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Abstract— Epigenetic cell memory is the property en-
abling multicellular organisms to keep distinct cell types
despite sharing the same genotype. DNA methylation and
histone modifications play a crucial role in maintaining
the long-term memory of gene expression patterns specific
to each cell type. Experimental results in semi-synthetic
genetic systems show that these modifications silence and
reactivate genes in an “all or none” manner, suggesting
binary epigenetic memory (only extremal gene expression
levels have long-term memory). However, in recent years,
continuous and graded variations of gene expression levels
have been identified across multiple cell types. Here, by
introducing and analyzing a chromatin modification circuit
model, we demonstrate that the experimentally observed
bimodal probability distributions of gene expression level,
used to support the binary memory hypothesis, are also
compatible with the analog memory hypothesis, where cells
can maintain any initially set gene expression level. Our
study shows that intrinsic noise combined with an ultra-
sensitive response between the level of DNA methylation
writer DNMT3A and DNA methylation grade at a gene
can explain how analog epigenetic cell memory leads to
a bimodal gene expression level distribution. The model
can help design experiments to help distinguish between
binary and analog memory, thereby offering a tool for
interrogating the very essence of epigenetic cell memory.

I. INTRODUCTION

Epigenetic cell memory (ECM) is the property of
multicellular organisms to maintain different phenotypes
despite sharing a common genetic sequence. This prop-
erty is primarily influenced by the compaction of DNA
structure (known as the chromatin state) [1], [2], regu-
lated by epigenetic modifications to DNA and histones
[1], [3]. More precisely, DNA methylation has been
considered the essence of long-term memory, as it can
persist through subsequent cell divisions by the action of
enzymes that replicate the methylation pattern from the
parental DNA strand onto the newly synthesized DNA
strand during DNA replication [4].

In the past, experimental results suggested a genome-
wide distribution of DNA methylation primarily con-
centrated at the extremal levels [5]–[7]. More recently,
studies such as [8] support this notion, showing that
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chromatin modifiers transiently recruited to a gene in-
fluence the fraction of cells that are silenced or active,
rather than directly affecting the gene expression level.
Overall, these experimental results support the hypoth-
esis of binary epigenetic cell memory (cells can stably
maintain only silenced or active gene expression levels).
However, in the past years, graded variations in gene
expression levels have been observed across various cell
types, such as the ones forming the mouse isocortex and
hippocampus [9]. This suggests that cells must have a
mechanism enabling them to maintain their specific gene
expression level and associated identity.

Here, we explore how long-term memory of inter-
mediate gene expression levels can be achieved and
how chromatin modifications affect this process. Our
goal is to demonstrate that the experimentally observed
probability distributions of gene expression level, used
to support the binary memory hypothesis, are also com-
patible with the analog memory hypothesis (cells can
maintain any initially set gene expression level). To this
end, we first introduce a mathematical model combining
histone modifications and DNA methylation, and exploit
Gillespie’s Stochastic Simulation Algorithm [10] to un-
derstand how system’s parameters qualitatively affect
gene expression memory. Then, we derive a reduced
order model recapitulating the mechanisms behind ana-
log memory and use it to determine how experimental
results are compatible with analog memory.

II. CHROMATIN MODIFICATION CIRCUIT MODEL

In this section, we briefly describe the chromatin
modification circuit considered in our study, developed
starting from the one in [11]. The chromatin modifi-
cations considered are H3K9 methylation (H3K9me3),
H3K4 methylation (H3K4me3), and DNA methylation
(DNAme). In terms of species, the model includes un-
modified nucleosome (D), nucleosome with H3K4me3
(DA), with DNAme, (DR

1 ), with H3K9me3 (DR
2 ), or

with both H3K9me3 and DNAme (DR
12). The reaction

model can be represented by the circuit diagram shown
in Fig. 1(a), with the corresponding reactions listed in
Table I. More precisely, writer enzymes can de novo
establish chromatin marks and histone modifications can
recruit these enzymes to establish the same modification
on nearby modifiable nucleosomes (auto-catalysis) [1],
[12] (green, red, and light orange arrows in Fig. 1(a)).
Furthermore, DNA methylation and H3K9me3 enhance
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each other by recruiting each other’s writer enzymes
(cross-catalysis) [13] (red and light orange arrows in
Fig. 1(a)). Eventually, these modifications are removed
through dilution during DNA replication or by the action
of eraser enzymes (basal erasure). Finally, activating
modification erasers can be recruited by repressive mod-
ifications, and viceversa (recruited erasure) [14]–[16]
(gray and dark orange arrows in Fig. 1(a)).

Let us now introduce the corresponding ordinary
differential equation (ODE) model in terms of D̄A =
nA/Dtot, D̄R

1 = nDR
1
/Dtot, D̄R

2 = nDR
2
/Dtot, D̄R

12 =

nDR
12
/Dtot and D̄ = nD/Dtot, with Dtot represent-

ing the total number of nucleosomes in the gene,
and nA, nR

1 , nR
2 , nR

12, and nD denoting the amount
of DA,DR

1 ,D
R
2 ,D

R
12,D. It is possible to do this by

assuming Dtot large enough to consider D̄A, D̄R
1 ,

D̄R
2 , D̄R

12 and D̄ real numbers. Now, let us introduce
Dtot = Dtot/Ω, with Ω denoting the reaction vol-
ume, and the normalized inputs: uR

i0 = kiW0/k
A
MDtot,

uR
i = kiW /(kAMDtot), uA

0 = kAW0/(k
A
MDtot), and uA =

kAW /(kAMDtot), with i = 1, 2. Additionally, let

α = kM/kAM , α′ = k′M/kAM , ᾱ = k̄M/kAM . (1)

The parameter α (ᾱ, α′) is the non-dimensional rate
constant associated with auto-catalysis (cross-catalysis).
We consider α′ (α, ᾱ) to be the same whether the nucle-
osome to be modified with DNAme (H3K9me3) is un-
modified or already modified with H3K9me3 (DNAme).
This will not affect the qualitative results obtained in this
work. Finally, let

ε =
δ + k̄AE
kAMDtot

, ε′ =
kAE
kAM

, µ′ =
k

′∗
T

kAE
, µ =

kRE
kAE

, (2)

with β = O(1) such that (δ′ + k′T )/(δ + k̄AE) = βµ′,
and, similarly, b = O(1) such that (δ+ k̄RE)/(δ + k̄AE) =
bµ. Then, µ′ (µ) quantifies the relative speed between
the rate of DNA demethylation (H3K9me3 erasure rate)
and H3K4me3 erasure rate and ε (ε′) is a parameter
that scales the ratio between the rate of basal (recruited)
erasure and the auto-catalysis rate of each modification.
Finally, introducing the normalized time τ = tkAMDtot,
the ODEs can be written as

dD̄R
1

dτ
= (uR

10 + uR
1 + α′(D̄R

2 + D̄R
12))D̄ + µ(bε+ ε′D̄A)D̄R

12

− (uR
20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

R
1

− µ′(βε+ ε′D̄A))D̄R
1

dD̄R
12

dτ
= (uR

10 + α′(D̄R
2 + D̄R

12))D̄
R
2

+ (uR
20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

R
1

− (µ′(βε+ ε′D̄A) + µ(bε+ ε′D̄A))D̄R
12 (3)

dD̄R
2

dτ
= (uR

20 + uR
2 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

+ µ′(βε+ ε′D̄A)D̄R
12 − (uR

10 + α′(D̄R
2 + D̄R

12))D̄
R
2

− µ(bε+ ε′D̄A)D̄R
2

dD̄A

dτ
= (uA

0 + uA + D̄A)D̄

− (ε+ ε′(D̄R
2 + D̄R

12) + ε′(D̄R
1 + D̄R

12))D̄
A,

with D̄ = 1 − D̄R
1 − D̄R

12 − D̄R
2 − D̄A (see [11] for

the complete derivation and Table I for definition of
reaction rate constants). It is important to point out that,
in this model, if the gene expression is governed by
a constitutive promoter, i.e., a promoter continuously
active in standard conditions, without relying on external
activators, then a constant non-basal de-novo establish-
ment term for DA, uA, must be considered.

A. Effect of epigenetic modifiers on model parameters

In order to determine how chromatin modifications
alone (i.e., without permanent external inputs) affect
gene expression memory, in our model we consider only
epigenetic modifiers that are temporarily present in the
system. From an experimental point of view, one method
to temporarily introduce epigenetic modifiers into the
system is transient transfection. With this method, the
concentration of epigenetic modifiers will gradually de-
crease due to dilution until it completely vanishes.

Starting with H3K9me3 establishment, this aspect can
be integrated into the model by writing the reaction rate
constant of H3K9me3 establishment (k2W , see Table I) as
k2W = k̃2WW2e

−δt. Here, W2 is the total amount of the
epigenetic modifier enhancing H3K9me3 establishment,
such as KRAB [17], k̃2W is a parameter independent
of W2, and δ denotes the dilution rate constant. The
normalized input uR

2 in (3) can then be written as

uR
2 =

k2W
kAMDtot

=
k̃2W
kAM

W2

Dtot
e−δt = ũR

2 W̄2e
−ετ , (4)

with ũR
2 = k̃2W /kAM and W̄2 = W2/Dtot.

Similarly, the expression for the reaction rate constant
of DNA methylation establishment (k1W , see Table I)
can be written as k1W = k̃1WW1e

−δt. Here, W1 is the
total amount of DNMT3A, DNA methyltransferase that
establishes de novo DNA methylation [1], and k̃1W is a
parameter independent of W1. The normalized input uR

1

in the ODEs (3) can then be written as

uR
1 =

k1W
kAMDtot

=
k̃1W
kAM

W1

Dtot
e−δt = ũR

1 W̄1e
−ετ , (5)

with ũR
1 = k̃1W /kAM and W̄1 = W1/Dtot.

Finally, the expression for the reaction rate constants
of DNA demethylation processes (k′T and k

′∗
T , see Ta-

ble I) can be written as k′T = k′T1 + k̃′TTe
−δt and

k
′∗
T = k

′∗
T1 + k̃

′∗
T Te−δt. Here, T is the total amount

of the transiently transfected modifier that catalyzes
DNA demethylation, such as TET1 [3], [15], k′T1 (k

′∗
T1)
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Fig. 1: Analog memory can be achieved when H3K9me3 does not catalyze DNA methylation (DNAme) establishment,
i.e., when α′ = 0. (a) Diagram of complete chromatin modification circuit. The species are unmodified nucleosome (D),
nucleosome with H3K4me3 (DA), with DNAme (DR

1 ), with H3K9me3 (DR
2 ), and with both H3K9me3 and DNAme (DR

12).
Here, solid arrows denote the nucleosome modification processes and gene expression, while dashed arrows denote the enzyme
recruitment processes. We use red for processes involved in H3K9me3 establishment, light (dark) orange for processes involved
in DNAme establishment (DNA demethylation), green for processes involved in H3K4me3 establishment, gray for processes
involved in the erasure of histone modifications, and black for gene expression. (b) Probability distributions of the system
represented by reactions in Tables I, II for different values of α′. The distributions are obtained computationally using SSA
[10] and we denote the gene expression level as nX (logicle scale). The parameter values used are listed in Section VI-C.
In particular, we consider α′ = 0, 0.01, 0.1 and four initial conditions: (nR

12,nR
1 ,nR

2 ,nA) = (14,0,1,0), (6,0,8,1), (4,0,5,6), and
(1,0,1,13), going from light to dark gray, respectively. For all the simulations, we set µ′ = 0, α = ᾱ = 1, ε = 0.08, ε′ = 25,
µ = 0.1, b = β = 1, and Dtot = 15 Finally, to realize each distribution, we conduct N = 1000 simulations.

is the component of the rate coefficient that does not
depend on the external TET1 transfected, and k̃′T , k̃

′∗
T

are parameters independent of T . The parameter µ′ in
the ODEs (3) can then be written as

µ′ =
k

′∗
T

kAE
=

k
′∗
T1

kAE
+

k̃
′∗
T Dtot

kAE

T

Dtot
e−δt

= µ′
1 + µ̃′T̄ e−ετ , (6)

with µ′
1 =

k
′∗
T1

kA
E

, µ̃′, and T̄ = T/Dtot.

III. GENE EXPRESSION MODEL

During gene expression, DNA is first transcribed into
mRNA m (transcription), that is then translated into the
gene product X (translation). Chromatin modifications,
by regulating DNA compaction, affect transcription and
then gene expression [1], [18]. Therefore, we assume
that transcription is predominantly allowed by DA, while
allowing a low level of transcription to all the other
species. Additionally, m decay depends on dilution,
due to cell division, and degradation, while X decay
depends only on dilution [19] (see reactions in Table
II). Introducing the non-dimensional parameters β̄A

m =
βA
m/kAMDtot, β̄m = βm/kAMDtot, β̄ = β/kAMDtot,

γ̄m = γm/kAMDtot, δ̄ = δ/kAMDtot, the gene expression
ODE model can be written as
dm̄

dτ
= β̄A

mD̄A + β̄m(D̄ + D̄R
1 + D̄R

2 + D̄R
12)− γ̄mm̄,

dX̄

dτ
= β̄m̄− δ̄X̄. (7)

IV. IMPACT OF α′ ON THE SYSTEM’S BEHAVIOR

We start our analysis by studying the stochastic be-
havior of the full model, i.e., model combining the
complete chromatin modification circuit model with the
gene expression model, with the aim of understanding
the impact of α′ (normalized rate of DNA methylation
establishment catalyzed by H3K9me3) on the gene ex-
pression level probability distribution and, therefore, on
the nature of gene expression memory achievable.

In particular, let us consider the parameter regime in
which µ′ = 0, i.e., the DNA demethylation rate can
be considered as approximately zero compared to his-
tone modification erasure rate. This is because, without
external epigenetic modifiers, it has been shown that
the (passive) DNA demethylation process is significantly
slow [8], [20]. When µ′ = 0, analog memory can be
achieved only when α′ = 0, that is, when H3K9me3
does not recruit DNAme writers (Fig. 1(b)). In fact, in
this parameter regime, after an initial diffusion phase,
simulated cells maintain their set gene expression level.
For α′ > 0, the gene expression level shifts either to
a low or a high level. Furthermore, the higher α′, the
more the distribution tends to shift towards a low gene
expression level (Fig. 1(b)).

Overall, these results suggest we can have analog
memory only when DNA demethylation rate is suffi-
ciently small compared to histone modification dynam-
ics (that is, µ′ ≈ 0) and H3K9me3 does not catalyze
DNAme establishment (α′ = 0).
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A. Analog memory captured by a reduced 2D chromatin
modification circuit model

When these parameter conditions are verified and
external epigenetic modifiers are not introduced into the
system, the total number of nucleosomes with DNAme
remains constant. More precisely, denoting the fraction
of nucleosomes with DNAme in the gene of interest as
Ȳ1 = D̄R

1 + D̄R
12, then we can define epigenetic cell

memory as analog if Ȳ1(t) = Ȳ1(0) for any Ȳ1 ∈ [0, 1].
In this case, the dynamics of the original model (3)
can be described by a reduced 2D ODE model. Before
deriving the reduced model, let us first merge into a
unique rate the rates associated with the catalysis of
H3K9me3 establishment by D̄R

12 and assume that this
is equal to the rate of H3K9me3 establishment by D̄R

1 .
Similarly, let us merge the rates associated with the
erasure of H3K4me3 by D̄R

12 and assume that this rate
is equal to the erasure rate of H3K4me3 by D̄R

1 . These
simplifying assumptions do not affect the qualitative
results related to the effect of the interactions among
chromatin modifications on epigenetic cell memory. The
ODE model (3) can then be rewritten as

dD̄R
1

dτ
= (uR

10 + uR
1 + α′(D̄R

2 + D̄R
12))D̄ + µ(bε+ ε′D̄A)D̄R

12

− (uR
20 + α(D̄R

2 + D̄R
12) + ᾱ(D̄R

1 + D̄R
12))D̄

R
1

− µ′(βε+ ε′D̄A))D̄R
1

dD̄R
12

dτ
= (uR

10 + α′(D̄R
2 + D̄R

12))D̄
R
2

+ (uR
20 + αD̄R

2 + ᾱ(D̄R
1 + D̄R

12))D̄
R
1

− (µ′(βε+ ε′D̄A) + µ(bε+ ε′D̄A))D̄R
12 (8)

dD̄R
2

dτ
= (uR

20 + uR
2 + αD̄R

2 + ᾱ(D̄R
1 + D̄R

12))D̄

+ µ′(βε+ ε′D̄A)D̄R
12 − (uR

10 + α′(D̄R
2 + D̄R

12))D̄
R
2

− µ(bε+ ε′D̄A)D̄R
2

dD̄A

dτ
= (uA

0 + uA + D̄A)D̄

− (ε+ ε′(D̄R
2 ) + ε′(D̄R

1 + D̄R
12))D̄

A,

Now, let us introduce the following proposition:

Proposition IV.1. Let α′ = cµ′
1, with c = O(1), and let

us consider the following system, shown in Fig. 2(a):

dD̄R
2

dτ
= (αD̄R

2 + ᾱȲ1)D̄ − µ(bε+ ε′D̄A)D̄R
2 , (9)

dD̄A

dτ
= (uA + D̄A)D̄ − (ε+ ε′(D̄R

2 + Ȳ1))D̄
A,

with D̄ = 1 − D̄A − D̄R
2 − Ȳ1 and Ȳ1 = constant.

Then, for sufficiently small µ′
1 and α′ = cµ′

1, any
(D̄R

2 (τ, µ
′
1), D̄

A(τ, µ′
1)) from the solution of (8) can be

expressed with the following expansions:

D̄R
2 (τ, µ

′
1) = D̄R∗

2 (τ) +O(µ′
1),

D̄A(τ, µ′
1) = D̄A∗(τ) +O(µ′

1), (10)

in which (D̄R∗

2 (τ), D̄A∗(τ)) is the solution of (9) and
with the error estimate holding as µ′

1 → 0 uniformly for
0 ≤ τ ≤ T .

Proof. Let us first rewrite system (8) by assuming
negligible basal de novo establishment (uR

10 = uR
20 =

uA
0 = 0) and introducing the variable Ȳ1 = D̄R

1 + D̄R
12:

dȲ1

dτ
= (uR

1 )D̄ + (α′(D̄R
2 + D̄R

12))(D̄ + D̄R
2 )

− µ′(βε+ ε′D̄A)Ȳ1

dD̄R
12

dτ
= (α′(D̄R

2 + D̄R
12))D̄

R
2 + (αD̄R

2 + ᾱȲ1)D̄
R
1

− (µ′(βε+ ε′D̄A) + µ(bε+ ε′D̄A))D̄R
12 (11)

dD̄R
2

dτ
= (uR

2 + αD̄R
2 + ᾱȲ1)D̄ + µ′(βε+ ε′D̄A)D̄R

12

− (α′(D̄R
2 + D̄R

12) + µ(bε+ ε′D̄A))D̄R
2

dD̄A

dτ
= (uA + D̄A)D̄ − (ε+ ε′D̄R

2 + ε′Ȳ1)D̄
A,

in which D̄ = 1− Ȳ1− D̄R
2 − D̄A and D̄R

1 = Ȳ1− D̄R
12.

Now, let us introduce in (11) the expressions for uR
2 ,

uR
1 , and µ′ derived in Section II-A (Eqs (4) - (6)):

dȲ1

dτ
= ũR

1 W̄1e
−ετ D̄ + (α′(D̄R

2 + D̄R
12))(D̄ + D̄R

2 )

− (µ′
1 + µ̃′T̄ e−ετ )(βε+ ε′D̄A)Ȳ1

dD̄R
12

dτ
= (α′(D̄R

2 + D̄R
12))D̄

R
2 + (αD̄R

2 + ᾱȲ1)D̄
R
1

− (µ′
1 + µ̃′T̄ e−ετ )(βε+ ε′D̄A)D̄R

12

− µ(bε+ ε′D̄A)D̄R
12 (12)

dD̄R
2

dτ
= (ũR

2 W̄2e
−ετ + αD̄R

2 + ᾱȲ1)D̄

+ (µ′
1 + µ̃′T̄ e−ετ )(βε+ ε′D̄A)D̄R

12

− (α′(D̄R
2 + D̄R

12) + µ(bε+ ε′D̄A))D̄R
2

dD̄A

dτ
= (uA + D̄A)D̄ − (ε+ ε′D̄R

2 + ε′Ȳ1)D̄
A.

After a temporary phase, during which the external
inputs gradually decrease until they completely vanish
(e−ετ ≈ 0), system (12) can be rewritten as

dȲ1

dτ
= α′(D̄R

2 + D̄R
12)(D̄ + D̄R

2 )− µ′
1(βε+ ε′D̄A)Ȳ1

dD̄R
12

dτ
= (α′(D̄R

2 + D̄R
12))D̄

R
2 + (αD̄R

2 + ᾱȲ1)D̄
R
1

− (µ′
1(βε+ ε′D̄A) + µ(bε+ ε′D̄A))D̄R

12 (13)
dD̄R

2

dτ
= (αD̄R

2 + ᾱȲ1)D̄ + µ′
1(βε+ ε′D̄A)D̄R

12

− (α′(D̄R
2 + D̄R

12) + µ(bε+ ε′D̄A))D̄R
2

dD̄A

dτ
= (uA + D̄A)D̄ − (ε+ ε′D̄R

2 + ε′Ȳ1)D̄
A.
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Fig. 2: Effect of basal erasure basal erasure and (ε) and mutual inhibition between activating and repressive marks (ε′)
on the response between H3K4me3 (D̄A), DNA methylation grade (Ȳ1) at the gene, and initial level of DNA methylation
writer DNMT3A (W̄1). (a) Simplified chromatin modification circuit diagram obtained when α′ = 0, µ′ = 0, W̄1 = 0, and
W̄2 = 0. (b) Dose-response curve for (Ȳ1, D̄

A) for different values of ε and ε′, obtained from simulations of system (9) with
(Ȳ1, D̄

R
2 , D̄

A) = (j, 0, 1− j) as initial conditions, with 0 ≤ j ≤ 1. (c) Dose-response curve for (W̄1, Ȳ1), for different values
of ε and ε′ obtained from simulations of system (9), with dȲ1/dτ = ũR

1 W̄1e
−ετ D̄ and setting (Ȳ1, D̄

R
2 , D̄

A) = (0, 0, 1) as
initial condition and W̄1 = [0, 4]. For panels (b) and (c), we consider ε = 0.0001, 0.1, 50 and ε′ = 1, 25. The other parameter
values are β = 1, ũR

1 = 1, α = ᾱ = 1, µ = 0.1, b = 1, uA = 15. Here, the external input dynamics is modeled as a pulse that
exponentially decreases over time and W̄1 corresponds to the external input value at time 0. In our model, α′ is the normalized
rate of DNAme establishment catalyzed by H3K9me3, µ′ quantifies the relative speed between the rate of DNA demethylation
and the activating modification erasure rate, and ε (ε′) is the parameter scaling the rate of the basal erasure process (recruited
erasure process) with respect to the auto-catalysis rate of each chromatin mark.

Now, let us set µ′
1 = 0 (and then α′ = cµ′

1 = 0):

dȲ1

dτ
= 0

dD̄R
12

dτ
= (αD̄R

2 + ᾱȲ1)D̄
R
1 − µ(bε+ ε′D̄A)D̄R

12 (14)

dD̄R
2

dτ
= (αD̄R

2 + ᾱȲ1)D̄ − (µ(bε+ ε′D̄A))D̄R
2

dD̄A

dτ
= (uA + D̄A)D̄ − (ε+ ε′D̄R

2 + ε′Ȳ1)D̄
A,

in which D̄ = 1− Ȳ1− D̄R
2 − D̄A and D̄R

1 = Ȳ1− D̄R
12.

From (14), it follows that Ȳ1 = constant. This implies
that, during the transient phase in which external inputs
are introduced into the system, Ȳ1 evolves according
to dȲ1/dτ = ũR

1 W̄1e
−ετ D̄ until e−ετ ≈ 0, at which

point Ȳ1 reaches a certain value. Now, let us define x =
(Ȳ1, D̄

R
12, D̄

R
2 , D̄

A), and denote as f(x, µ′
1) (f(x, 0)) the

matrix in which each row corresponds to the right-hand
side of each equation in (13) (in (14)). Then, it is evident
that f(x, µ′

1) and f(x, 0) are smooth functions of their
variables. Furthermore, since each entry of ∂f(x, 0)/∂x
is bounded for any x, we have that ||∂f(x, 0)/∂x||2 <
L, with L > 0 being a real number. From this, it follows
that there exists a unique solution x0(τ) for the system
(14) on the interval 0 ≤ τ ≤ T (Existence-Uniqueness
Theorem, [21]). We can then conclude that system (13)
is regularly perturbed, with small parameter µ′

1, and
its solution can be expressed as a Taylor expansion
x(τ, µ′

1) = x0(τ) +O(µ′
1) [22]. In particular, since the

last two ODEs in (14) depend only on D̄R
2 , D̄A, and

Ȳ1, once the external inputs die out (e−ετ ≈ 0), Ȳ1

remains constant and the dynamics of (D̄A, D̄R
2 ) can

be expressed as a series expansion as the one described
in (10), in which (D̄R∗

2 (τ), D̄A∗(τ)) is the solution of
the reduced 2D ODE model represented by the last two
equations in (14), coinciding with the ODEs in (9).

Overall, this model reduction shows that, in the pa-
rameter regime in which analog memory can be achieved
(i.e., µ′ = 0, α′ = 0), the DNA methylation grade
remains constant, and the chromatin modification circuit
dynamics is dictated by the evolution of histone mod-
ifications. Therefore, we can use this simpler, reduced
model to determine the conditions under which analog
memory leads to bimodal probability distributions of
gene expression level, and then validate these findings
through a computational study of the full model.

V. IMPACT OF ε AND ε′ ON THE SYSTEM’S BEHAVIOR

Let us now consider the analog memory parameter
regime (i.e., µ′ = 0, α′ = 0) and study the deterministic
and stochastic behavior of our system, with the aim of
understanding the impact of ε and ε′ on the probability
distribution of gene expression levels. As a reminder, ε
and ε′ are parameters scaling the rate of the basal erasure
process and recruited erasure process, respectively, with
respect to the auto-catalysis rate of each chromatin mark.

We start by studying the reduced 2D ODE model
(Eqs (9)) in order to determine the effect of ε and ε′
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Fig. 3: The ultrasensitive response between the level of DNA methylation writer DNMT3A and DNA methylation grade
leads to a bimodal distribution of gene expression levels. Probability distributions of the system represented by reactions in
Tables I and II, after 28 days. We obtained them using SSA [10]. More precisely, on the left-hand side we have gene expression
level probability distribution (logicle scale) and on the right-hand side we have the total DNAme level probability distributions.
The parameter values used to generate these plots are listed in Section VI-C. In particular, we consider ε = 0.13, ε′ = 1.5, 25
and (nR

12,nR
1 ,nR

2 ,nA) = (0, 0, 0,Dtot) as initial condition. We consider Dtot = 15, N = 1000 simulations to generate each
distribution and, for each simulation conducted, the value of W̄1 was randomly selected from a uniformly distributed range,
whose extremes are W̄1 = [0, 0.4], [2.4, 2.8], [3.4, 3.8], respectively.

on the value of D̄A at the equilibrium for different Ȳ1,
i.e., fractions of DNAme in the gene (Fig. 2(b)). For
large values of ε, the system has a unique stable steady
state characterized by low D̄A, with D̄A decreasing as
Ȳ1 increases (Fig. 2(b)). As ε decreases, the value of
DA at steady-state increases, especially when Ȳ1 is low,
where D̄A ≈ 1 (Fig. 2(b)). Reducing ε even further leads
the system to be bistable for intermediate values of Ȳ1

(Fig. 2(b)). Varying ε′ does not significantly affect these
trends, except when ε is small. In such cases, larger ε′

leads to a smaller range of Ȳ1 in which the system is
bistable and to a smaller difference in the values of D̄A

between the two steady states (Fig. 2(b)). The second
analysis aims to understand how ε and ε′ affect the
level of DNAme Ȳ1 at equilibrium for various initial
levels of W̄1, denoting DNAme writer DNMT3A (Fig.
2(c)). The analysis shows that larger values of W̄1 enable
reaching higher values of Ȳ1. Furthermore, when ε is
low, high values of Ȳ1 can be achieved, and, in case of
small ε, higher ε′ results in a more ultrasensitive curve
(Fig. 2(c)).

Overall, these results suggest that high fractions of
nucleosomes with H3K4me3, and consequently high
levels of gene expression, are possible only for suffi-
ciently small values of ε (Fig. 2(b)). In this parame-
ter regime, when ε′ is sufficiently high, Ȳ1 shows an
ultrasensitive response to transient dosage of DNAme
writer DNMT3A. As a result, different ranges of values
of initial DNMT3A transfection levels (W1) would re-
sult only in either low or high gene expression levels
(Fig. 2(b),(c)). To validate these results, we conduct a
computational study on the full model, whose reactions
are listed in Tables I, II (Fig. 3), using SSA [10]. For dif-
ferent ranges of initial DNMT3A levels (W1), we obtain
a bimodal probability distribution of gene expression
levels when ε′ is sufficiently large. For smaller values of

ε′, the stationary distribution shifts towards a unimodal
shape, in agreement with our expectations derived from
our deterministic analysis (Fig. 2(b),(c)).

This analysis suggests that an ultrasensitive response
between DNMT3A and DNA methylation grade, along
with intrinsic noise, leads to a bimodal gene expression
level distribution when the external input DNMT3A is
randomly selected from a range of values uniformly
distributed. Due to this ultrasensitivity, most simulations
conducted exhibit either high or low DNA methylation
levels, corresponding to low or high gene expression
levels, while some simulations show intermediate DNA
methylation levels, leading to intermediate gene expres-
sion levels (Fig. 2(b),(c)). Therefore, in the obtained
gene expression level bimodal distribution, simulated
cells are not predominantly in the high and low states,
with cells in the intermediate states corresponding to
those oscillating between the two states, consistent with
the binary memory hypothesis. Instead, each simulated
cell, including those associated with intermediate gene
expression levels, maintains its initial gene expression
level based on the DNA methylation grade achieved after
the initial transient phase.

VI. CONCLUDING REMARKS AND DISCUSSION

In this work, we introduce and analyze a mathemat-
ical model combining histone modifications and DNA
methylation, derived starting from the one in [11] (Sec-
tions II, III) to determine how chromatin modifications
affect the memory of gene expression levels. Our results
show that, without external inputs (epigenetic modifiers),
analog memory of gene expression can be achieved
when DNA methylation level in the gene of interest
remains constant at any initially set level. This phe-
nomenon is observed when H3K9me3 does not catalyze
de novo DNA methylation, i.e., α′ = 0, and DNA
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methylation decay rate is negligible, i.e., µ′ = 0 (Section
IV, Fig. 1(b)). Our results also show that in the param-
eter regime compatible with analog memory, transiently
applied external inputs lead to a bimodal distribution,
recapitulating those observed experimentally [8], only
when ε is sufficiently small and ε′ is sufficiently large.
In this case, cells do not oscillate between high and low
gene expression states, but maintain their initial gene
expression level based on the DNA methylation grade
achieved after the initial transient phase.

Overall, our results suggest the mechanisms determin-
ing when epigenetic cell memory is analog, highlighting
the key role of DNA methylation.

It is important to note that when α′ is extremely small,
but non-zero, analog memory may still be achieved,
but only for a finite duration. More precisely, the
closer α′ is to zero, the longer the temporal duration
of analog gene expression states (Fig. 1(b)). This is
because, when H3K9me3 mediates the establishment of
DNA methylation, DNA methylation itself is subject
to positive feedback. When this positive feedback is
sufficiently strong (α′ sufficiently high), then binary
memory emerges after a certain interval of time, and
fully methylated or completely unmethylated states be-
come the only heritable states (Fig. 1(b)).

Given that the interactions between DNA methylation
and histone modifications are context-dependent [23], it
is plausible that different patterns of such interactions
arise in distinct cellular and genetic contexts. Then, we
expect that the specific cellular and genetic context will
determine the strength by which H3K9me3 mediates
DNA methylation establishment (parameter α′), and
hence influencing the temporal duration of analog gene
expression states. This context-dependence may also
explain why the expression of fate-specific genes is
binary in some cell types while appearing continuous
in others [9].

Previous experimental studies confirm the weak catal-
ysis of DNA methylation by H3K9me3 (α′ = 0) in
certain cell types [8]. Furthermore, a previous computa-
tional study suggests that long-term memory of silenced
and active gene expression levels can be achieved only
for sufficiently small values of ε [11], [24]. Addi-
tional experiments are underway and preliminary results
largely confirm the theoretical findings [25]. Our model
and our theoretical results could help discern the nature
of gene expression memory (analog or binary) and the
contributions of DNA methylation and histone modifi-
cations to it.

APPENDIX

A. Chromatin modification circuit: reaction list

The reaction model describing the complete chromatin
modification circuit can be written as in Table I.

Rj Reaction Prop.Func.(aj) Param.

1 D
kA
W0−−−→ DA a1 = kAW0n

D kAW0

2 D
kA
W−−→ DA a2 = kAWnD kAW

3 DA k̄A
E−−→ D a3 = k̄AEn

A k̄AE
4 DA δ−−→ D a4 = δnA δ

5 D + DA kA
M−−→ DA + DA a5 = kA

M

Ω nDnA kA
M

Ω

6 DA + DR
1

kA
E−−→ D + DR

1 a6 = kA
E

Ω nAnR
1

kA
E

Ω

7 DA + DR
12

kA
E−−→ D + DR

12 a7 = kA
E

Ω nAnR
12

kA
E

Ω

8 DA + DR
2

kA
E−−→ D + DR

2 a8 = kA
E

Ω nAnR
2

kA
E

Ω

9 DA + DR
12

kA
E−−→ D + DR

12 a9 = kA
E

Ω nAnR
12

kA
E

Ω

10 D
k1
W0−−−→ DR

1 a10 = k1W0n
D k1W0

11 D
k1
W−−→ DR

1 a11 = k1WnD k1W

12 DR
1

k′
T−−→ D a12 = k′Tn

R
1 k′T

13 DR
1

δ′−−→ D a13 = δ′nR
1 δ′

14 D + DR
2

k′
M−−→ DR

1 + DR
2 a14 = k′

M

Ω nDnR
2

k′
M

Ω

15 D + DR
12

k′
M−−→ DR

1 + DR
12 a15 = k′

M

Ω nDnR
12

k′
M

Ω

16 DR
1 + DA k

′∗
T−−→ D + DA a16 = k

′∗
T

Ω nR
1 n

A k
′∗
T

Ω

17 D
k2
W0−−−→ DR

2 a17 = k2W0n
D k2W0

18 D
k2
W−−→ DR

2 a18 = k2WnD k2W

19 DR
2

k̄R
E−−→ D a19 = k̄REn

R
2 k̄RE

20 DR
2

δ−−→ D a20 = δnR
2 δ

21 D + DR
2

kM−−→ DR
2 + DR

2 a21 = kM

Ω nDnR
2

kM

Ω

22 D + DR
12

kM−−→ DR
2 + DR

12 a22 = kM

Ω nDnR
12

kM

Ω

23 D + DR
1

k̄M−−→ DR
2 + DR

1 a23 = k̄M

Ω nDnR
1

k̄M

Ω

24 D + DR
12

k̄M−−→ DR
2 + DR

12 a24 = k̄M

Ω nDnR
12

k̄M

Ω

25 DR
2 + DA kR

E−−→ D + DA a25 = kR
E

Ω nR
2 n

A kR
E

Ω

26 DR
1

k2
W0−−−→ DR

12 a26 = k2W0n
R
1 k2W0

27 DR
12

k̄R
E−−→ DR

1 a27 = k̄REn
R
12 k̄RE

28 DR
12

δ−−→ DR
1 a28 = δnR

12 δ

29 DR
1 + DR

2
kM−−→ DR

12 + DR
2 a29 = kM

Ω nR
1 n

R
2

kM

Ω

30 DR
1 + DR

12
kM−−→ DR

12 + DR
12 a30 = kM

Ω nR
1 n

R
12

kM

Ω

31 DR
1 + DR

1
k̄M−−→ DR

12 + DR
1 a31 = k̄M

Ω
nR
1 (nR

1 −1)
2

k̄M

Ω

32 DR
1 + DR

12
k̄M−−→ DR

12 + DR
12 a32 = k̄M

Ω nR
1 n

R
12

k̄M

Ω

33 DR
12 + DA kR

E−−→ DR
1 + DA a33 = kR

E

Ω nR
12n

A kR
E

Ω

34 DR
2

k1
W0−−−→ DR

12 a34 = k1W0n
R
2 k1W0

35 DR
12

k′
T−−→ DR

2 a35 = k′Tn
R
12 k′T

36 DR
12

δ′−−→ DR
2 a36 = δ′nR

12 δ′

37 DR
2 + DR

2

k′
M−−→ DR

12 + DR
2 a37 = k′

M

Ω
nR
2 (nR

2 −1)
2

k′
M

Ω

38 DR
2 + DR

12

k′
M−−→ DR

12 + DR
12 a38 = k′

M

Ω nR
2 n

R
12

k′
M

Ω

39 DR
12 + DA k

′∗
T−−→ DR

2 + DA a39 = k
′∗
T

Ω nR
12n

A k
′∗
T

Ω

TABLE I: Full chromatin modification circuit model:
reactions

B. Gene expression: reaction list

The reaction model associated with gene expression
can be written as in Table II. In particular, defining the
transcription rate constants as βA

m and βm, we assume
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Rj Reaction Prop.Func.(aj) Param.

1 DA βA
m−−→ DA + m a1 = βA

mnA βA
m

2 D
βm−−→ D + m a2 = βmnD βm

3 DR
1

βm−−→ DR
1 + m a3 = βmnR

1 βm

4 DR
2

βm−−→ DR
2 + m a4 = βmnR

2 βm

5 DR
12

βm−−→ DR
12 + m a5 = βmnR

12 βm

6 m
β−−→ m + X a6 = βnm β

7 m
γm−−→ ∅ a7 = γmnm γm

8 X
δ−−→ ∅ a8 = δnX δ

TABLE II: Gene expression model: reactions

βm < βA
m (see Section III).

C. Parameter values used in the simulations

Simulations in Fig. 1: kAW0 = 0, kAW = 7.8075 h−1,
k̄AE = 0.0118 h−1, δ = 0.0291 h−1, kA

M

Ω = 0.0347

h−1, kA
E

Ω = 0.8675 h−1, k1W0 = k1W = 0, k′T = 0,

δ′ = 0, k′
M

Ω = 0, 3.47 · 10−4, 3.47 · 10−3 h−1, k
′∗
T

Ω = 0,
k2W0 = k2W = 0, k̄RE = 0.0012 h−1, kM

Ω = 0.0347 h−1,
k̄M

Ω = 0.0347 h−1, kR
E

Ω = 0.0868 h−1, βm = 0.2556
h−1, βA

m = 0.0021 h−1, β = 2.52 h−1, γm = 0.24 h−1.
Simulations in Fig. 3: kAW0 = 0, kAW = 7.8075 h−1,
k̄AE = 0.0315 h−1, δ = 0.035 h−1, kA

M

Ω = 0.0347

h−1, kA
E

Ω = 0.0520, 0.8675 h−1, k1W0 = 0, k1W ∈
[0, 0.3643]e−δt, [0.2602, 0.6246]e−δt, [0.5205, 0.885]e−δt

h−1, k′T = 0, δ′ = 0, k′
M

Ω = 0, k
′∗
T

Ω = 0, k2W0 = k2W = 0,
k̄RE = 0.0032 h−1, kM

Ω = 0.0347 h−1, k̄M

Ω = 0.0347

h−1, kR
E

Ω = 0.0052, 0.0868 h−1, βm = 0.2556 h−1,
βA
m = 0.0021 h−1, β = 2.52 h−1, γm = 0.24 h−1. In

the simulations of both figures, we set, as initial value
for nX of nm, their steady states of the ODEs.
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