurement buffer
dealing with out-of-order sequence [10] where some communication chan-
nels are compromised by a malicious attacker.

communication channels, are vulnerable to malicious attack-
ers. In this paper, we propose a novel model of false data
attacks on the asynchronous non-periodic sampled system
(see Fig. 1). This novel attack includes both integrity attacks
such as false-data injection [7], and availability attacks such
as denial-of-service attacks [8], [9]. Moreover, we inves-
tigate the influence of time-stamp manipulation caused by
malicious attackers. Apart from those attacks, injecting fake
data packages into authentic measurement streams is also
a serious threat to the asynchronous non-periodic sampled
system due to its stealthiness. Our introduced attack model
unifies all the above attacks into one framework without
excluding the possibility of their combinations. To deal with
the problem of secure state estimation against false data
injection attacks, three research directions consisting of the
sliding window method, the estimator switching method, and
the local decomposition-fusion method, have been mainly
developed in recent years [3]–[6]. On the other hand, to
handle Denial-of-Service attacks, which are conducted on
multiple transmission channels, a class of partial observers
that provide reliable partial state estimates is proposed in [8].
One of the most ubiquitous techniques used to effectively
deal with DoS attacks is event-triggered mechanisms [9].

To the best of our knowledge, comparatively little progress
has been made toward studying the negative influence of
time-stamp manipulation on the state estimation perfor-
mance, especially on asynchronous sampled systems. Li et
al. [11] and Guo et al. [12] propose Kalman filter-based
algorithms for non-uniformly sampled multi-rate systems. To
deal with the problem of the asynchronous linear and non-
linear sampled systems, the authors in [13] propose a class
of continuous-discrete observers, resulting in a differential
Riccati equation. They show the stability of such a differen-
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Fig. 2. Examples of the spatio-temporal false data attack that can
manipulate both the time-stamp value and the measurement value.

tial Riccati equation, which guarantees the convergence of
the observers. Ding et al. [14] and Muhammad et al. [15]
analyze the observability degradation problem of multi-rate
and non-periodic sampled systems. For time-stamp-related
attacks, the negative impact of Time Synchronization Attack
(TAS) on smart grids is studied by the authors in [16].

In this paper, we first propose a novel spatio-temporal false
data attack model, as depicted in Fig. 2. Then, we design a
secure estimation algorithm to recover the system state in
the presence of such a spatio-temporal false data attack on
a fixed number of sensors (say p corrupted sensors). The
algorithm has the following merits:

(1) The proposed algorithm adopts an asynchronous non-
periodic sampling framework. Thus, the algorithm is
capable of including synchronous sampling and multi-
rate sampling scenarios.

(2) The negative impact of the spatio-temporal false data
attack is transformed into the value change of local
state estimations. This transformation enables us to
handle such an attack by using a resilient fusion
algorithm that can generate secure state estimation.

(3) Given the 2p-sparse observability of the system, we
show that the proposed estimation has a stable error.
Moreover, we give explicit estimation error expectation
and covariance bounds in the presence of spatio-
temporal false data attacks.

We conclude this section by introducing the notation that
will be utilized throughout this paper.
Notation: The sets of positive integers, non-negative integers,
and non-negative real numbers are denoted as Z>0,Z≥0, and
R≥0, respectively. The cardinality of a set S is denoted

as |S|. Denote the span of row vectors of matrix A as
rowspan(A). All-zero and all-one matrices with an appro-
priate size are denoted as 0 and 1, respectively. We denote
I as an identity matrix with an appropriate dimension. The
spectral radius of matrix A is denoted as ρ(A). For a vector
x, [x]j stands for its j-th entry. We denote the continuous
time index in a pair of parenthesis (·) and the discrete-time
index in a pair of brackets [·].

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we first introduce the system, the modeling
of asynchronous measurements, and several assumptions that
will be used throughout this paper. Secondly, we present a
novel spatio-temporal false data attack. Finally, the secure
estimation problem is formulated.

A. State Estimation with Asynchronous Measurements

We consider a continuous LTI system:

ẋ(t) = Ax(t) + w(t), (1)

where x(t) ∈ Rn is the system state and the process noise
w(t) is a Wiener process. The process noise from time t1 to
t2 is denoted as w(t1, t2) and the corresponding covariance
is Q · (t2 − t1) where Q is a positive semi-definite matrix.
The initial state x(0) is assumed to be a Gaussian random
vector with a known expectation and is independent of the
measurement noise. We introduce the following assumption
on A to prevent system observability degradation problems.

Assumption 1. The geometric multiplicity of all the eigen-
values of A is 1.

Without loss of generality, Assumption 1 enables us to
assume that A is in the Jordan canonical form. Let us
denote the sensor index set as I ≜ {1, 2, . . . ,m} and
the state index set as J ≜ {1, 2, . . . , n}. We consider a
general asynchronous non-periodic sampling scenario where
the estimation operator receives measurement triples from
sensor i ∈ I, which has the following form:

measurement triple: (i, t, yi(t)),

where i is the sensor index, t is the time-stamp, and yi(t) is
the measurement value given by sensor i. Sensor i provides
scalar measurement values with the measurement model as

yi(t) = Cix(t) + vi(t), (2)

where Ci ∈ R1×n is the measurement matrix and vi(t) ∈ R
is Gaussian measurement noise with time-varying covariance
Ri(t) which is under the following assumption.

Assumption 2. For every sensor i ∈ I, its corresponding
measurement noise covariance Ri(t) satisfies the following:

0 ≤ Ri(t) ≤ r̄, ∀t ∈ R≥0,

where r̄ is a given positive constant scalar.

For convenience, let us define C ≜ [C⊤
1 , · · · , C⊤

m]⊤. We
employ the following assumption, which is conventional in
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literature (e.g. [5]), to facilitate our design of a secure state
estimation algorithm in the subsequent section.

Assumption 3. The system (A,C) is 2p-sparse observable,
i.e., the system (A,CI\M) is observable1 for any subset
M⊂ I where |M| = 2p.

Define the set of sampling time-stamps from sensor i as
Γi. Without loss of generality, the time when the estimation
starts working is set as t0 = 0. In order to guarantee sys-
tem observability under non-uniform asynchronous measure-
ments, we introduce the following notation and assumptions.
Define the set of sampling time intervals and cumulative
sampling time from sensor i as follows

T ≜
m⋃
i=1

Ti, Ti ≜ {tk − tk−1 | tk, tk−1 ∈ Γi, k ∈ Z>0} ,

T̃ ≜
m⋃
i=1

T̃i, T̃i ≜ {tk − tj | tk, tj ∈ Γi, k > j, k, j ∈ Z≥0} .

Define the system pathological sampling interval set [14] as

T ∗ ≜ {T > 0 | exp(λiT ) = exp(λjT ), i ̸= j,

λi, λj ∈ sp(A) ⊆ C} .

To prevent system observability degradation problems due to
discrete-time samplings, the following assumption, which is
also seen in [14], [15], is introduced.

Assumption 4 (non-pathological sampling time). The sam-
pling time interval set T satisfies the following conditions:

sup T ≤ Tmax and T̃ ∩ T ∗ = ∅.

B. Measurement-data and time-stamp manipulation

In this section, we introduce a novel spatio-temporal false
data attack that generalizes integrity attacks and availability
attacks (see Fig. 2 for more detail). For the convenience
of denotation about the measurement sampling process, we
introduce the measurement triple generation set as all the
measurement triples with time-stamp t:

S(t) = {(i, t, yi(t)) | i ∈ I} .

Moreover, Sa(t) denotes the set of measurement triples with
time-stamp t after being manipulated by the attacker. Denote
the set of corrupted sensors as C, which is fixed over time.
The spatio-temporal false data attack is defined as follows:

Definition 1 (spatio-temporal false data attack). The attacker
can manipulate measurement triples given by corrupted
sensor i ∈ C in the following four ways:

(i) false-data injection (i, t, yai (t))← (i, t, yi(t)),

(ii) time-stamp manipulation (i, ta, yi(t))← (i, t, yi(t)),

1The matrix CI\M represents the matrix composed of rows of C with
row index in I \M.

where (i, t, yi(t)) ∈ S(t). The notation yai (t) and ta stand
for the attacked data.

(iii) denial-of-service Sa(t)← S(t) \ (i, t, yi(t)),

(iv) fake-data generation Sa(t)← S(t) ∪
(
i, tf , yfi (t)

)
,

where (i, t, yi(t)) ∈ S(t), (i, tf , yfi (t)) /∈ S(t), the super-
script “f" means “fake" (not real measurement).

If the set of corrupted sensors satisfies |C| ≤ p, malicious
activities are called p-sparse spatio-temporal false data
attacks.

Remark 1. The system operator does not know set C or
the integer p, and thus the algorithm will be proposed later
regardless of C or p. However, if the system has knowledge
of p, we can check the observability redundancy offline. If
the sparse observability index is larger than 2p, then the
algorithm is guaranteed to be secure. Otherwise, the system
operator can resort to other methods to increase system
resilience such as introducing more sensors.

In the scope of this paper, we study the p-sparse spatio-
temporal false data attack. The manipulated time-stamp set
Γa is defined as follows:

Γa ≜
m⋃
i=1

Γa
i , Γa

i ≜ {t | (i, t, yi(t)) ∈ Sa(t)}. (3)

Due to various delays, received measurement time-stamps
may not be in increasing order, resulting in the out-of-
sequence problem [10], [17], [18]. This problem is generally
dealt with by utilizing the Buffering method. The buffer
simply stores all the measurements from a time window of
length d before sending them to the estimator, where d is
the maximum delay of a measurement sample [10], [17],
[18]. Measurements, delayed more than d, are seen as non-
informative and discarded from the buffer. In this way, the
measurement sequence after the buffer is sorted in the correct
order. In this paper, we assume a similar buffering system
is working before the secure estimator (see Fig. 1), yielding
the following assumption.

Assumption 5. The incoming manipulated time-stamp is in
a strictly increasing order, i.e., Γa = {t0, t1, t2, · · · } and
0 = t0 < ti < ti+1, ∀i ∈ Z>0.

Now, we are ready to formulate the secure state estimation
problem with asynchronous measurements in the following.

C. Secure state estimation problem

The communication protocol among sensors and the buffer
depicted in Fig. 1 leaves the system vulnerable to spatio-
temporal false data attacks in Definition 1. To estimate the
system states under such attacks, this paper will deal with a
secure state estimation problem, which is defined below.

Problem 1 (Secure state estimation). Find an estimator that
is a measurable time-varying function ft(·) of all manipu-
lated measurement triples:

x̂(t) = ft(Sa(τ), 0 ≤ τ ≤ t)
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such that the estimation error expectation and covariance
are uniformly bounded at sampling instants:

sup
t∈Γa

∥E [x̂(t)− x(t)] ∥∞ ≤ γe(A,C,Q, r̄),

sup
t∈Γa

Cov [x̂(t)− x(t)] ⪯ γc(A,C,Q, r̄) · I,

where γe(A,C,Q, r̄) and γc(A,C,Q, r̄) are scalars deter-
mined by system parameters A,C,Q, r̄ and independent of
attacks. The notation E[·] and Cov[·] are the expectation
and the covariance with respect to the probability measure
generated by the Gaussian noise, respectively.

Remark 2. In Problem 1, we only consider the estimation
error at sampling times tk ∈ Γa, because the estimation
between sampling times t /∈ Γa is trivially provided by the
following prediction for t in interval

(
tk, tk+1

)
, where tk

and tk+1 ∈ Γa:

x̂(t) = x̂(tk) + exp(A(t− tk)),

and the estimation error are determined by x̂(tk).

With the help of the above assumptions and definitions,
we are ready to deal with Problem 1 by designing a secure
state estimation algorithm in the following section.

III. SECURE ESTIMATION DESIGN

In this section, we first introduce some preliminaries on
the local observable subspace decomposition. Secondly, the
design of secure state estimation with the consideration
of asynchronous measurement is presented. Finally, The
analysis of resilient state estimation concludes the section.

A. Local Observable Subspace Decomposition

Consider the system (1) and the output measurement (2)
corresponding to sensor i, define the observability matrix
with respect to sensor i as

Oi ≜
[
C⊤

i (CiA)
⊤ · · ·

(
CiA

n−1
)⊤]⊤ . (4)

Then, the local observable subspace of sensor i is defined as

Oi ≜ rowspan(Oi)

= span
(
C⊤

i , (CiA)
⊤, · · · ,

(
CiA

n−1
)⊤) .

Denote the dimension of the linear space Oi as ni. The
global observable space of the entire system is given by
O ≜ ∪i∈IOi. Define ej as a canonical basis vector with
dimension n where 1 is on the j-th entry and 0 is on all
the other entries. Recalling Assumption 1 about the Jordan
canonical form of matrix A, this assumption enables us to
define the index set of states that can be observed by sensor
i as

Qi ≜ {j ∈ J | Oiej ̸= 0}. (5)

The following theorem characterizes the structure of Oi.

Theorem 1. If Assumption 1 holds, then the local observable
space Oi can be represented as the linear span of the
following canonical basis vectors:

Oi = span{ej , j ∈ Qi}.

Proof. The proof directly follows our previous results [19,
Appendix A].

We stack the basis of Oi in a matrix Hi ∈ Rni×n:

Hi ≜
[
ej1 ej2 · · · ejni

]⊤
. (6)

where {j1, · · · , jni
} = Qi. Therefore, matrix Hi represents

the transformation from O to Oi, and plays a crucial role
in our design of the decentralized observers. We further
define the following local system matrices. Define the state
transition matrix from time t to t′ as

Λ(t′ − t) = exp(A · (t′ − t)). (7)

Define

Ãi(t) ≜ HiΛ(t)H
⊤
i ∈ Cni×ni , (8)

C̃i ≜ CiH
⊤
i ∈ C1×ni . (9)

The following properties of the transformation matrix Hi are
important to the design of local estimators.

Lemma 1. If Assumption 1 holds, then the following prop-
erties hold for every sensor i ∈ I, t ∈ R≥0:

HiΛ(t) = Ãi(t)Hi, (10)

CiΛ(t) = C̃iÃi(t)Hi. (11)

Moreover, if (A,C) is observable, the pair (Ãi(t), C̃i) is
observable for every sensor i ∈ I, t ∈ R≥0.

Proof. Notice that if A is in Jordan canonical form, then
exp(At), t > 0 is also in Jordan canonical form. Thus, the
result directly follows our previous result [19, Lemma 2].

Lemma 1 affords us to design local state estimators of
the decentralized observer when asynchronous non-periodic
sensor measurements are considered in the next subsection.

B. Secure estimation with asynchronous measurements

In the following, we propose a local estimator that main-
tains an estimate of Hix(t), i.e., the system state x(t) is
projected on local subspace Oi. For the convenience of
denotation about whether sensor i receives a measurement
triple with time-stamp t, we introduce the index function
ψi(t) as follows:

ψi(t) =

{
1, if (i, t, yi(t)) ∈ Sa(t)
0, if (i, t, yi(t)) /∈ Sa(t)

.

The index function ψi(t) is utilized to indicate whether
sensor i has a new measurement with time-stamp t. This local
information ψi(t) is only available to the local estimator i.
Our proposed algorithm is based on two steps:

(1) Local state update: At each sampling time tk, the
dynamics of local estimate ηi[k] corresponding to sensor i
is defined as

ηi[k] = Ãi(tk − tk−1)ηi[k − 1] (12)

+ ψi(tk)Li[k]
(
yi(tk)− C̃iÃi(tk − tk−1)ηi[k − 1]

)
.
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The local estimate ηi is initialized as ηi[0] = HiE[x(0)].
Here, we assume that the expected initial state E[x(0)] is
known. If it is unknown, we still have stable estimation
results (see Remark 3). If sensor i does not have a measure-
ment at time tk, i.e., ψi(tk) = 0, the local state update (12)
degenerates into pure prediction ηi[k] = Ãi(tk−tk−1)ηi[k−
1]. The design process of gain Li[k] will be provided in the
next subsection after introducing the following state fusion
protocol.

(2) State fusion: Due to the simple form of Hi, the fusion
of all local estimates is done by taking the median:

[x̂[k]]j ≜ med{
[
H⊤

i ηi[k]
]
j
, i ∈ Fj}, (13)

where Fj is designed as the index set of sensors that can
observe state j as follows:

Fj ≜ {i ∈ I | Oiej ̸= 0}. (14)

C. Design of local observer gain

sensor 1

sensor 2
...

other
sensors

timet0 t1 t2 t3 t4 t5

∆2
1 = 2 ∆5

1 = 3

∆1
2 = 1 ∆2

2 = 1 ∆4
2 = 2

Fig. 3. An illustration of the time interval notation. The round dot denotes
the time-stamp when the corresponding sensor samples the measurement.
Integer ∆k

i represents the total number of intervals between time-stamps,
from the last measurement sampled at sensor i to the current time-stamp
tk . For example, when sensor 1 receives a measurement with time-stamp
t5, it will recall its last time-stamp t2 and record ∆5

1 = 5 − 2 = 3. The
time difference since last sample is thus denoted by t5− t5−∆5

1
= t5− t2.

Define the stamp step index before sensor i receives
measurement with time-stamp tk as tk−∆k

i
(see Fig. 3) where

∆k
i ≜ min{∆ ∈ Z>0|ψi(tk−∆) = 1}. (15)

Notice that ∆k
i is valid only when k and i satisfy ψi(tk) = 1.

The value of ∆k
i only requires local information of the

last stamp step index at sensor i (as depicted in Fig. 3).
In the design of local estimators (12), the estimator gain
Li[k] should satisfy the following condition when a new
measurement comes, i.e. when ψi(tk) = 1:

ρ
(
(I − Li[k]C̃i)Ãi

(
tk − tk−∆k

i

))
≤ ρ̄ < 1, (16)

where ρ̄ is a predefined design parameter to balance the
weight between historical estimation and new measurements.
Since tk and tk−∆k

i
are local knowledge known to sensor

i, with prescribed parameter ρ̄ known, the inequality (16)
only requires local information and the calculation of Li[k]
can be done in a decentralized manner. Since

(
Ãi(t), C̃i

)
is observable from Lemma 1 and Ãi(t) is non-singular for
t ∈ R>0, the system

(
Ãi(t), C̃iÃi(t)

)
is also observable.

According to the Pole Assignment Theorem [20], there
always exists Li[k] such that inequality in (16) is satisfied.
The following lemma ensures that such Li[k] not only exists
but also has a uniformly bounded ℓ2-norm.

Lemma 2. Suppose Assumptions 1-5 hold. There always
exist a constant scalar l̄ > 0 determined by A,C, ρ̄, and an
estimator gain Li such that the following inequality holds
for all t ∈ (0, Tmax) with Tmax > 0 from Assumption 4:

ρ
(
(I − LiC̃i)Ãi (t)

)
≤ ρ̄ < 1, ∥Li∥22 ≤ l̄. (17)

The proof of Lemma 2 is in Appendix A of the full
version [21]. The calculation of l̄ is also in proof of Lemma
2 and omitted here for space limit. Our proposed secure state
estimation algorithm based on local observers is summarized
in Algorithm 1. In the following subsection, we will give the
main theorem of this paper and provide its proof.

Algorithm 1 Secure estimation for asynchronous non-
periodic measurements under attack

Input: Design constant scalar parameter ρ̄ > 0 and
associated scalar l̄ > 0 (see Lemma 2).
Output: Secure estate estimation x̂[k].

1: Receive a set of measurements with time-stamp tk
2: for every sensor i do
3: if ψi(tk) = 1 then
4: Recall tk−∆k

i
when sensor i has a measure-

ment and calculate Ãi

(
tk − tk−∆k

i

)
5: Obtain Li[k] with ∥Li[k]∥22 ≤ l̄ such that

inequality (16) is satisfied
6: end if
7: Update ηi[k] by (12)
8: end for
9: Calculate each entry of x̂[k] by (13).

D. Main result

The following theorem is our main contribution of the
paper. It claims that our proposed estimator is secure under
the spatio-temporal false data attack. Let us define the
following constants:

Ni =

∫ +∞

0

si · d[Φm(s)], i ∈ {1, 2}, (18)

where Φ(s) is the cumulative density function of the standard
Gaussian random variable. Define the initial estimation co-
variance spectral radius, which is unknown to the estimator,
as follows:

σ0 ≜ ρ(Cov(x̂(0)− x(0))). (19)

Theorem 2 (secure estimation). Suppose Assumptions 1-
5 are satisfied. The estimation error expectation is upper
bounded by

∥E[x̂[k]− x(tk)]∥∞ ≤
(
ρ̄2kσ0ā

2 +
(r̄l̄ + q̄)ā2

1− ρ̄2

)
N1, (20)
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and the error covariance is bounded by

ρ (Cov[x̂[k]− x(tk)]) ≤
(
ρ̄2kσ0ā

2 +
(r̄l̄ + q̄)ā2

1− ρ̄2

)2

N2,

where r̄ is given from Assumption 2, l̄ is given from
Lemma 2, q̄ ≜ Tmaxρ(Q)(l̄ · maxi∈I ∥Ci∥2 + 1)2, ā ≜
sup0<t<Tmax

ρ(exp(At)), and Tmax is given from Assump-
tion 4, and ρ̄ is the design parameter in (16).

We will prove Theorem 2 in this subsection. The proof is
based on the following two facts:

(1) The local estimation error ηi[k]−Hix(tk) is bounded
for benign sensors.

(2) The estimation error of the median number is smaller
than the maximum error of the benign sensors as long
as the system is 2p-observable.

We first prove the first statement by the following theo-
rem. The second statement will be evident in the proof of
Theorem 2 given later. Define local estimation error as

ϵi[k] = ηi[k]−Hix(tk), ∀i ∈ I. (21)

The following theorem claims that the local estimation errors
ϵi[k] of benign sensors are unbiased and stable.

Theorem 3. Consider benign sensors i ∈ I \ C. If Assump-
tions 1-5 are satisfied and there exists Li[k] such that the
following inequalities hold:

ρ
(
(I − Li[k]C̃i)Ãi

(
tk − tk−∆k

i

))
≤ ρ̄, ∥Li[k]∥22 ≤ l̄.

Then, the local estimation errors of benign sensors are
unbiased and have uniformly upper bounded covariance:

E(ϵi[k]) =0, (22)

ρ(Cov(ϵi[k])) ≤ρ̄2kσ0ā2 +
(r̄l̄ + q̄)ā2

1− ρ̄2
. (23)

Proof. Define Ãi[k] ≜ Ãi(tk− tk−1) for notation simplicity.
For a benign sensor i ∈ I \ C, if a measurement triple from
sensor i is received with time-stamp tk, the results in (10)-
(11) and the local estimate (12) give us

ϵi[k] =ηi[k]−Hix(tk)

=
(
Ãi[k]− Li[k]C̃iÃi[k]

)
ϵi[k − 1] + Li[k]vi(tk)

+ (Li[k]Ci −Hi)w(tk−1, tk).

In this scenario, the expectation and covariance dynamics are

E[ϵi[k]] =
(
Ãi[k]− Li[k]C̃iÃi[k]

)
E[ϵi[k − 1]],

Cov(ϵi[k]) = (I − Li[k]C̃i)Ãi

(
tk − tk−∆k

i

)
×

Cov(ϵi[k −∆k
i ])Ãi

(
tk − tk−∆k

i

)⊤
(I − Li[k]C̃i)

⊤

+ Li[k]Ri(tk)Li[k]
⊤

+ (Li[k]Ci −Hi)Q(tk − tk−1)(Li[k]Ci −Hi)
⊤.

Based on Assumption 2 and Lemma 2, we have

ρ
(
Li[k]Ri(tk)Li[k]

⊤) ≤ r̄ρ (Li[k]Li[k]
⊤) ≤ r̄l̄.

From Assumption 4, we have tk − tk−1 < Tmax. Moreover,
the form of Hi in (6) implies that

ρ((Li[k]Ci −Hi)Q · (tk − tk−1)(Li[k]Ci −Hi)
⊤)

≤ ρ(Q · (tk − tk−1)) · (∥Li[k]∥2∥Ci∥2 + ∥Hi∥2)2 ≤ q̄.

From (19), one has ρ(Cov(ϵi[0])) ≤ ρ(Cov(x̂(0)−x(0))) =
σ0. Thus, if ψi(tk) = 1, the design condition (16) implies
that

ρ(Cov(ϵi[k])) ≤ ρ̄2kσ0 +

k−1∑
t=0

ρ̄2t(r̄l̄ + q̄)

≤ ρ̄2kσ0 +
r̄l̄ + q̄

1− ρ̄2
. (24)

If no measurement triple from sensor i is received with
time-stamp tk, based on (10), the local estimation errors
satisfy

E[ϵi[k]] =
(
Ãi[k]− Li[k]C̃iÃi[k]

)
E[ϵi[k − 1]]

ϵi[k] =ηi[k]−Hix(tk)

=Ãi

(
tk − tk−∆k

i

)
ϵi[k −∆k

i ].

Thus, if i /∈ ψ(tk), since ψ(tk−∆k
i
) = 1 according to (24),

we have

ρ(Cov(ϵi[k])) ≤ρ̄2kσ0ā2 +
(r̄l̄ + q̄)ā2

1− ρ̄2
. (25)

Firstly, E[ϵi[0]] = E[ηi[0] − Hix(0)] = HiE[x(0)] −
HiE[x(0)] = 0 implies E[ϵi[k]] = 0 for all k ∈ Z≥0. More-
over, the results in (24) and (25) complete the proof.

Remark 3. Since matrix Ãi[k] − Li[k]C̃iÃi[k] is Schur
stable, the equality

E[ϵi[k]] =
(
Ãi[k]− Li[k]C̃iÃi[k]

)
E[ϵi[k − 1]]

implies that the expected local estimation error converges to
zero, even if E[x(0)] is unknown and ηi[0] ̸= HiE[x(0)]. In
other words, the expected local estimation is asymptotically
unbiased when the expected initial state E[x(0)] is unknown,
otherwise it is unbiased.

We are now ready to present the proof of Theorem 2.

Proof of Theorem 2. Let us define the following sequence
order operator: fi(x1, · · · , xL) equals to the i-th smallest
element in the set {x1, · · · , xL} . For even number i, we
further define

f i+1
2

=
1

2

(
f i

2
+ f i

2+1

)
.

Thus, the function f(L+1)/2 (xl, l ∈ {1, · · · , L}) is the me-
dian number of set {x1, . . . , xL}, giving us the following
formulation, which is equivalent to (13), as follows:

[x̂[k]− x(tk)]j = f(|Fj |+1)/2

(
[H⊤

i ηi[k]− x(tk)]j , i ∈ Fj

)
.
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Define the ηoi as the local estimate of benign sensor i, which
is not manipulated by the attacker. Since the system is 2p-
sparse observable and there are at most p corrupted sensors,
we have

min
i∈Fj

{
[H⊤

i η
o
i [k]− x(tk)]j

}
≤ [x̂[k]− x(tk)]j

≤ max
i∈Fj

{
[H⊤

i η
o
i [k]− x(tk)]j

}
.

The following inequality is from Lemma 3 in the full version
[21]:

−σmax[k]N11 ≤ E[x̂[k]− x(tk)] ≤ σmax[k]N11,

where

σmax[k] = max
i∈I,j∈{1,··· ,ni}

Cov([ϵi[k]]j),

resulting in (20). Due to

Cov[x̂[k]− x(tk)] = E[(x̂[k]− x(tk))
2]− (E[x̂[k]− x(tk)])

2 ,

we have

ρ (Cov[x̂[k]− x(tk)]) ≤
max

{
E(max{x̂[k]− x(tk)})2,E(min{x̂[k]− x(tk)})2

}
≤ (σmax[k])

2N2.

Here the notation max{x̂[k]−x(tk)} and min{x̂[k]−x(tk)}
represent the maximum and the minimum values of the
vectors x̂[k]−x(tk), respectively, while max{a, b} means the
larger scalar between a and b. Since σmax[k] ≤ ρ̄2kσ0ā

2 +
(r̄l̄+q̄)ā2

1−ρ̄2 from Theorem 3, the results are obtained.

In the following section, we show numerical simulation
results on the IEEE 14-bus system to demonstrate the effec-
tiveness of our proposed method.

IV. NUMERICAL RESULTS

To verify the obtained results, we apply our proposed
estimation scheme (Algorithm 1) to the IEEE 14-bus system
under the novel spatio-temporal attack presented in Defi-
nition 1 (see Fig. 4). Let the generator bus index set be
Vg = {1, 2, 3, 6, 8} and the load bus index set be Vl =
{2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14}. We adopt the continuous
LTI system dynamics as in the following equations [22]:

θ̇i(t) = ωi(t),

ω̇i(t) = −
1

mi

Diωi(t) +
∑
j∈Ni

(
P ij
tie(t)− Pi(t)

)
+ wi(t)

 ,
where θi(t) and ωi(t) are the phase angle and angular fre-
quency on bus i, respectively, mi is the angular momentum
of i, and wi is the process disturbance. The parameter Di is
the load change sensitivity w.r.t. the frequency [22, Section
10.3]. The power flow between neighboring buses i and j
is given by P ij

tie(t) = −P ji
tie(t) = tij (θi(t)− θj(t)), where

tij is the inverse of resistance between buses i and j. The
power Pi(t) denotes the difference between the mechani-
cal power and power demand at bus i, which is known
by the system operator. Every bus is equipped with three

Fig. 4. The IEEE 14-bus system consists of five generators on buses 1,
2, 3, 6, and 8. Examples of spatio-temporal attacks: i) false-data attacks on
bus 4; ii) time-stamp manipulation on bus 5; iii) sample elimination on bus
6; and iv) fake data on bus 7.

sensors: one electric power sensor, one phase sensor, and
one angular velocity sensor. Measurements are sampled non-
periodically with sampling intervals uniformly distributed
in [0.001, 0.05]. Each sensor has a probability of 0.6 of
successful sampling at each time-stamp (see Fig. 5). The
covariances of measurement noises are Q = 0.001I and
R = 0.01I .

0 0.1 0.2 0.3 0.4 0.5

1

2

3

4

5

time (sec)

se
ns

or
in

de
x

Fig. 5. Sensor measurement availability of asynchronous non-periodic
sampling. For conciseness, only show sensors 1-5 in the time interval of
0-0.5 seconds.

Fig. 6 shows the estimation performance without an at-
tacker. Even though the estimation holds stable, the estima-
tion errors are relatively large due to the conservativeness of
the median fusion algorithm. Attacks are launched on angular
velocity sensors of buses 4, 5, 6, and 7 (see Fig. 4). At bus 4,
random false data is injected into its measurements. At bus
5, the time-stamp is randomly shifted (and thus the order of
samples is changed). At bus 6, the successfully transmitted
samples are eliminated with a probability of 0.5. At bus 7,
new fake data with random measurements and random time-
stamps are generated. Fig. 7 demonstrates the estimation
performance on buses 5-7 under the aforementioned attacks.
The estimation error is slightly larger than the scenario
without attack but still remains stable despite various spatio-
temporal false data attacks.

V. CONCLUSION

This paper introduced a novel framework for analyzing
the time-stamp and measurement value manipulations from
an adversary, named the spatial-temporal false data attack.
The attack manipulates the data stream in communication
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Fig. 6. Estimation of states without attack.
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Fig. 7. Estimation performance under attack. The legend is the same as
Fig. 6.

channels of an asynchronous non-periodic sampled system.
A decentralized estimation scheme was proposed to isolate
the negative impact of corrupted sensors. The proposed
algorithm exhibited a median operator to fuse local estimates,
which provides the resilient state estimation in the presence
of the spatial-temporal false data attack. The effectiveness of
the proposed algorithm was validated through a benchmark
of the IEEE-14 bus system.

This analysis framework revealed that the manipulation
of time-stamps has some intrinsic relations with false data
injection attacks. Thus, the hitherto under-explored time-
stamp manipulation strategy can be mapped to the well-
studied false data injection strategies, while these two attacks
have the same influence on a linear system. We believe this

will facilitate the understanding and handling of timestamp-
related problems (such as delays and asynchronicity) which
are ubiquitous in real-world scenarios.
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