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Abstract— Multi-armed bandit models have proven to be
useful in modeling many real world problems in the areas of
control and sequential decision making with partial information.
However, in many scenarios, such as those prevalent in
healthcare and operations management, the decision maker’s
expected reward will decrease if an action is selected too
frequently while it may recover if they abstain from selecting
this action. This scenario is further complicated when choosing
a particular action also expends a random amount of a limited
resource where the distribution is also initially unknown to
the decision maker. In this paper we study a class of models
that address this setting that we call reducing or gaining
unknown efficacy bandits with stochastic knapsack constraints
(ROGUEwK). We propose a combination upper confidence
bound (UCB) and lower confidence bound (LCB) approximation
algorithm for optimizing this model. Our algorithm chooses
which action to play at each time point by solving a linear
program (LP) with the UCB for the average rewards and LCB
for the average costs as inputs. We show that the regret of our
algorithm is sub-linear as a function of time and total constraint
budget when compared to a dynamic oracle. We validate the
performance of our algorithm against existing state of the art
non-stationary and knapsack bandit approaches in a simulation
study and show that our methods are able to on average achieve
a 13% improvement in terms of total reward.

I. INTRODUCTION

Stochastic Multi-armed bandits (MAB) have become some
of the most common models for analyzing problems in
sequential decision making and control with partial infor-
mation. MABs have been used to model various real life
applications such as medical trials [1], advertising [2], and
recommendation system [3]. In the classic stochastic MAB
setting, a decision maker must select an action from a finite
set of actions to maximize their long term reward without
knowing a priori the reward distribution associated with each
action. This means that to be effective, their policy must
balance choosing actions that may help them learn more
about the system (exploration) with actions that given current
information seem like they are likely to provide a high reward
(exploitation). In general this reward distribution is assumed
to be unchanging and stationary throughout the process and
the decision maker is assumed to be able to take as many
actions as they desire. However, in many real world scenarios
such as those prevalent in personalized healthcare [4] and
operations management [5], reward distributions may be non
stationary and actions are restricted by resource constraints.
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Several frameworks have been used to analyze MABs
with non-stationary rewards. The oldest model related to this
problem is the restless bandit model proposed by Whittle [6]
where bandit rewards are dependent on internal transitioning
states. In more recent literature there have been two main
families of non-stationary bandit models. The first family, are
bandits where the non-stationary is not modeled explicitly
but is subject to a total variation constraint [7]–[11]. These
approaches have been shown to be effective in settings where
the reward distribution either changes very slowly over time
or very infrequently. The other family of models considers
structured non-stationarity [12]–[14]. These approaches are
more suitable for frequently changing rewards; however, they
require the additional assumption that the decision maker has
a model for how rewards can change over time.

Several models in the literature have been devised for
settings with bandit feedback and limited resources. [15]
studies the case where the cost of pulling an arm is fixed and
becomes known after the arm is pulled once and [16] extends
the result to the scenario where the costs are random variables.
A generalization of these two settings is known as Bandit with
Knapsacks (BwK) problem where each arm pull consumes
multiple constrained resources. In the standard BwK setting,
[17] determines the policy by solving a sequence of linear
programs (LP) that take the expected reward and resource
consumption as input and the optimal values of these LPs
are used for the regret analysis. Recently, models have been
proposed to address the BwK case where rewards can be
non-stationary [11]. This model uses assumptions similar to
those found in the literature that considers un-modeled non-
stationarity that is bounded by a total variation constraint. This
results in a dynamic regret bound that is O(

√
T log T ) with

additional constants that depend on the total variation budget.
Due to this assumption, this approach is well suited for cases
where the distributions in the problem either change abruptly
and infrequently or very slowly, and is not well suited for the
case of frequently changing rewards. Thus, new approaches
must be developed that can address both frequently changing
non-stationary rewards and resource constraints.

In this paper, we propose methods to address the challenges
of non-stationarity and knapsack constraints with frequently
changing reward distributions. Our approach builds upon the
literature related to structured non-stationarity and develops
a new regret analysis for the case of dynamic regret. In
particular we consider the case of non-stationarity where
taking an action too frequently may reduce its reward, an
effect known as habituation, while refraining from taking an
action may increase its reward, known as recovery. Bandit
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models that address these effects are referred to as bandits
with reducing or gaining unknown efficacy (ROGUE bandits)
[12]. This form of non-stationarity is common in many real
world applications such as personalized healthcare treatment
[18] and online advertising [19]. In this paper we present
the model we call the ROGUE bandits with knapsacks
(ROGUEwK) problem and present an upper confidence bound
(UCB) based approach for solving this problem we call the
ROGUE knapsack UCB (ROGUEwK-UCB) algorithm. We
show that our approach is able to achieve a dynamic regret
bound of O(

√
T log T ) meeting the existing non-stationary

and stationary BwK regret bound up to a log factor [11],
[17]. We conduct a computational experiment and show how
our approach an outperform existing approaches by 13% in
terms of maximum reward.

II. PROBLEM STATEMENT

In the ROGUEwK problem, the decision-maker is given a
fixed finite set of arms A (with |A| = m). At each round t, the
decision maker must play one arm denoted by at. Each arm
pull at ∈ A at time t provides a stochastic reward rat,t that
has a sub-Gaussian distribution Pat,xat,t

with expectation
E[rat,t] = g(xat,t) for a bounded function gat : X → R.
Each action a ∈ A has a state xa,t with nonlinear dynamics
xa,t+1 = ha(xa,t, πa,t) where πi,t = 1 [at = i] , h : X×B →
X is a known dynamics function, and X is a compact convex
set such that xa,t ∈ X ∀a, t and xa,0 is initially unknown
for a ∈ A. The maximum time horizon T is finite and
known in advance. We also assume that there are d resources
that each has a budget Bj . Without loss of generality, we
assume Bj = B for all j. Each arm pull at ∈ A at time t
incurs a stochastic consumption cat,j,t on resource j with
support in [0, 1] and denote the expected consumption matrix
to be C where Cij denotes the expected consumption on
resource j for arm i. The realizations of consumption ca,j,t
are independently and identically distributed and in each
round the resource consumption of the pulled arm is revealed
to the decision maker. The interaction between the learner
and the environment terminates at the earliest time τ when at
least one constraint is violated, i.e.

∑τ
t=1 cat,j,t > B, or the

time horizon T is exceeded. The objective is to maximize the
expected cumulative reward until time τ , i.e. E

[∑τ−1
t=1 rat,t

]
.

We measure the performance of algorithm/policy Π by
its regret which is defined as: Reg(Π, T ) := OPT(T ) −
E
[∑τ−1

t=1 rat,t | Π
]
. Here OPT(T ) denotes the expected

cumulative reward of the optimal dynamic policy given all the
information on the initial state, reward and cost distributions.

A. Technical Assumptions on ROGUEwK

As part of our analysis we make the following technical
assumptions. First is a set of assumptions introduced in [12]
for the analysis of bandits with ROGUE non-stationarity.

Assumption 1. ra,t are conditionally independent given xa,0

(or equivalently, the complete sequence of xa,t, at).

This is a fairly mild assumption that is a non-stationary
analogue to the classical MAB assumption of i.i.d rewards.

Essentially it implies that at any two points in time t, t′ such
that t ̸= t′, ra,t | {xa,t, } is independent of ra,t′ | {xa,t′ , }.

Assumption 2. For all a ∈ A, the reward distribution Pa,x

has a log-concave probability density function (p.d.f.) pa(r |
x) for all x ∈ X .

This assumption provides regularity for the reward dis-
tributions and many common distributions (e.g., Gaussian
and Bernoulli) have this property. Let f(·) be L-Lipschitz
continuous if |f(x1)− f(x2)| ≤ L ∥x1 − x2∥2 for all x1, x2

in the domain of f , and let f to be locally L-Lipschitz on a
compact set S if it has the Lipschitz property for all points of
its domain on set S . Our next assumption is on the stability
of the above distributions with respect to various parameters.

Assumption 3. The log-likelihood ratio ℓ(r;x′, x) =
log(p(r | x′)/p(r | x)) of the distribution family Pa,x is
locally Lf -Lipschitz with respect to x on the compact set X
for all values of x′ ∈ X , and g is locally Lg-Lipschitz with
respect to x on the compact set X .

This assumption guarantees that when two sets of pa-
rameters have similar values, the resulting distributions will
be close to each other. We also introduce an additional
assumption regarding the functional form of the reward
distribution family.

Assumption 4. The reward distribution Pa,xa for all xa ∈ X
and a ∈ A is sub-Gaussian with parameter σ, and either
p(r | x) has a finite support or ℓ(r;x′, x) is locally Lp-
Lipschitz with respect to r.

This assumption is essential to guarantee that sample
averages closely approximate their means, and it is upheld
by various distributions (such as a Gaussian location family
with a known variance). We impose the following conditions
regarding the dynamics governing the state of each action.

Assumption 5. The dynamic transition function h is bijective
and Lh-Lipschitz continuous such that Lh < 1.

This assumption ensures that there are no rapid changes in
the states of each action, and implies stability in the dynamics.
The last assumption, drawn from existing BwK literature,
pertains to the total budget constraint of the problem.

Assumption 6 (Linear Growth). The resource budget B = bT
for some b > 0 .

This assumption is needed to quantify the relationship
between B and T and this is a common assumption used in
BwK literature [11], [20].

B. Preliminaries: Concentration Inequalities

Before diving into the details of the ROGUEwK-UCB, we
introduce some preliminary results that we use in our analysis.
UCB algorithms have been commonly used for stochastic non-
stationary MAB [11], [12], [21]. To construct the UCB and
LCB we need to use appropriate concentration inequalities for
the parameter estimates of the rewards and costs. To analyze
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the concentration of the cost parameter estimates we use the
Azuma-Hoeffding Inequality in the following form:

Lemma 1 (Azuma-Hoeffding’s Inequality [22]). Consider
a random variable with distribution supported on [0, 1].
Denote its expectation as z. Let Z̄ be the average of N
independent samples from this distribution. Then, ∀δ > 0,
the following inequality holds with probability at least 1− δ,
|Z̄ − z| ≤

√
1

2N log( 2δ ). More generally, this result holds if

Z1, . . . , ZN ∈ [0, 1] are random variables, Z̄ = 1
N

∑N
n=1 Zn,

and z = 1
N

∑N
n=1 E [Zn | Z1, . . . , Zn−1].

For analyzing rewards, a limitation of this inequality is that
it requires the random variables to be independent and in the
context of learning, requires the use of unbiased estimators.
These conditions are violated in the case of ROGUE rewards
as due to the structure of the model maximum likelihood
estimators (MLE), which are in general biased, will be
more effective then unbiased ones. This necessitates the use
of an alternative concentration inequality. The key of this
concentration has to do with a quantity called the trajectory
Kullbek-Liebler (KL) divergence that is defined as follows:

Definition 1 (Definition 1 from [12]). For some input action
sequence πT

1 and arm a ∈ A with dynamics ha, given starting
parameter values xa,0 ∈ X , let Ta(T ) ⊂ {1, ..., T} be the set
of times when action a was chosen up to time T , then define
the trajectory KL-divergence between these two trajectories
with the same input sequence and different starting conditions
as: Da,πT

1
(xa,0∥x′

a,0) =
∑

t∈Ta(T ) DKL(Pa,xa,t
∥Pa,x′

a,t
) =∑

t∈Ta(T ) DKL(Pa,ht
a(xa,0)∥Pa,ht

a(x
′
a,0)

).

Where hk
a represents the functional composition of ha with

itself k times subject to the given input sequence, Pa,x is the
probability law of the system under parameters x, and DKL

is the standard KL divergence. Using this quantity we use
the following concentration result:

Theorem 1 (Theorem 1 from [12]). Let x∗
a,0 be the true initial

state of an arm and let x̂a,0 be the MLE estimate for this
parameter. That is, x̂a,0 = argmin{−

∑
t∈Ta(T ) log p(rt |

xa,t) : xa,t+1. = ha(xa,t, πa,t)}, where {rt}t∈Ta
are the

observed rewards for action a ∈ A. Let na(T ) = |Ta| denote
the number of times arm a is played up to time T . Then
for α ∈ (0, 1), with probability at least 1 − α, we have

1
na(T )Da,πT

1
(x∗

a,0∥x̂a,0) ≤ B(α)
√

log(1/α)
na(T ) , where B(α) =

cf (dx)√
log(1/α)

+ Lpσ
√
2 and cf (dx) = 8Lf diam(X )

√
π +

48
√
2(2)

1
ax Lf · diam(X )

√
πdx.

Here the inclusions of the terms related to B(α) account
for the bias in the MLE estimation.

III. ROGUEWK-UCB ALGORITHM

In this section, we explain the details of the ROGUEwK-
UCB algorithm. For the stationary BwK, the optimal dynamic
policy can be computed by solving a LP that takes the mean
reward and mean consumption vectors as input [11], [20].
Also, the expected cumulative reward of this optimal dynamic

policy is used for regret analysis. Similarly we introduce a
nonlinear optimization that upper bounds the expected reward
of the optimal dynamic policy in non-stationary case and use
it to construct the ROGUwK-UCB algorithm.

A. Relation of single step and multi-step problems

Let xt = (x1,t, x2,t, ..., xm,t), gt =
(g1(x1,t), g2(x2,t), ..., g1(xm,1)). Define NLP (x0, T,C)

as maxπt

{∑T
t=1 π

⊤
t gt : xa,t = ha(πa,t, xa,t) ∀a, t ∈

A × {1, ..., T},
∑T

t=1 c
⊤
j πt ≤ B ∀j ∈ {1, ..., d}, πt ∈

∆m ∀t ∈ {1, ..., T}
}
. Here ∆m ∈ Rm is the m-dimensional

unit simplex and cj is the jth column of the matrix C.
Notice that the optimal value of NLP (x0, T,C) is an
upper bound on the expected cumulative reward of the
optimal dynamic policy because it is the linear relaxation
of the actual decision making problem which requires all
the variables to be binary. This nonlinear optimization is
hard to solve without specific structure in costs and state
transition dynamics. A similar problem where the rewards
have no state dependency has proven to be PSPACE-hard
[23]. We instead consider solving a LP to make step-wise
decisions. Define the single-step optimization problem
at time t LP (gt,C) with respect to {xa,t}a∈A, to be:
maxπt

{
π⊤

t gt :
∑

A c⊤j πt ≤ b ∀j ∈ {1, ..., d}, πt ∈ ∆m

}
.

The single-step LP problem can be interpreted as determining
the optimal pulling distribution under a normalized
resource budget b. The following proposition establishes
the relationship between the global nonlinear optimization
problem and step-wise linear program.

Proposition 1. NLP (x0, T,C) ≤ T · LP (g0,C) +
Lg

1
1−Lh

diam(X )

Proof. Denote the optimal solution for NLP (x0, T,C)
as {πNLP

t }Tt=1 and the optimal solution for
LP (g0,C) as π∗

0 . NLP (x0, T,C) − T ·
LP (x0,C) =

∑T
t=1

∑
a∈A πNLP

a,t g(h
t(xa,0) −

π∗
a,0g(xa,0) ≤

∑T
t=1 max

a∈A
g(ht(xa,0)) −

g(xa,0) ≤
∑T

t=1 Lg max
a∈A

||ht(xa,0) − xa,0||2 ≤∑T
t=1 Lg max

a∈A
||ht(xa,0) − ht(x′)||2 ≤∑T

t=1 LgL
t
h diam(X ) ≤ Lg

1
1−Lh

diam(X ). Inequality
5d-5e comes from the fact that h is a bijective function.
xa,0 = h(x′) = h2(x′′) = ... = ht(x′′′) for some
x′, x′′, x′′′ ∈ X . ■

B. Algorithm Details

Next, we present the ROGUEwK-UCB algorithm as shown
in Algorithm 1. We initialize the algorithm by pulling each
arm once. After the first m rounds, in every time step t, we
first compute the MLE estimates of each arm’s initial states
and calculate the UCB for rewards based on the estimates of
the states using Theorem 1. The idea behind the UCB is as
follows: from Theorem 1, we know that with high probability,
the true initial states are within a certain trajectory divergence
from the MLE estimates, so we find the largest possible value
of g(xa,t) within the designated confidence radius. We also
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compute lower confidence bounds (LCB) for costs of each
arm pull on different resources. Then we solve a single step
LP problem which takes the UCBs and LCBs as input. The
optimal solution to this LP is the probability distribution
according to which the arm is going to be played and we
pick an arm randomly following this distribution.

Remark 1. While Algorithm 1 is written such that it requires
knowledge of time horizon T , if it is to be run indefinitely
one could use the doubling trick [24] and still preserve its
statistical properties.

Algorithm 1 ROGUEwK-UCB

Require: Transition function {ha}, reward function {ga}
1: for t ≤ |A| do
2: Pick an arm a that hasn’t been chosen before
3: end for
4: for |A| ≤ t ≤ T do
5: for a ∈ A do
6: Compute

7: (x̂a,0) = argmin

{
−

∑
s∈Ta(t)

log p(rs | xa,s)

: xa,s+1 = ha(xa,s, πa,s) for t ∈ {0, . . . , T}}

8: gUCB
a,t = maxxa,0∈×X {g(ht

a(xa,0)) :
1

na(t)
Da,πt

a
(xa,0∥x̂a,0) ≤ B(6mT 2)

√
log(6mT 2)

nas (t)

}
9: cLCB

a,j,t = ĉa,j,na(t) −
√

1
2na(t)

log(12mdT 2)

∀j ∈ {1, ..., d} where ĉa,j,na(t) =
1

na(t)

∑
s∈Ta(t)

cj,s
10: end for
11: Solve the single-step problem LP (gUCB

t ,CLCB) and
denote its optimal solution by π∗

t = (π∗
1,t, ..., π

∗
m,t)

12: Pick arm at randomly according to π∗
t , i.e., P(at =

i) = π∗
i,t

13: Observe reward rt and consumption cj,t,∀j.
14: Terminate if budget is exceeded
15: end for

IV. REGRET ANALYSIS FOR ROGUEWK-UCB
In the following section, we present the analysis for the

regret of the ROGUEwK-UCB algorithm. We first bound
the difference between the maximum time horizon and the
termination time when budget is exhausted.

Proposition 2. The following inequality holds with prob-
ability at least 1 − 1

2T : T − τ ≤ 1
b (1 + 4

√
m +√

1
2 log(12mdT 2))(

√
T
2 log(12mdT 2)).

Proof. From Hoeffding’s inequality [25] we have that for any
a ∈ A, j ∈ 1, ..., d, t ≤ min{τ, T}, with probability at least
1 − 1

6mdT 2 , |ĉa,j,t − Ca,j | ≤
√

1
2nat (t)

log(12mdT 2).

Then: |Cat,j − cLCB
at,j,t

| = |Cat,j − (ĉat,j,t −√
1

2nat (t)
log(12mdT 2))| ≤ |Cat,j − ĉat,j,t| +√

1
2nat (t)

log(12mdT 2) ≤ 2
√

1
2nat (t)

log(12mdT 2).

Then for all t ≤ min {τ, T} with probability at least
1− T ·m · d · 1

6mdT 2 = 1− 1
6T : |

∑t
s=1(Cas,j − cLCB

as,j,s
)| ≤∑t

s=1 |Cas,j − cLCB
as,j,s

| ≤
∑t

s=1 2
√

1
2nas (s)

log(12mdT 2) =∑
a∈A

∑
s∈Ta(t)

2
√

1
2nas (s)

log(12mdT 2) =∑
a∈A

∑|Ta(t)|
s=1 2

√
1
2s log(12mdT 2)

(a)

≤∑
a∈A 4

√
|Ta(t)|

2 log(12mdT 2)
(b)

≤ 4
√

mT
2 log(12mdT 2)

where (a) comes from the fact that
∑N

n=1
1√
n
≤ 2

√
N and

(b) follows from the Cauchy-Shwartz inequality. By Lemma 1
with probability at least 1− 1

6T ≤ 1− 1
6mdT 2 : |

∑t
s=1 cj,s −

Cas,j | ≤
√

t
2 log(12mdT 2) ≤

√
T
2 log(12mdT 2). Denote

cLCB
j,t = (cLCB

1,j,t, ..., c
LCB
m,j,t). Note that E[cLCB⊤

j,t π∗
t ] = E[cLCB

j,at,t
]

and cLCB
at,j,t

∈ [−
√

1
2 log(12mdT 2), 1], then by

Lemma 1 we have with probability at least
1 − 1

6T ≤ 1 − 1
6mdT 2 : |

∑t
s=1 c

LCB⊤

j,s π∗
s − cLCB

as,j,s
| ≤

(1 +
√

1
2 log(12mdT 2))(

√
T
2 log(12mdT 2)). Combining

the above with probability at least 1 − 3 · 1
6T = 1 − 1

2T :
|
∑t

s=1 cj,s − cLCB⊤

j,s π∗
s| ≤ |

∑t
s=1 cj,s − Cas,j | +

|
∑t

s=1(Cas,j − cLCB
as,j,s

)| + |
∑t

s=1 c
LCB
as,j,s

− cLCB⊤

j,s π∗
s| ≤

(1 + 4
√
m +

√
1
2 log(12mdT 2))(

√
T
2 log(12mdT 2)).

Without loss of generality, we analyze the case when
τ ≤ T . At termination time τ , let cj,t denote the realized
cost, then

∑τ
t=1 cj,t ≥ bT for some j ≤ d. From the

fact that for all time t, π∗
t is a feasible solution to the

problem LP (gUCB
t ,CLCB), we have

∑τ
t=1 c

LCB
j,t

⊤
π∗

t ≤ bτ .
Combining this inequality with the previous inequality, we
have with probability at least 1− 1

2T :
∑τ

t=1 cj,t ≤ bτ + (1+

4
√
m+

√
1
2 log(12mdT 2)) · (

√
T
2 log(12mdT 2)). Therefore

we have (1+4
√
m+

√
1
2 log(12mdT 2))(

√
T
2 log(12mdT 2))

≥ b(T − τ), which yields the desired result. ■
Next we bound the absolute difference of cumulative

realized rewards and optimal values of single step LPs.

Proposition 3. The following inequality holds for all
t ≤ min{τ, T}with probability at least 1 − 1

2T :
|
∑t

s=1 rs − gUCB
s

⊤
π∗

s| ≤
√
2Tσ2 log(12T ) + ( 1

1−Lh
+√

T
2 log(12T ))Lg diam(X ).

Proof. From the Hoeffding’s inequality for sum of in-
dependent Sub-Gaussian random variables [25], we have
that with probability at least 1 − 1

6T : | 1t
∑t

s=1(rs −
gas

)| ≤
√

2
tσ

2 log(12T ) =⇒ |
∑t

s=1(rs − gas
)| ≤√

2tσ2 log(12T ) ≤
√

2Tσ2 log(12T ). Note that for
any s, E[π∗⊤

s gUCB
s ] = E[gUCB

as
], by Lemma 1,

we have with probability 1 − 1
6T : |

∑t
s=1 x

∗⊤

s gUCB
s −

gUCB
as

| ≤ Lg diam(X )
√

T
2 log(12T ). We denote xUCB

as,s =

argmaxxa,0∈X {g(ht
a(xa,0)) : 1

na(t)
Da,πt

1
(xa,0∥x̂a,0) ≤

B(6mT 2)
√

log(6mT 2)
nas (t)

} By Theorem 1 we have with proba-
bility at least 1− T ×m× 1

6mT 2 = 1− 1
6T the following in-
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equality holds: |
∑t

s=1(gas
−gUCB

as
)| ≤

∑t
s=1 |g(hs(xas

))−
gas

(hs(xUCB
as,s ))| ≤

∑t
s=1 Lg|hs(xas,s) − hs(xUCB

as,s )| ≤∑T
t=1 LgL

t
h diam(X ) ≤ Lg

1
1−Lh

diam(X ) Then combining
the above with the previous results with probability at least
1−3× 1

6T = 1− 1
2T , |

∑t
s=1 rs−gUCB

s
⊤
π∗

s| ≤ |
∑t

s=1(rs−
gas

)|+ |
∑t

s=1(gas
−gUCB

as
)|+ |gUCB

as
−
∑t

s=1 π
∗⊤

s gUCB
s | ≤(

1
1−Lh

+
√

T
2 log(12T )

)
Lg diam(X )+

√
2Tσ2 log(12T ). ■

Combining Propositions 1,2,3 we can derive the final result.

Theorem 2. Under Assumption 1–6, the regret of
Algorithm 1 is upper bounded as Reg(ΠROGUEwK-UCB, T ) ≤
1
b (1 + 4

√
m +

√
1
2 log(12mdT 2))(

√
T
2 log(12mdT 2)) ·

LP (g0,C) + ( 2
1−Lh

+
√

T
2 log(12T ))Lg diam(X ) +√

2Tσ2 log(12T ) + LP (g0,C) = O( 1b
√
mT log(mdT )).

Proof. Let πLP
0 denote the optimal solution to

LP (g0,C):
∑τ−1

t=1 gUCB
t

⊤
π∗

t − (τ − 1)LP (g0,C) =∑τ−1
t=1 (g

UCB⊤

t π∗
t − g⊤

0 π
LP
0 ) ≤

∑τ−1
t=1 max

a∈A
g(ht(xa,0)) −

g(xa,0) ≤
∑τ−1

t=1 Lg maxa∈A ||ht(xa,0) −
xa,0||2 ≤

∑τ−1
t=1 Lg max

a∈A
||ht(xa,0) − ht(x′)||2 ≤∑τ−1

t=1 LgL
t
h diam(X ) ≤ Lg

1−Lh
diam(X ). Then by

Propositions 1,2,3 we have probability at least 1 − 1
T :

OPT −
∑τ−1

t=1 rt ≤ NLP (x0, T,C) −
∑τ−1

t=1 rt =

(NLP (x0, T,C)−
∑τ−1

t=1 gUCB⊤

t π∗
t )+(

∑τ−1
t=1 gUCB⊤

t π∗
t −∑τ−1

t=1 rt) ≤ (T − τ + 1)LP (g0,C) + Lg
1

1−Lh
diam(X ) +

( 1
1−Lh

+
√

T
2 log(12T ))Lg diam(X ) +

√
2Tσ2 log(12T ) ≤

1
b (1 + 4

√
m +

√
1
2 log(12mdT 2))(

√
T
2 log(12mdT 2)) ·

LP (g0,C) + ( 2
1−Lh

+
√

T
2 log(12T ))Lg diam(X ) +√

2Tσ2 log(12T ) + LP (g0,C) = O( 1b
√
mT log(mdT )).

Note that OPT(T ) is of linear T (OPT(T ) ≤
T · Lg diam(X )) that transforms the high probability
bound into the expectation bound. ■

Remark 2. This result is significant because
O( 1b

√
mT log(mdT )) is sublinear in T , and for fixed

T , it is also sublinear in the total budget B based on the
relationship between T and B introduced in Assumption 6.
Regarding other state of the art results, our results matches
the Ω(

√
mOPT log(T )) for stochastic BwK setting in [17]

given that OPT = Θ(T ) up to several log factors. However
it is important to note that unlike the stationary setting,
our result contains constants that are dependant on the
non-stationarity of the system. Our result also matches [11]
where the non-stationarity of BwK is defined by the global
non-stationarity budget.

V. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments to
demonstrate the effectiveness of ROGUEwK-UCB. We con-
sider a dynamic generalized linear model (GLM) [26], [27]
which can be interpreted as non-stationary generalizations
of the classical (Bernoulli reward) stationary MAB [28]–
[30]. The exact dynamics are as follows: the transition

function h(xt, πt) = Aaxt +Baπt +Ka where Aa, Ba,Ka

are matrices/vectors of the correct size and and the rewards
ra,t are Bernoulli with a logistic link function of the form
E[ra,t] = ga(xa,t) = 1

1+exp(−αa−β⊤
a xa,t)

where α is the
vector of the correct size and βa ∈ R. We assume there are
three resource constraints and the consumption distribution
is uniform. We include three arms in this experiment whose
dynamics and support of consumption distribution are shown
in Table I and Table II. Arm 1 has small habituation and
recovery effects and is stable in its reward (indicated by
high k and β) but it has an unproportionally high cost for
one of the resources. Arm 2 has moderate habituation and
recovery effects and moderate consumption while Arm 3 has
strong habituation and recovery effects and on average less
consumption than Arm 2.

We compare our ROGUEwK-UCB algorithm against two
other algorithms: the first is the naive UCB algorithm [21]
that does not take non-stationarity and resource consumption
into consideration; the second is the sliding window upper
confidence bounds algorithm (SW-UCB) [11] that can handle
non-stationary in both rewards and costs by using a sliding
window on the UCB estimates. For both algorithms we used
the theoretically optiamlly derived hyper-parameters [11]. We
set the maximum time horizon T to be 1,000 and test the
cumulative rewards for budget from 10 to 300. Each of the
candidate algorithms was replicated 10 times.

Figures 1a,1b, and 1b show the cumulative reward collected
by all algorithms within the maximum allowed time horizon,
the average reward per play for each algorithm, and the total
number of plays for each algorithms respectively. The solid
line represent the median value across 10 replicates and the
shaded area represents the interquartile range of the values
among 10 replicates. As depicted in the plots, ROGUEwK-
UCB achieves the most total reward across all budgets.
Compared with naive UCB, both BwK algorithms are cost-
aware and avoid exhausting budget early by picking costly
arms and thus achieve higher cumulative reward. Compared
with SW-UCB, although ROGUEwK-UCB has fewer plays
before the budget is exhausted, it picks more cost-effective
arms since it estimates reward based information of underlying
non-stationary dynamics. ROGUEwK-UCB gains on average
13% more total reward than SW-UCB across all budgets.

TABLE I: Parameters for the dynamics of each Arm

Action x0 A B K α β
0 0.1 0.2 -0.5 0.8 0.2 0.8
1 0.3 0.7 -1.2 0.4 0.5 0.3
2 0.9 0.5 -2.0 1.0 0.1 1.0

TABLE II: Support for the cost of each arm and resource
XXXXXXXXArm

Resource 1 2 3

0 [0.1,0.2] [0.6,0.8] [0.3,0.5]
1 [0.2,0.3] [0.3,0.4] [0.1,0.5]
2 [0.2,0.3] [0.2,0.4] [0.1,0.3]

1171



(a) (b) (c)

Fig. 1: Cumulative reward 1a, average reward 1b, and total plays 1c for each algorithm by budget.

VI. CONCLUSION

We investigated non-stationary bandits with reducing or
gaining unknown efficacy and knapsack constraints. We
proposed an efficient UCB algorithm that determines the
arms to play by solving a LP taking the UCB estimates of
the rewards and LCB estimates of the costs as input. We
showed that this algorithm achieves sublinear regret in terms
of time horizon compared to a dynamic oracle. Numerical
experiments demonstrated that our algorithm outperforms
other state-of-art algorithms for non-stationary BwK.
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bandits: The generalized linear case,” Advances in neural information
processing systems, vol. 23, 2010.

[28] J. C. Gittins, “Bandit processes and dynamic allocation indices,” Journal
of the Royal Statistical Society Series B: Statistical Methodology,
vol. 41, no. 2, pp. 148–164, 1979.

[29] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.
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