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Abstract— This paper develops a formal framework to sys-
tematically synthesize a controller for continuous-time nonlin-
ear stochastic control systems which react to specification-mode
changes, initiated by either the external environment or the
system itself. Considering the particular challenging setting
where mode switches affect the specification rather than the
dynamics, our proposed scheme adopts a synthesis approach
based on control barrier certificates to synthesize controllers
that ensure compliance with mode-triggered safety specifications.
Our method leverages the computational capabilities derived
from state-space control techniques and combines them with
the reactivity of logic control. We provide a robotic case study
to illustrate the effectiveness of our proposed approach.

I. INTRODUCTION

There has been a significant surge, over the past few
years, in the adoption of formal control synthesis for complex
dynamical systems, aiming to enforce safety classifications.
However, a formal synthesis approach usually faces substan-
tial challenges arising from some factors including (i) the
continuous nature of state and input sets which demands
specialized techniques for designing controllers capable of
effectively navigating such continuous domains, and (ii)
the inherent stochasticity in the underlying dynamics which
introduces an additional layer of complexity. This becomes
particularly crucial because, in specific scenarios, a physical
system must adapt to specification changes to satisfy a given
formal property. These shifts in specification modes represent
logical context changes triggered by external environmental
factors and can occur at various moments.

To tackle the challenges posed by the aforesaid com-
putational complexity, one promising approach outlined in
pertinent literature involves approximating complex models
with simpler ones that possess finite state and input sets,
commonly referred to as finite abstractions [1], [2]. In
practical application, constructing such finite abstractions
entails dividing the state and input sets of concrete mod-
els based on predefined discretization parameters [3]–[11].
However, a notable limitation of employing finite-abstraction
techniques lies in their discretization-based nature, leading to
susceptibility due to an exponential curse of dimensionality.

To overcome the difficulties associated with the state-
explosion problem in abstraction-based approaches, a po-
tential approach involves leveraging barrier certificates as
a method free from discretization, facilitating the formal
analysis of complex dynamical systems. Barrier certificates
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essentially are Lyapunov-like functions, spanning the sys-
tem’s state space while satisfying a set of inequalities per-
taining to the function itself and its time derivative along the
system’s flow. The presence of such a function inherently
provides a probabilistic guarantee over the safety of the
system (see [12]–[19]). Expanding upon the aforementioned
barrier concepts serves as a valuable tool in addressing other
properties, including reachability specifications [20]. It is
worth mentioning that, although abstraction-based techniques
suffer from state explosion, they offer an advantage over
barrier certificates in terms of their automated verification
and synthesis process, which can also benefit from the
inherent parallelism of abstraction methods [21].

Although prior work extensively covers finite abstraction
and barrier certificate approaches for control systems, the
consideration of reactivity to environment-triggered logical
specification changes within these control frameworks has
only recently been considered [22]–[25]. While [22]–[24]
only consider non-stochastic dynamics, [25] focuses on sce-
narios where specification changes only occur sequentially.
In our current work, we study safety specifications while
allowing specification-mode changes to occur anytime –
requiring the system to instantaneously react to the mode
change by dynamically imposing new safety barriers—an
aspect not addressed in the study in [25].

Given an operational scenario, our key objective is to
synthesize a feedback control policy capable of responding
to the external environment’s mode choices m such that the
dynamical system (e.g., a robot) avoids the obstacle Om

promptly with high confidence while handling the uncer-
tainties in the system in a provably correct way. This poses
several major challenges on the logical (higher) control level.
The first one stems from the fact that a mode-change can
be triggered at any point in time, requiring the system to
immediately react to it. The second challenge arises from
the scenario where the system might be within an obstacle
when a new mode aims to be activated. To address this, a
reachability analysis can be performed before activating the
mode and deploying new safety constraints, ensuring that the
system can safely exit the obstacle region and maintain the
integrity of the safety certificates.

To implement such logical control objectives over stochas-
tic dynamical systems, our framework employs mode-
dependent safety and reachability barrier certificates to de-
rive feedback control policies realizing the above-mentioned
mode-dependent control tasks. This, however, results in a
third challenge stemming from the fact that the probabilistic
guarantees offered by barrier certificates inherently correlate
with particular initial sets. As modes can change at any time,
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the entire state space might be initial for a subsequently
activated barrier. To address this, we employ a coarse mode-
dependent state-space discretization, which allows us to
consider each resulting cell as an individual initial set. This
results in a so-called mode-dependent heatmap, which asso-
ciates each cell with a guaranteed probability of satisfying
the safety property when the system starts from that cell.
This allows us to construct a hybrid control policy which
ensures the overall safety in a reactive and reliable manner.

It is worth noting that in our proposed framework, modes
are mutually exclusive, with only one active mode at a time,
eliminating the possibility of mode conflicts or overlaps.
We do not impose specific time bounds, like dwell-time
requirements, for exiting unsafe regions. Instead, we focus on
ensuring provable safety at all times. While time-based con-
straints could be added, our approach prioritizes immediate
safe behavior, making it ideal for environments where safety
is more important than time limits. In addition, the mode
transitions, triggered by external factors like task assignments
or environmental changes, are considered deterministic in
our setting. If transitions are stochastic (e.g., Markovian
switching) [19], modeling transition probabilities can refine
safety guarantees. Due to space constraints, proofs of some
statements are omitted.

II. SYSTEM DESCRIPTION

Notation. Sets of nonnegative integers N0 := {0, 1, 2, . . .}
and positive integers N := {1, 2, 3, . . .} are denoted by
these symbols, respectively. The symbols R, R+, and R+

0
represent sets of real numbers, positive real numbers, and
nonnegative real numbers, respectively. When considering a
matrix A ∈ Rm×m, the symbol Tr(A) signifies the trace
of A, which corresponds to the sum of all its diagonal
elements. We utilize x = [x1; . . . ;xN ] to symbolize the
vector associated with a dimension

∑
i ni, given N vectors

xi ∈ Rni , with ni ∈ N and i ∈ {1, . . . , N}. The identity
matrix of size n is denoted as In. We define b(X) and cl(X)
for a set X ∈ Rn as its boundary and topological closure,
respectively. We express the relationship between a system
Σ and a property Ψ as Σ ⊨ Ψ, signifying that Σ satisfies Ψ.
Preliminaries. We work within a probability space
(Ω,FΩ,PΩ), where Ω represents the sample space, FΩ is
a sigma-algebra on Ω encompassing subsets of Ω as events,
and PΩ is a probability measure assigning probabilities to
events. We assume that the triple (Ω,FΩ,PΩ) is equipped
with a filtration F = (Fs)s≥0 meeting the usual conditions
of completeness and right continuity. Within this space, we
denote an r-dimensional F-Brownian motion by (Ws)s≥0.
Continuous-Time Stochastic Control Systems. The focus
of this work lies in the study of continuous-time nonlinear
stochastic control systems (ct-SCS), aligning with the formal
definition outlined subsequently.

Definition 2.1: A continuous-time nonlinear stochastic
control system (ct-SCS) is described by the tuple

Σ = (X,U,U , f, δ), (1)

where:
• X ⊆ Rn denotes the state set of ct-SCS;
• U ⊆ Rm̄ denotes the input set of ct-SCS;

• U is a subset of sets of F-progressively measurable
processes [26] taking values in Rm̄;

• f : X × U → X represents the drift term which
is globally Lipschitz continuous: there exist constants
Lx,Lu,∈ R≥0 such that ∥f(x, u) − f(x′, u′)∥ ≤
Lx∥x − x′∥ + Lu∥u − u′∥ for all x, x′ ∈ X , and for
all u, u′ ∈ U ;

• δ : Rn → Rn×r represents the diffusion term which is
globally Lipschitz continuous.

A continuous-time stochastic control system Σ fulfills

dx(t) = f(x(t), ν(t)) dt+ δ(x(t)) dWt, (2)

P-almost surely (P-a.s.), where the stochastic process x :
Ω×R+

0 → X is the solution process of Σ. Describing a state-
feedback policy for ct-SCS, denoted by (2), entails a function
ν : X → U . To represent the value of the solution process at
a specific time t ∈ R+

0 under policy ν, originating from an
initial condition x0 = x(0) P-a.s., we utilize xx0ν(t), where
x0 stands as an F0-measurable random variable.
Safety and Reachability Control Problems. Consider the
continuous-time stochastic system depicted in (2), alongside
sets I,S,T ⊆ X , denoted as the “initial”, “safe”, and “target”
sets, respectively. In this context, a bounded-horizon safety
property asserts that a solution process xx0ν starting from an
initial condition x0 ∈ I under policy ν stays in the safe set S
within the time interval [0, T ] ⊂ R+

0 . This requirement can
be extended to infinite time horizons as T → ∞ signifying
“always S”. The primary goal when computing a feedback-
policy ν for this objective is to ensure that the probability
that a solution process remains in S within an infinite horizon
is lower bounded by θ1 ∈ [0, 1] (cf. Theorem 4.2), i.e.,

P
{
xx0ν(t) |= (I,S) for all t ∈ R+

0 |x0 ∈ I
}
≥ θ1.

Similarly, a bounded-horizon reachability property stip-
ulates that a solution process xx0ν starting from an initial
condition x0 ∈ I under policy ν reaches the target set T
within the time interval [0, T ] ⊂ R+

0 if there exists a time
instant t ∈ [0, T ] for which x(t) ∈ T. This requirement can
be extended to infinite time horizons as T → ∞ signifying
“eventually T”. The main goal when computing a feedback-
policy ν is to ensure that the probability that a solution
process reaches T starting from I within an infinite horizon
is lower bounded by θ2 ∈ [0, 1] (cf. Theorem 4.5), i.e.,

P
{
xx0ν(t) |= (I,T) for some t ∈ R+

0 |x0 ∈ I
}
≥ θ2.

III. HYBRID CONTROL INTERACTION

The aim of this paper is to synthesize a hybrid safety
controller for a ct-SCS Σ which reacts to the type of specifi-
cation changes. We achieve this by a separation of concerns:
while the (high-level) reactive decisions are formalized over
a mode-dependent discrete partition of the state space, the
underlying ct-SCS is actuated via (switching) feedback poli-
cies ν : X → U in continuous time and space. In particular,
every (externally triggered) mode-change is translated into
a reachability and a safety control problem, implemented
through policies based on control barrier certificates.
Mode-dependent Heat Maps. Towards a formalization of
the above intuition, we first define mode-dependent heat
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maps. To this end, let Im be a finite index set for mode
m ∈M . Then Qm = {qi ⊆ X | i ∈ Im} is a finite partition
of X s.t.

⋃
i∈Im

qi = X and qi ∩ qj = ∅ for all i, j ∈ Im,
i ̸= j. A heat map for mode m is a tuple (Qm,Γm), where
Γm : qi → [0, 1] associates each element in Qm with a
corresponding probability.

We call the heat map (Qm,Γm) implementable for ct-
SCS Σ with respect to the safety specification induced by
the mode-dependent obstacles Om, if for any i ∈ Im there
exists a feedback policy νm,i solving the respective safety
control problem:

P
{
xx0ν(t)|=(qi,X\Om) for all t∈R+

0

∣∣x0∈qi,νm,i

}
≥Γm(qi).

Intuitively, Γm(qi) is the probability with which the control
policy νm,i can guarantee the system to stay outside of Om

when starting from some x0 ∈ qi. It is clear that Γm(qi) = 0
if qi ∩ Om ̸= ∅.
Reachability Control. Given an implementable heat-map
(Qm,Γm) for safety specification over the ct-SCS Σ, there
might be partitions qi such that qi ∩ Om ̸= ∅. In this case,
we consider an additional reachability control problem which
first navigates the system to the partition q↑j ∈ Qm with the
highest safety probability and only upon reaching q↑j activates
the associated safety control policy ν↑m,j . This requires us
to construct a control policy ν̃m,i such that the following
reachability control problem has a solution:

P
{
xx0ν̃(t) |= (qi, q

↑
j ) for some t∈R+

0 |x0 ∈ qi, ν̃m,i

}
≥ θ̃i.

Hybrid Control Policies. With this, for any partition qi ∈
Qm, qi ∩ Om ̸= ∅, we define a hybrid policy νm,i :=

ν̃m,i · ν↑m,j which ensures that ν↑m,j is activated when q↑j is
entered, which is guaranteed by the construction of ν̃m,i. For
all other partitions qi ∈ Qm, probabilistic safety is ensured
by defining νm,i := νm,i. In other words, the overall hybrid
safety controller triggers policy νm,i whenever mode m is
activated while the system is in region qi.
Problem Statement. Given the above discussion, the prob-
lem addressed in this paper can be summarized as follows.

Problem 3.1: Let Σ be a ct-SCS with state space X and
Om ⊆ X , with m ∈ M being a finite set of mode-
dependent obstacles. For every mode m ∈ M , compute
a heat map (Qm,Γm) and associated hybrid policies
νm,i such that the system under control is guaranteed
to eventually stay safe for all modes with an overall
probability θ ∈ [0, 1] (see Sec. V).

IV. CONTROL BARRIER CERTIFICATES

In this section, we begin by introducing two fundamental
concepts of control barrier certificates for ct-SCS, to address,
respectively, the safety and reachability problems, specified
in Section III. Based on the preceding discussion, we sub-
sequently employ these concepts to establish lower bounds
on two key probabilities: one that pertains to preventing the
system from entering designated unsafe areas (referred to as
the safety problem), while the other concerns the likelihood
of the system reaching predefined target regions (referred to

as the reachability problem). We slightly abuse the notation
and omit the index i for the sake of simplicity.

A. Safety Certificates

Definition 4.1: Given a ct-SCS Σ = (X,U,U , f, δ), let
I, Xu ⊆ X represent the initial and unsafe sets of ct-SCS,
respectively. A twice-differentiable function Bs : X → R+

0
is said to be a safety control barrier certificate (S-CBC) for
Σ if there exist εs, λs ∈ R+ with λs > εs, such that

∀x ∈ I : Bs(x) ≤ εs, (3)
∀x ∈ Xu: Bs(x) ≥ λs, (4)

and ∀x ∈ X , ∃ν ∈ U , such that

LBs(x) ≤ 0, (5)

with LBs being the infinitesimal generator of the stochastic
process acting on function Bs [27], defined as

LBs(x)=∂xBs(x)f(x, ν)+
1

2
Tr(δ(x)δ(x)⊤∂x,xBs(x)). (6)

Through the utilization of the S-CBC outlined in Defini-
tion 4.1, the subsequent theorem establishes a quantifiable
lower bound on the probability associated with the system’s
avoidance of specific unsafe regions [28].

Theorem 4.2: Given Σ = (X,U,U , f, δ), let Bs desig-
nated as an S-CBC for Σ according to Definition 4.1. Then
the probability that the solution process of Σ, initiating from
any initial state x0 ∈ I, under policy ν(·), never reaches Xu

within an infinite time horizon is formally quantified as

P
{
xx0ν(t) |= (I,S) for all t ∈ R+

0 |x0
}
≥ 1− εs

λs
, (7)

with S = X\Xu.
Remark 4.3: Note that there are no restrictions on the

shape of the partition cells within Qm when computing
S-CBC according to Definition 4.1 and constructing the
heat map (Qm,Γm). However, the finer partitions result in
less conservative S-CBC corresponding to those cells, albeit
at the expense of increased computational complexity in
computing S-CBC for a larger number of partition cells.

B. Reachability Certificates

As discussed in Section III, when a mode aims to be
activated and the system remains within the obstacle of that
mode, it necessitates first solving a reachability problem,
where the target set is defined as the cell with the high-
est safety probability based on the computed heatmap. To
address this issue, inspired by [20], [29], we now define
a notion for control barrier certificates to quantify a lower
bound on the probability that the continuous-time stochastic
control system reaches some target regions.

Definition 4.4: Given a ct-SCS Σ = (X,U,U , f, δ), let
I,T ⊆ X be initial and target sets of ct-SCS, respectively. A
twice-differentiable function Br : X → R+

0 is said to be a
reachability control barrier certificate (R-CBC) for Σ if there
exist εr, λr, ψ ∈ R+ with λr > εr, such that

∀x ∈ I : Br(x) ≤ εr, (8)
∀x ∈ b(X)\b(T) : Br(x) ≥ λr, (9)
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and ∀x ∈ cl(X\T), ∃ν̃ ∈ U , such that

LBr(x) ≤ −ψ, (10)

with LBr being the infinitesimal generator of the stochastic
process acting on function Br, as defined in (6).

We now leverage the R-CBC in Definition 4.4 and quantify
a lower bound on the probability that the system reaches
target set T in an infinite time horizon [29].

Theorem 4.5: Given Σ = (X,U,U , f, δ), let Br be an R-
CBC for Σ as in Definition 4.4. Then the probability that
the solution process of Σ, commencing from x0 ∈ I under
policy ν̃(·), reaches T in an infinite horizon is quantified as

P
{
xx0ν̃(t) |=(I,T) for some t∈R+

0 |x0
}
≥ 1− εr

λr
. (11)

C. Computation of Safety and Reachability CBC
Here, we translate the conditions outlined in Defini-

tions 4.1 and 4.4 into an optimization problem leveraging
the sum-of-squares (SOS) methodology [30]. We accordingly
provide a systematic approach for computing both S-CBC
and R-CBC, along with their associated control policies
tailored for the system Σ. To effectively employ SOS opti-
mization techniques, we assume that Σ has continuous state
and input sets X,U, with polynomial drift and diffusion
terms f, δ.

The ensuing lemma provides a set of sufficient conditions
validating the existence of an S-CBC and its control policy.

Lemma 4.6: Considering the semi-algebraic nature of sets
X, I, Xu, U , defined by vectors of polynomial inequalities
g(x), g0(x), gu(x), gν(x) ∈ R+

0 , let the following conditions
hold: there exist sum-of-square polynomial Bs(x), constants
εs, λs ∈ R+, polynomials lνz (x) corresponding to the zth

input in νz = (ν1, ν2, . . . , νm̄) ∈ U ⊆ Rm̄, and vectors
of sum-of-squares polynomials l(x), l0(x), lu(x), l̂ν(x) of
appropriate dimensions, ensuring the following expressions
are sum-of-squares polynomials:

−Bs(x)− l⊤0 (x)g0(x) + εs, (12)

Bs(x)− l⊤u (x)gu(x)− λs, (13)

−LBs(x)−
m̄∑

z=1

(νz−lνz (x))−l⊤(x)g(x)− l̂⊤ν (x)gν(x). (14)

Then, Bs(x) fulfills conditions (3)-(5) in Definition 4.1 and
νz ≥ lνz , is the corresponding safety controller.

One can use a similar argument as Lemma 4.6 and
compute an SOS polynomial R-CBC and its corresponding
reachability controller according to Definition 4.4, by defin-
ing vectors of polynomial inequalities gu(x) for b(X)\b(T)
in condition (9) and g(x) for cl(X\T) in condition (10).

V. PROBABILISTIC GUARANTEE FOR OVERALL
MODE-TRIGGERED SPECIFICATION

In this section, we offer our main result as a probabilistic
guarantee for the overall mode-triggered specification to
address Problem 3.1. In particular, the following theorem
provides a safety probability under the assumption that
any mode can be triggered at any time, i.e., the following
guarantee holds for the system being in any (not previously
known) state x0 and any mode m being triggered at this
point. If another mode m′ gets triggered at a future state x′,

the same reasoning holds again based on the location of x′
and its associated barrier-based controller.

Theorem 5.1: Consider a ct-SCS Σ = (X,U,U , f, δ) with
state space X and Om ⊆ X , with m ∈ M = {1, . . . , p}
being a finite set of mode-dependent obstacles. Let there
exist S-CBC Bm,i

s (corresponding to heat map (Qm,Γm))
and R-CBC Bm,i

r for each mode according to Definitions 4.1
and 4.4, respectively. Now one can guarantee that the over-
all mode-triggered specification is satisfied with an overall
probability of at least θ = 1−

∑p
m=1(

εm,i
r

λm,i
r

+
εm,i
s

λm,i
s

).
Proof. By defining events

Rm,i:=
{
xx0ν̃(t)|=(qi, q

↑
j ) for some t∈R+

0 |x0 ∈ qi, ν̃m,i

}
,

Sm,i :=
{
xx0ν(t)|=(qi, X\Om) for all t∈R+

0 |x0∈qi, νm,i

}
,

one has P{Rm,i} ≥ 1− εm,i
r

λm,i
r

and P{Sm,i} ≥ 1− εm,i
s

λm,i
s
,m ∈

{1, . . . , p}. We are interested in occurrences of events Rm,i

and Sm,i to ensure the satisfaction of both safety and
reachability properties, that can be computed as:

P
{
Rm,i ∩ Sm,i

}
= 1− P

{
R̄m,i ∪ S̄m,i

}
, (15)

where R̄m,i and S̄m,i are the complement of Rm,i and Sm,i,
respectively. Since

P
{
R̄m,i ∪ S̄m,i

}
≤ P

{
R̄m,i

}
+ P

{
S̄m,i

}
,

and by leveraging (15), one can conclude that

P
{
Rm,i ∩ Sm,i

}
≥ 1−P

{
R̄m,i

}
−P

{
S̄m,i

}
≥ 1−(

εm,i
r

λm,i
r

+
εm,i
s

λm,i
s

). (16)

We now proceed with showing the overall mode-triggered
specification covering the whole modes. By defining events
Em,i =

{
Rm,i ∩ Sm,i

}
, we have P{Em,i} ≥ 1 − (

εm,i
r

λm,i
r

+
εm,i
s

λm,i
s

),m ∈ {1, . . . , p} according to (16). We now compute
the occurrence of all events Em to ensure the satisfaction of
the property for all modes, namely P{E1,i ∩ · · · ∩ Ep,i}, as:

P
{
E1,i ∩ · · · ∩ Ep,i

}
= 1− P

{
Ē1,i ∪ · · · ∪ Ēp,i

}
, (17)

where Ēm,i are complements of Em,i,∀m ∈ {1, . . . , p}.
Since

P
{
Ē1,i ∪ · · · ∪ Ēp,i

}
≤ P

{
Ē1,i

}
+ · · ·+ P

{
Ēp,i

}
,

and by leveraging (17), one can deduce that

P
{
E1,i ∩. . .∩Ep,i

}
≥ 1−(P

{
Ē1,i

}
+ · · ·+ P

{
Ēp,i

}
)

≥ 1−
p∑

m=1

(
εm,i
r

λm,i
r

+
εm,i
s

λm,i
s

),

which concludes the proof. ■
Remark 5.2: It is worth noting that if the system is not in

the obstacle Om when mode m is activated, then P
{
Rm,i ∩

Sm,i

}
≥ 1− εm,i

s

λm,i
s

for that specific mode. In an ideal scenario,
the lower bound guarantee proposed in Theorem 5.1 can be
improved to 1−

∑p
m=1

εm,i
s

λm,i
s

.
Remark 5.3: By employing the designed controllers and

running Monte Carlo simulations, the empirical probabilities
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slightly exceed our formal computations. This is expected
due to the conservative nature of using fixed-degree polyno-
mial barrier functions, which ensures formal guarantees. To
mitigate this conservatism, higher-degree polynomials could
be used for the barrier certificates or controllers, though this
would increase computational complexity.

VI. EXPERIMENTAL EVALUATION

In order to showcase the applicability of S-CBC and
R-CBC to reactive logical control of stochastic dynamical
systems, we consider a robotic case study with the following
dynamics:

dx(t) = (x(t) + ν(t)) dt+ 0.5x(t)dWt,

with x = [x1;x2] being the coordinate of the location of the
robot, and ν = [ν1; ν2] being the control input. The regions
of interest encompass the state space X = [0, 4]×[0, 4], con-
sisting of two unsafe regions O1 = [0, 1.2] × [2.8, 4],O2 =
[2.8, 4] × [0, 1.2], along with the surrounding walls. We
assume the robot is initially located in I = [3.6, 3.8]× [1.8, 2]
with mode m = 1 being activated. The robot then traverses
the state space X , while avoiding O1. When the robot is in
the region [2.8, 4]× [0, 1.2], we assume that mode m = 2 is
intended to be activated. Given that the robot is inside O2,
we first need to solve a reachability problem aiming to guide
the robot away from O2. We use the constructed partition cell
with the highest safety probability as the target set for this
purpose. Now since mode m = 2 is activated, the robot can
traverse the state space while ensuring it avoids O2.

We leverage SOSTOOLS [31] and the SDP solver Se-
DuMi [32] to construct all required S-CBC, R-CBC, and their
associated safety and reachability controllers, as outlined in
Definitions 4.1, 4.4. Alternatively, Julia-based SOS optimiza-
tion tools can be used as well [33]. Firstly, upon activation
of mode m = 1, to ensure avoidance of O1 and surrounding
walls, as per Lemma 4.6, we compute an S-CBC of an order
2 along with its associated safety controller as

Bs1 =0.000015x21−0.00015x1+0.000019x1x2−0.00028x2

+ 0.000057x22 + 0.00055,

ν1 = −1.6x+ 0.7 I2.

Furthermore, the corresponding constants in Definition 4.1
fulfilling conditions (3)-(5) are quantified as εs1 = 9.099 ×
10−7 and λs1 = 3.807 × 10−5. Now by employing The-
orem 4.2, we guarantee that the robot avoids O1 and the
surrounding walls under the designed policy with a proba-
bility of at least 1− εs1

λs1
= 98%. It is worth noting that we

reported the barrier function values up to 6 decimal places,
although they were computed with a precision of up to 16
decimal digits.

Given that the robot is in the region [2.8, 4]× [0, 1.2] (i.e.
location of O2) and mode m = 2 aims to be activated, one
should first solve a reachability problem aiming to guide
the robot reaching the partition cell with the highest safety
probability from the heatmap in Fig. 1 (yellow part). Note
that this heatmap is formally constructed by designing S-
CBC for each partition cell and computing safety probabil-
ities according to Theorem 4.2. We construct an R-CBC of
an order 2 and its corresponding reachability controller for

Fig. 1. Probability heatmap: Illustrating the safety probability of the robot
starting from various initial sets within the state space X = [0, 4]× [0, 4].
The red box marks obstacle O2 = [2.8, 4]× [0, 1.2] with a clear zero-safe
probability. This heatmap is constructed via Definition 4.1 and Theorem 4.2.

steering the robot from O2 to the dedicated partition cell
while avoiding the surrounding walls:

Br2 = 0.00065x21 − 0.00667x1 + 0.00142x1x2 − 0.00773x2

+ 0.00098x22 + 0.01728,

ν̃2 = −1.7x+ 2.2 I2.

The corresponding constants in Definition 4.4 are quantified
as εr2 = 3.151×10−5, λr2 = 9.957×10−4, and ψr2 = 10−6.
Now under Theorem 4.5, we guarantee that the robot goes
from O1 to partition cell [0, 4] × [3, 4] under the designed
policy with a probability of at least 1− εr2

λr2
= 97%.

Finally, given that the mode m = 2 is activated, we
leverage the S-CBC and its associated controller, constructed
for the partition cell with the highest probability, to ensure
that the robot avoids O2 and the surrounding walls. In
particular, the S-CBC and its corresponding safety controller
are constructed as

Bs2 = 0.0000307x21 − 0.000051x1 + 0.000029x1x2

− 0.000049x2 + 0.000073x22 + 0.00083,

ν2 = −1.5x+ 0.6 I2,

with εs2 = 6.938 × 10−8, λs2 = 3.089 × 10−6. Under
Theorem 4.2, we guarantee that the robot avoids O2 and
the surrounding walls under the synthesized policy with a
probability of at least 1− εs2

λs2
= 98%.

Now under the main result of Theorem 5.1, one can
guarantee that the overall mode-triggered safety-reachability
specification is fulfilled with an overall probability of at least
1−
∑2

m=1(
εmr
λm
r
+

εms
λm
s
) = 93%. Note that there is no reachability

probability for mode m = 1 (cf. Remark 5.2). Closed-loop
state trajectories of the robot, obtained using the synthesized
controllers across 10 noise realizations, are depicted in Fig. 2,
thus affirming the theoretical guarantee provided.
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